
Type Annotations Specification (JSR 308)

Michael D. Ernst
mernst@csail.mit.edu

May 14, 2009

The JSR 308 webpage is http://groups.csail.mit.edu/pag/jsr308/. It contains the latest version of this
document, along with other information such as a FAQ, the reference implementation, and sample annotation
processors.

Contents

1 Introduction 2

2 Java language syntax extensions 3
2.1 Source locations for annotations on types . 3
2.2 Java language grammar changes . 3
2.3 Target meta-annotations for type annotations . 4

3 Compiler modifications 5

4 Class file format extensions 5
4.1 The extended annotation structure . 6
4.2 The target type field . 7
4.3 The reference info field . 7

4.3.1 Typecasts, type tests, object creation and class literal 7
4.3.2 Local Variables . 7
4.3.3 Type Arguments on Method Parameters . 9
4.3.4 Method Receivers . 9
4.3.5 Type Arguments on method return type and fields . 9
4.3.6 Type Parameters . 9
4.3.7 Type Parameter Bounds . 9
4.3.8 Constructor and method call type arguments . 10
4.3.9 Class extends and implements Clauses . 10
4.3.10 throws Clauses . 10
4.3.11 Wildcard bounds . 10
4.3.12 Generic Type Arguments and Arrays . 11

5 Detailed grammar changes 11

A Example use of type annotations: Type qualifiers 14
A.1 Examples of type qualifiers . 14

1

B Discussion of Java language syntax extensions 16
B.1 Examples of annotation syntax . 16
B.2 Uses for annotations on types . 17
B.3 Syntax of array annotations . 21
B.4 Disambiguating type and declaration annotations . 22

C Discussion of tool modifications 23
C.1 Compiler . 23
C.2 ASTs and annotation processing . 24
C.3 Reflection . 24

C.3.1 Non-changes to reflection . 24
C.4 Virtual machine and class file analysis tools . 24
C.5 Other tools . 25

D Other possible extensions to Java annotations 25
D.1 Duplicate (multiple, repeated) annotations at a location . 26
D.2 Locations for annotations . 27

D.2.1 Annotations on statements . 27
D.2.2 Expression annotations . 28
D.2.3 Implicit Java types in casts . 28
D.2.4 Only certain statements . 28

D.3 Changes to the annotation type . 29
D.3.1 Inheritance among annotations (subclassing/subtyping annotations) 29
D.3.2 Potentially recursive annotations (Annotations as members of annotations) 30
D.3.3 Null as an annotation field value (nullable fields) . 31
D.3.4 Positional arguments . 31

D.4 Semantics of annotations . 31
D.4.1 Annotations for specific purposes . 31
D.4.2 Annotation inheritance . 32
D.4.3 Default annotations . 32

D.5 Type abbreviations and typedefs . 32
D.6 Class file syntax . 33

D.6.1 Reducing class file size via use of the constant pool . 33
D.6.2 Optional/default fields in annotations . 33

D.7 Access to method bodies in annotation processing API . 33

E Logistical matters 33
E.1 Edits to existing standards documents . 34
E.2 Testing (TCK, Technology Compatibility Kit) . 34
E.3 Process . 34

F Related work 35

1 Introduction

JSR 308 extends Java’s annotation system [Blo04a] so that annotations may appear on nearly any use of a
type. (By contrast, Java SE 6 permits annotations only on class/method/field/variable declarations; JSR
308 is backward-compatible and continues to permit those annotations.) Such a generalization removes
limitations of Java’s annotation system, and it enables new uses of annotations. This proposal also notes a
few other possible extensions to annotations (see Section D).

2

This document specifies the syntax of extended Java annotations, but it makes no commitment as to
their semantics. As with Java’s existing annotations [Blo04a], the semantics is dependent on annotation
processors (compiler plug-ins), and not every annotation is necessarily sensible in every location where it
is syntactically permitted to appear. This proposal is compatible with existing annotations, such as those
specified in JSR 250, “Common Annotations for the Java Platform” [Mor06], and proposed annotations, such
as those to be specified in JSR 305, “Annotations for Software Defect Detection” [Pug06]. (For a comparison
of JSR 305 and JSR 308, see Section D.4, page 31.)

