
1

A New Viewpoint on Mutating
Methods that Preserves
Reference Immutability

Jaime Quinonez
MIT Program Analysis Group

December 5, 2006

2

Reference Immutability

 @ReadOnly on a type specifies a reference that
cannot be used to modify an object

 @ReadOnly can annotate any use of a type
 For a type T, @ReadOnly T is a supertype of T

 T can be used anywhere @ReadOnly T is expected
 @ReadOnly T cannot be used where T is expected

 Unannotated T is @Mutable by default

3

Example mutable class

 setTime() mutates object
 getTime() does not mutate object

public class Date {
private long time;

public Date(long t) {
this.time = time;

}
public long getTime() {

return time;
}
public void setTime(long time) {

this.time = time;
}

}

4

@ReadOnly receiver annotates method

 getTime() does not mutate object
 receiver of getTime() is @ReadOnly

public class Date {
private long time;

public Date(long t) {
this.time = time;

}
public long getTime() @ReadOnly {

return time;
}
public void setTime(long time) {

this.time = time;
}

}

5

@Mutable receiver can also annotate method

 setTime() does mutate object
 receiver of setTime() is @Mutable

public class Date {
private long time;

public Date(long t) {
this.time = time;

}
public long getTime() @ReadOnly {

return time;
}
public void setTime(long time) @Mutable {

this.time = time;
}

}

6

@ReadOnly on generic types

ArrayList<@ReadOnly Date> list;
 list is a mutable ArrayList

 Contains immutable references to Dates
 The list can be mutated

 list.get(0) - legal
 list.clear() - legal

 Elements in the list cannot be mutated
 Return type of list.get() is @ReadOnly Date
 list.get(0).getTime() - legal
 list.get(0).setTime(2) - illegal
 @ReadOnly Date d = list.get(0) - legal
 @Mutable Date d = list.get(0) - illegal



2

7

@ReadOnly doesn’t propagate to generics

@ReadOnly ArrayList<Date> list;
 list is an immutable ArrayList

 Contains mutable references to Dates
 The list cannot be mutated

 list.get(0) - legal
 list.clear() - illegal

 Elements in the list can be mutated
 Return type of list.get() is @Mutable Date
 list.get(0).getTime() - legal
 list.get(0).setTime(2) - legal
 @ReadOnly Date d = list.get(0) - legal
 @Mutable Date d = list.get(0) - legal

8

Fields are @ThisMutable by default

 Mutability of a field is the same as the mutability of receiver this

public class Cell {
private @ThisMutable Date d;

public void read() @ReadOnly {
// type of this.d is @ReadOnly Date

}
public void write() @Mutable {

// type of this.d is @Mutable Date
}

}

9

Problem: returning fields requires overloading

 Date d is the abstract state of a Cell

public class Cell {
private @ThisMutable Date d;

// protects abstract state from modification 
public @ReadOnly Date getDate() @ReadOnly {

return d;
}

// exposes abstract state to be modified
public @Mutable Date getDate() @Mutable {

return d;
} 

}

10

Problem: mutability not present runtime

 Java is a statically-typed language
 Mutability annotations checked at compile time, then discarded

public class Cell {
private @ThisMutable Date d;

// protects abstract state from modification
public Date getDate() {

return d;
}

// exposes abstract state to be modified
public Date getDate() {

return d;
}

}
 Error: getDate() methods have identical signatures

11

C++ allows overloading

 Mutability of return type needs to match mutability of receiver
 C++ approach

 Use keyword const to create overloaded methods
 const Date& getDate() const;
 Date& getDate();
 Exactly what previous overloading example tried to do

 This approach cannot be done in Java due to type-system representation
 Similar to inability to template over generics:

 public void foo(List<Number> list);

 Public void foo(List<String> list);

 Entire Standard Template Library is filled with overloaded functions
 Unnecessary code duplication
 Increases size of files, but no change in runtime
 Error-prone since programmers often forget to duplicate updates

12

IGJ uses generics to specify mutability

 Mutability of return type needs to match mutability of receiver
 IGJ approach

 Every type is generic, last parameter can be ReadOnly or Mutable

public class Cell<T> {

private Date<T> d;

public @ReadOnly Date<T> getDate() { return d; }
}

Cell<ReadOnly> cell;

cell.getDate(); // returns a Date<ReadOnly>

Cell<Mutable> cell;
cell.getDate(); // returns a Date<Mutable>

 Breaks type system to give mutability meaning to generics
 Casts between Cell<Mutable> and Cell<ReadOnly>  are identical
 List<T> and List<Q> not related in Java



