A New Viewpoint on Mutating
Methods that Preserves
* Reference Immutability

Jaime Quinonez
MIT Program Analysis Group
December 5, 2006

Reference Immutability

= @ReadOnly on a type specifies a reference that
cannot be used to modify an object
= @ReadOnly can annotate any use of a type
= Foratype T, @ReadOnly T is a supertype of T
= T can be used anywhere @ReadOnly T is expected
= @ReadOnly T cannot be used where T is expected

= Unannotated T is @Mutable by default

Example mutable class

= setTime () mutates object
= getTime () does not mutate object

public class Date {
private long time;

public Date(long t) {
this.time = time;

}

public long getTime() {
return time;

}

public void setTime(long time) ({
this.time = time;

)

@ReadOnly receiver annotates method

= getTime () does not mutate object
= receiver of getTime () is @ReadOnly

public class Date {
private long time;

public Date(long t) {
this.time = time;

}

public long getTime() @ReadOnly {
return time;

}

public void setTime(long time) ({
this.time = time;

)

@Mutable receiver can also annotate method

= setTime() does mutate object
= receiverof setTime() is @Mutable

public class Date {
private long time;

public Date(long t) {
this.time = time;

}

public long getTime() @ReadOnly {
return time;

}

public void setTime(long time) @Mutable {
this.time = time;

)

@ReadOnly on generic types

ArrayList<@ReadOnly Date> list;
= list isamutable ArrayList

= Contains immutable references to Dates
= The list can be mutated

« list.get(0) -legal

= list.clear() -legal
= Elements in the list cannot be mutated
Return type of 1ist.get () is @ReadOnly Date
list.get(0) .getTime () -legal
list.get (0).setTime (2) - illegal

@ReadOnly Date d = list.get(0) -legal

@Mutable Date d = list.get (0) -illegal




@ReadOnly doesn’t propagate to generics

@ReadOnly ArrayList<Date> list;
= list isanimmutable ArrayList

= Contains mutable references to Dates
= The list cannot be mutated

« list.get(0) -legal

« list.clear() -illegal
= Elements in the list can be mutated
Return type of 1ist.get () is @Mutable Date
list.get(0) .getTime () -legal
» list.get(0).setTime(2) -legal
= @ReadOnly Date d = list.get(0) -legal
= (@Mutable Date d = list.get(0) -legal

Fields are @ThisMutable by default
= Mutability of a field is the same as the mutability of receiver this

public class Cell {
private @ThisMutable Date d;

public void read() @ReadOnly {

// type of this.d is @ReadOnly Date
}
public void write() @Mutable {

// type of this.d is @Mutable Date

Problem: returning fields requires overloading

= Date d is the abstract state of a Ce11

public class Cell {
private @ThisMutable Date d;

// protects abstract state from modification
public @ReadOnly Date getDate() @ReadOnly {
return d;

// exposes abstract state to be modified
public @Mutable Date getDate() @Mutable {
return d;

8
Problem: mutability not present runtime
= Javais a statically-typed language
= Mutability annotations checked at compile time, then discarded
public class Cell {
private @ThisMutable Date d;
// protects abstract state from modification
public Date getDate() {
return d;
}
// exposes abstract state to be modified
public Date getDate() {
return d;
}
}
= Error: getDate () methods have identical signatures 10

C++ allows overloading

= Mutability of return type needs to match mutability of receiver
= C++ approach

= Use keyword const to create overloaded methods

= const Date& getDate() const;

= Date& getDate();

= Exactly what previous overloading example tried to do

= This approach cannot be done in Java due to type-system representation

= Similar to inability to template over generics:
= public void foo(List<Number> list);
= Public void foo(List<String> list);
Entire Standard Template Library is filled with overloaded functions
code duplication

ses size of files, but no change in runtime
= Error-prone since programmers often forget to duplicate updates

IGJ uses generics to specify mutability

= Mutability of return type needs to match mutability of receiver
= IGJ approach
= Every type is generic, last parameter can be ReadOnly or Mutable

public class Cell<T> {

private Date<T> d;

public @ReadOnly Date<T> getDate() { return d; }
}

Cell<ReadOnly> cell;

cell.getDate(); // returns a Date<ReadOnly>
Cell<Mutable> cell;
cell.getDate(); // returns a Date<Mutable>