This proposal does not change the compile-time, load-time, or run-time semantics of Java. It does not
change the abilities of Java annotation processors as defined in JSR 269 [Dar06]. The proposal merely
makes annotations more general — and thus more useful for their current purposes, and also usable for new
purposes that are compatible with the original vision for annotations [Blo04a].

This document has two parts: a short normative part and a longer non-normative part. The normative
part specifies the changes to the Java language syntax (Sections 2 and 5), the Java toolset (Section 3), and
the class file format (Section 4).

The non-normative part consists of appendices that discuss and explain the specification or deal with
logistical issues. It motivates annotations on types by presenting one possible use, type qualifiers (Ap-
pendix A). It gives examples of and further motivation for the Java syntax changes (Appendix B) and lists
tools that must be updated to accommodate the Java and class file modifications (Appendix C). Appendix D
lists other possible extensions to Java annotations, some of which are within the scope of JSR 308 (and might
be included in a future revision) and some of which are not. The document concludes with logistical matters
relating to incorporation in the Sun JDK (Section E) and related work (Section F).

A JSR, or Java Specification Request, is a proposed specification for some aspect of the Java platform —
the Java language, virtual machine, libraries, etc. For more details, see the Java Community Process FAQ
at http://jcp.org/en/introduction/faq.

A FAQ (Frequently Asked Questions) document complements this specification; see http://pag.csail.mit.

edu/jsr308/jsr308-faq.html.

2 Java language syntax extensions

2.1 Source locations for annotations on types

In Java SE 6, annotations can be written only on method parameters and the declarations of packages,
classes, methods, fields, and local variables. JSR 308 extends Java to allow annotations on any use of a
type. JSR 308 uses a simple prefix syntax for type annotations, with a special case for receiver types and
for constructor results.

1. A type annotation appears before the type, as in @NonNull String.

2. The annotation on a given array level prefixes the brackets that introduce that level. To declare a
non-empty array of English-language strings, write @English String @NonEmpty []. The varargs syntax
... is treated analogously to array brackets and may also be prefixed by an annotation.

3. An annotation on the type of a method receiver (this) appears just after the parameter list and before
any throws clause. (Each non-static method has an implicit parameter, this, which is called the receiver.)

Section B.1 contains examples of the annotation syntax.

2.2 Java language grammar changes

This section summarizes the Java language grammar changes, which correspond to the three rules of Sec-
tion 2.1. Section 5 shows the grammar changes in detail. Additions are underlined.

1. Any Type may be prefixed by [Annotations] :

3

Type:
[Annotations] Identifier [TypeArguments] {. Identifier [TypeArguments]} {[]}
[Annotations] BasicType

2. To permit annotations on levels of an array (in declarations, not constructors), change “{[]}” to
“{[Annotations] []}”. (This was abstracted out as “BracketsOpt” in the 2nd edition of the JLS [GJSB00].)
For example:

Type:
[Annotations] Identifier [TypeArguments]{ . Identifier [TypeArguments]} {[Annotations] []}
[Annotations] BasicType

Also permit annotations on varargs (...):

FormalParameterDeclsRest :
VariableDeclaratorId [, FormalParameterDecls]
[Annotations] ... VariableDeclaratorId

3. Annotations may appear on the receiver type by changing uses of “FormalParameters” (in all 5 places
it appears in the grammar) to “FormalParameters [Annotations]”. For example:

VoidMethodDeclaratorRest :
FormalParameters [Annotations] [throws QualifiedIdentifierList] (MethodBody | ;)

4. Annotations may appear on the type parameter declaration in a class or method declaration.

TypeParameter :
[Annotations] Identifier [extends Bound]

5. Annotations may appear on the wildcard in any type argument.

TypeArgument :
[Annotations] ? [(extends | super) Type]

2.3 Target meta-annotations for type annotations

Java uses the @Target meta-annotation as a machine-checked way of expressing where an annotation is
intended to appear. JSR 308 adds two new constants to the ElementType enum, which classifies the places an
annotation may appear in a Java program.