3

13

Javari allows templating over mutability

 Mutability of return type needs to match mutability of receiver
 Javari approach

 Use annotation @RoMaybe to template over mutability
 public @RoMaybe Date getDate() @RoMaybe { … };

 Simultaneously represents both possibilities:
 public @ReadOnly Date getDate() @ReadOnly { … };
 public @Mutable Date getDate() @Mutable { … };

 Templating eliminates code duplication
 Only one implementation needs to be maintained
 Not allowed to have different code in methods

14

Javari’s interpretation of mutating methods

 Javari requires a method to be annotated @Mutable if calling the method
might somehow lead to a modification
 The method might modify a field
 The method might pass some of its fields to mutable contexts
 The method might return a mutable reference to internal data

 The type system is sound and complete
 Other interpretations can increase program understanding and expressive

power of mutability annotations

15

Proposal: Extend this-mutability to other types

 A method is @Mutable if it leads to a modification the caller can’t control
 public @Mutable Cell getDate() @Mutable {return d; }

 Method doesn’t actually modify anything
 Given a reference @Mutable Cell c, no possible call to c.getDate() in any

context will modify c
 Restriction is that getDate() returns something that can be used to modify

state
 Given @Mutable Cell c, it is legal for c.getDate() to return a @Mutable

Date
 Given @ReadOnly Cell c, it is illegal for c.getDate() to return a

@Mutable Date

 All the type mutability rules can be expressed as
public @ThisMutable Date getDate() @ReadOnly {

return d; }

16

Proposal: Extend this-mutability to other types

public @ThisMutable Date getDate() @ReadOnly {
return d; }

 All necessary information to determine mutability of “this” is present at
compile time

@ReadOnly Cell rcell;
// return type of rcell.getDate() is @ReadOnly Date
@ReadOnly Date d1 = rcell.getDate(); // legal
@Mutable  Date d2 = rcell.getDate(); // illegal

@Mutable Cell mcell;
// return type of mcell.getDate() is @Mutable Date
@ReadOnly Date d3 = mcell.getDate(); // legal
@Mutable  Date d4 = mcell.getDate(); // legal

17

Modifications to type rules

 Previous viewpoint meant type of reciever always known in containing class

public class Cell {
public @ThisMutable Date d;

public @ReadOnly Date getDate() @ReadOnly {
// know that you are in @ReadOnly context,
// type of this.d is @ReadOnly Date
return d;

}

}

18

Modifications to type rules

 If receiver annotation no longer completely defines context, code correctness
can’t be guaranteed solely by examining each method

 However, code can still be checked against @ReadOnly rules
 Code that uses getDate() needs to be checked for correctness

public class Cell {
public @ThisMutable Date d;

public @ThisMutable Date getDate() @ReadOnly {
// Don’t know complete context, this.d

// might be @Mutable or @ReadOnly
return d;

}
}



4

19

Modifications to type rules

 Code that uses Cell.getDate() has complete this information and can
be checked against type rules

 All rules can still be checked at compile-time
 Task of checking that return type is used properly is shifted from class defining

the method to class using the method

@ReadOnly Cell rcell;
// return type of rcell.getDate() is @ReadOnly Date
@ReadOnly Date d1 = rcell.getDate(); // legal
@Mutable  Date d2 = rcell.getDate(); // illegal

@Mutable Cell mcell;
// return type of mcell.getDate() is @Mutable Date
@ReadOnly Date d3 = mcell.getDate(); // legal
@Mutable  Date d4 = mcell.getDate(); // legal

20

Individual contribution to project

 Modify immutability type inference tool
 Modify core calculus (Featherweight Generic Java) to prove soundness

 Find all valid uses of @ThisMutable and ensure type rules are sound
 Perform case studies to evaluate usefulness

 Backwards compatibility ensures existing code still technically valid
 Software design patterns have typical implementations that might be affected
 Existing Javari code can be rewritten
 The JDK can be rewritten
 Large open source projects can be rewritten