= Breaks type system to give mutability meaning to generics
= Casts between Cell<Mutable> and Cell<ReadOnly> are identical
= List<T> and List<Q> not related in Java




Javari allows templating over mutability

= Mutability of return type needs to match mutability of receiver
= Javari approach
= Use annotation @RoMaybe to template over mutability
« public @RoMaybe Date getDate() @RoMaybe { .. };

. ly both
« public @ReadOnly Date getDate() @GReadOnly { .. };
» public @Mutable Date getDate() @Mutable { .. };
= Templating eliminates code duplication
= Only one i fon needs to be

= Not allowed to have different code in methods

Javari’s interpretation of mutating methods

= Javari requires a method to be annotated @Mutable if calling the method
might somehow lead to a modification
= The method might modify a field
= The method might pass some of its fields to mutable contexts
= The method might return a mutable reference to internal data
= The type system is sound and complete
= Other interpretations can increase program understanding and expressive
power of mutability annotations

Proposal: Extend this-mutability to other types

= A method is @Mutable if it leads to a modification the caller can’t control
= public @Mutable Cell getDate() @Mutable {return d; }
= Method doesn’t actually modify anything
= Given areference @Mutable Cell c,no possible call to c.getDate () inany
context will modify c
= Restriction is that getDate () returns something that can be used to modify
state
= Given @Mutable Cell c,itislegal for c.getDate () toreturna @Mutable
Date
= Given @ReadOnly Cell c,itisillegal for c.getDate () toreturna
@Mutable Date
= All the type mutability rules can be expressed as
public @ThisMutable Date getDate() @ReadOnly {
return d; }

Proposal: Extend this-mutability to other types

public @ThisMutable Date getDate() @ReadOnly {
return d; }

= All necessary information to determine mutability of “this” is present at
compile time

@ReadOnly Cell rcell;

// return type of rcell.getDate() is @ReadOnly Date
@ReadOnly Date dl = rcell.getDate(); // legal
@Mutable Date d2 = rcell.getDate(); // illegal

@Mutable Cell mcell;

// return type of mcell.getDate() is @Mutable Date
@ReadOnly Date d3 = mcell.getDate(); // legal
@Mutable Date d4 = mcell.getDate(); // legal

Modifications to type rules

= Previous viewpoint meant type of reciever always known in containing class

public class Cell {
public @ThisMutable Date d;

public @ReadOnly Date getDate() @ReadOnly {
// know that you are in @ReadOnly context,
// type of this.d is @ReadOnly Date
return d;

Modifications to type rules

= If receiver annotation no longer completely defines context, code correctness
can’t be guaranteed solely by examining each method

= However, code can still be checked against @ReadOnly rules

= Code that uses getDate () needs to be checked for correctness

public class Cell {
public @ThisMutable Date d;

public @ThisMutable Date getDate() @ReadOnly {
// Don’t know complete context, this.d
// might be @Mutable or @ReadOnly
return d;




Modifications to type rules

= Code that uses Cell.getDate () has complete this information and can
be checked against type rules

= All rules can still be checked at compile-time

= Task of checking that return type is used properly is shifted from class defining
the method to class using the method

@ReadOnly Cell rcell;

// return type of rcell.getDate() is @ReadOnly Date
@ReadOnly Date dl = rcell.getDate(); // legal
@Mutable Date d2 = rcell.getDate(); // illegal

@Mutable Cell mcell;

// return type of mcell.getDate() is @Mutable Date
@ReadOnly Date d3 = mcell.getDate(); // legal
@Mutable Date d4 = mcell.getDate(); // legal

Individual contribution to project

= Modify immutability type inference tool

= Modify core calculus (Featherweight Generic Java) to prove soundness
= Find all valid uses of @ ThisMutable and ensure type rules are sound

= Perform case studies to evaluate usefulness
= Backwards compatibility ensures existing code still technically valid

Software design patterns have typical implementations that might be affected
Existing Javari code can be rewritten

The JDK can be rewritten

Large open source projects can be rewritten

20