• ElementType.TYPE PARAMETER stands for a type parameter — that is, the declaration of a type variable.

• ElementType.TYPE USE stands for all uses of types.

For example, in this declaration:

@Target(ElementType.TYPE_USE)

public @interface NonNull { ... }

the @Target(ElementType.TYPE USE) meta-annotation indicates that @NonNull may appear on any use of a type.
ElementType.TYPE PARAMETER and ElementType.TYPE USE are distinct from the existing ElementType.TYPE enum

element of Java SE 6, which indicates that an annotation may appear on a type declaration (a class, interface,
or enum declaration).

The compiler applies an annotation to every target that is consistent with its meta-annotation. The order
of annotations is not used to disambiguate. As in Java SE 6, the compiler issues an error if a programmer
places an annotation in a location not permitted by its Target meta-annotation. (The compiler issues the
error even if no annotation processor is being run.)

4

3 Compiler modifications

When generating .class files, the compiler must emit the attributes described in Section 4.
The compiler is required to preserve annotations in the class file. More precisely, if a programmer places

an annotation (with class file or runtime retention) on the type of an expression, and that expression is
represented in the compiled class file, then the annotation must be present, in the compiled class file, on the
type of the compiled representation of the expression. If the compiler optimizes away an expression, then it
may also optimize away the annotation. (Exception: when a type cast is optimized away without optimizing
away its argument, the annotation remains on the argument; see Section 4.2.)

The compiler sometimes creates new methods that did not appear in the source code, and that do nothing
but call an existing method. In this case, annotations should be copied from the method being invoked.
Two examples are bridge methods (an implementation strategy used when the erased signature of the actual
method being invoked differs from that of the compile-time method declaration [GJSB05, §15.12.4.5]) and
anonymous constructors [GJSB05, §15.9.5.1]. (As of Java SE 6, javac does not copy/transfer any annotations
from original methods to the compiler-generated methods; that is probably a bug in javac. It is, however,
perhaps debatable whether all annotations should be copied.)

4 Class file format extensions

This section defines how to store type annotations in a Java class file. It also defines how to store local
variable annotations, which are permitted in Java SE 6 but are discarded by the compiler.

Why store type annotations in the class file? The class file format represents the type of every
variable and expression in a Java class, including all temporaries and values stored on the stack. (Sometimes
the representation is explicit, and sometimes it is implicit.) Since JSR 308 permits annotations to be added
to a type, the class file format should be updated to continue to represent the full, annotated type of each
expression.

More pragmatically, Java annotations must be stored in the class file for two reasons. First, annotated
signatures (public members) must be available to tools that read class files. For example, a type-checking
compiler plug-in [Dar06] needs to read annotations when compiling a client of the class file. Second, annotated
method bodies must be present to permit checking the class file against the annotations. This is necessary to
give confidence in an entire program, since its parts (class files) may originate from any source. Otherwise,
it would be necessary to simply trust annotated classes of unknown provenance [BHP07].

How Java SE 6 stores annotations in the class file In Java SE 6, an annotation is stored in the
class file in an attribute [Blo04a, LY07]. An attribute associates data with a program element (a method’s
bytecodes, for instance, are stored in a Code attribute of the method). The RuntimeVisibleParameterAnnotations

stores formal parameter annotations that are accessible at runtime using reflection, and the RuntimeInvisible-

ParameterAnnotations attribute stores formal parameter annotations that are not accessible at runtime. Runtime-

VisibleAnnotations and RuntimeInvisibleAnnotations are analogous, but for annotations on fields, methods, and
classes.

These attributes contain arrays of annotation structure elements, which in turn contain arrays of element value

pairs. The element value pairs store the names and values of an annotation’s arguments.
Annotations on a field are stored as attributes of the field’s field info structure [LY07, §4.6]. Annotations

on a method are stored as attributes of the method’s method info structure [LY07, §4.7]. Annotations on a
class are stored as attributes of the class’s attributes structure [LY07, §4.2].

Generic type information is stored in a different way in the class file, in a signature attribute. It details
are not germane to the current discussion.

Changes in JSR 308 JSR 308 introduces two new attributes: RuntimeVisibleTypeAnnotations and Runtime-

InvisibleTypeAnnotations. These attributes are structurally identical to the RuntimeVisibleAnnotations and

5

RuntimeInvisibleAnnotations attributes described above with one exception: rather than an array of annotation
elements, RuntimeVisibleTypeAnnotations and RuntimeInvisibleTypeAnnotations contain an array of extended anno-

tation elements, which are described in Section 4.1.
An annotation is stored in a Runtime[In]visibleTypeAnnotations attribute on the smallest enclosing class,

field, or method.

Backward compatibility For backward compatibility, JSR 308 uses new attributes for storing the type
annotations. In other words, JSR 308 merely reserves the names of a few attributes and specifies their
layout. JVMs ignore unknown attributes. JSR 308 does not alter the way that existing annotations on
classes, methods, method parameters, and fields are stored in the class file. JSR 308 mandates no changes
to the processing of existing annotation locations; in the absence of other changes to the class file format,
class files generated from programs that use no new annotations will be identical to those generated by a
standard Java SE 6 compiler. Furthermore, the bytecode array will be identical between two programs that
differ only in their annotations. Attributes have no effect on the bytecode array, because they exist outside
it; however, they can represent properties of it by referring to the bytecode (including specific instructions,
or bytecode offsets).

To do In Java SE 6, the class file stores the types of elements on the stack; this eliminates the need for byte
code verification to to perform type inference for local variables and stack elements. The class file format
should similarly store the annotations on those types, to aid in annotation verification in class files.

4.1 The extended annotation structure

The extended annotation structure has the following format:

extended_annotation {

// Original fields from "annotation" structure:

u2 type_index;

u2 num_element_value_pairs;

{

u2 element_name_index;

element_value value;

} element_value_pairs[num_element_value_pairs];

// New fields in JSR 308:

u1 target_type; // the type of the targeted program element, see Section 4.2

{

...

} reference_info; // uniquely identifies the targeted program element, see Section 4.3

}

We first briefly recap the three fields of annotation [LY07, §4.8.15].

• type index is an index into the constant pool indicating the annotation type for this annotation.

• num element value pairs is a count of the element value pairs that follow.

• Each element value pairs table entry represents a single element-value pair in the annotation (in the
source code, these are the arguments to the annotation): element name index is a constant pool entry for
the name of the annotation type element, and value is the corresponding value [LY07, §4.8.15.1].

Compared to annotation, the extended annotation structure contains two additional fields. These fields
implement a discriminated (tagged) union type: field target type is the tag (see Section 4.2), and its value
determines the size and contents of reference info (see Section 4.3).

6

4.2 The target type field

The target type field denotes the type of program element that the annotation targets, such as whether the
annotation is on a field, a method receiver, a cast, or some other location. Figure 1 gives the value of
target type for every possible annotation location.

Enumeration elements marked ∗ never appear in a target type field. Sometimes this is because annotations
cannot be written in that location, such as because Java prohibits writing the location itself. In other cases
this is because the annotations were permitted in Java 5, so there is already a place to store them in the class
file rather than placing them in the new Runtime[In]visibleTypeAnnotations attribute. The unused enumeration
elements are included for completeness.

4.3 The reference info field

reference info is a structure that contains enough information to uniquely identify the target of a given
annotation. A different target type may require a different set of fields, so the structure of the reference info

is determined by the value of target type.

4.3.1 Typecasts, type tests, object creation and class literal

When the annotation’s target is a typecast, an instanceof expression, a new expression, or a class literal
expression reference info has the following structure:

{

u2 offset;

} reference_info;

The offset field denotes the offset (i.e., within the bytecodes of the containing method) of the checkcast

bytecode emitted for the typecast, the instanceof bytecode emitted for the type tests, or of the new bytecode
emitted for the object creation expression. Typecast annotations are attached to a single bytecode, not a
bytecode range (or ranges): the annotation provides information about the type of a single value, not about
the behavior of a code block. A similar explanation applies to type tests and object creation.

For annotated typecasts, the attribute may be attached to a checkcast bytecode, or to any other bytecode.
The rationale for this is that the Java compiler is permitted to omit checkcast bytecodes for typecasts that
are guaranteed to be no-ops. For example, a cast from String to @NonNull String may be a no-op for the
underlying Java type system (which sees a cast from String String). If the compiler omits the checkcast

bytecode, the @NonNull attribute would be attached to the (last) bytecode that creates the target expression
instead. This approach permits code generation for existing compilers to be unaffected.

See Section 4.3.12 for handling of generic type arguments and arrays.

4.3.2 Local Variables

When the annotation’s target is a local variable, reference info has the following structure:

{

u2 table_length;

{

u2 start_pc;

u2 length;

u2 index;

} table[table_length];

} reference_info;

The table length field specifies the number of entries in the table array; multiple entries are necessary
because a compiler is permitted to break a single variable into multiple live ranges with different local variable
indices. The start pc and length fields specify the variable’s live range in the bytecodes of the local variable’s
containing method (from offset start pc to offset start pc + length). The index field stores the local variable’s

7

Annotation target target type value reference info definition
method receiver 0x06 §4.3.4
method receiver generic/array 0x07∗ Future extension to JSR 308
method return type 0x0A∗ use Runtime[In]visibleAnnotations
method return type generic/array 0x0B §4.3.5
method parameter 0x0C∗ use Runtime[In]visibleParameterAnnotations
method parameter generic/array 0x0D §4.3.3
field 0x0E∗ use Runtime[In]visibleAnnotations
field generic/array 0x0F §4.3.5
class type parameter bound 0x10 §4.3.7
class type parameter bound generic/array 0x11 +§4.3.12
method type parameter bound 0x12 §4.3.7
method type parameter bound generic/array 0x13 +§4.3.12
class extends/implements 0x14 §4.3.9
class extends/implements generic/array 0x15 +§4.3.12
exception type in throws 0x16 §4.3.10
exception type in throws generic/array 0x17∗ forbidden by Java
wildcard bound 0x1C §4.3.11
wildcard bound generic/array 0x1D +§4.3.12
method type parameter 0x20 §4.3.6
method type parameter generic/array 0x21∗ Java does not support
class type parameter 0x22 §4.3.6
class type parameter generic/array 0x23∗ Java does not support
typecast 0x00 §4.3.1
typecast generic/array 0x01 +§4.3.12
type test (instanceof) 0x02 §4.3.1
type test (instanceof) generic/array 0x03 +§4.3.12
object creation (new) 0x04 §4.3.1
object creation (new) generic/array 0x05 +§4.3.12
local variable 0x08 §4.3.2
local variable generic/array 0x09 +§4.3.12
type argument in constructor call 0x18 §4.3.8
type argument in constructor call generic/array 0x19 +§4.3.12
type argument in method call 0x1A §4.3.8
type argument in method call generic/array 0x1B +§4.3.12
class literal 0x1E §4.3.1
class literal generic/array 0x1F∗ forbidden by Java

Figure 1: Values of target type for each possible target of a type annotation. Ordinary Java annotations on
declarations are not included, because they appear in annotation, not extended annotation, attributes in the
class file. Table elements such as local variable, method parameter, and field refer to the declaration, not
the use, of such elements.
Enumeration elements marked ∗ will never appear in a target type field; see Section 4.2.
The top half of the table contains targets that may appear on classes and members — places that annotations
already appear in the class file in Java SE 6. The bottom half of the table contains targets that only appear
inside method bodies, where annotations do not appear in Java SE 6 (not even local variable annotations
written by the programmer).

index in that method. These fields are similar to those of the optional LocalVariableTable attribute [LY07,
§4.8.12].

8

Storing local variable annotations in the class file raises certain challenges. For example, live ranges are
not isomorphic to local variables. Further, a local variable with no live range may not appear in the class
file (but it is also irrelevant to the program).

4.3.3 Type Arguments on Method Parameters

When the annotation’s target is a method parameter, reference info indicates which of the method’s formal
parameters is being annotated:

{

u1 parameter_index;

u2 location_length;

u1 location[location_length];

} reference_info;

The location length and location fields are as in Section 4.3.12.

4.3.4 Method Receivers

When the annotation’s target is a method receiver (or an inner class constructor receiver), reference info is
empty.

4.3.5 Type Arguments on method return type and fields

When the annotation’s target is a type argument of a method return type, a constructor result, or a field,
reference info has the following structure:

{

u2 location_length;

u1 location[location_length];

} reference_info;

The location length and location fields are as in Section 4.3.12.

4.3.6 Type Parameters

When the annotation’s target is a type parameter of a class or method, reference info has the following
structure:

{

u1 param_index;

} reference_info;

param index specifies the 0-based index of the type parameter.

4.3.7 Type Parameter Bounds

When the annotation’s target is a bound of a type parameter of a class or method, reference info has the
following structure:

{

u1 param_index;

u1 bound_index;

} reference_info;

param index specifies the index of the type parameter, while bound index specifies the index of the bound.
Consider the following example:

<T extends @A Object & @B Comparable, U extends @C Cloneable>

Here @A has param index 0 and bound index 0, @B has param index 0 and bound index 1, and @C has param index 1
and bound index 0.

9

4.3.8 Constructor and method call type arguments

When the annotation’s type is a type argument in a constructor call or a method call, reference info has the
following structure:

{

u2 offset;

u1 type_index;

} reference_info;

The offset field denotes the offset (i.e., within the bytecodes of the containing method) of the new bytecode
emitted for constructor call, or the invoke{interface|special|static|virtual} bytecode emitted for method
invocation. Like type cast type annotations, type argument annotations are attached to a single bytecode,
not a bytecode range.

type index specifies the index of the type argument in the expression.

4.3.9 Class extends and implements Clauses

When the annotation’s target is a type in an extends or implements clause, reference info has the following
structure:

{

u1 type_index;

} reference_info;

type index specifies the index of the type in the clause: -1 (255) is used if the annotation is on the superclass
type, and the value i is used if the annotation is on the ith superinterface type (counting from zero).

4.3.10 throws Clauses

When the annotation’s target is a type in a throws clause, reference info has the following structure:

{

u1 type_index;

} reference_info

type index specifies the index of the exception type in the clause: the value i denotes an annotation on
the ith exception type (counting from zero).

4.3.11 Wildcard bounds

When the annotation’s target is the bound of a wildcard, reference info has the following structure:

{

u1 wildcard_location_type; // The location of the wildcard, values as for target_type (Section 4.2)

{

...

} reference_info; // uniquely identifies the targeted program element, see Section 4.3

} reference_info

Here are examples:
@A in void m(List<? extends @A String> lst) { ... } is described as:

target_type = WILDCARD_BOUND

reference_info =

{

wildcard_location_type = METHOD_PARAMETER (0x0C)

wildcard_location =

{

u1 parameter_index = 0;

}

}

10

Declaration: @A Map<@B Comparable<@C Object[@D][@E][@F]>, @G List<@H Document>>

Annotation location length location

@A not applicable
@B 1 0
@C 2 0, 0
@D 3 0, 0, 0
@E 3 0, 0, 1
@F 3 0, 0, 2
@G 1 1
@H 2 1, 0

Figure 2: Values of the location length and location fields for a sample declaration.

@B in Map<Object, ? extends List<@B String>> newMap() { ... } is described as:

target_type = WILDCARD_BOUND_GENERIC_OR_ARRAY

reference_info =

{

// location of wildcard: type argument of the return type

wildcard_location_type = RETURN_TYPE_GENERIC_OR_ARRAY;

wildcard_location =

{

// the second type variable

location_length = 1;

location = { 1 };

}

// the generic information of the annotation itself

location_length = 1;

location = { 0 };

}

4.3.12 Generic Type Arguments and Arrays

When the annotation’s target is a generic type argument or array type, reference info contains what it
normally would for the raw type (e.g., offset for an annotation on a type argument in a typecast), plus the
following fields at the end:

u2 location_length;

u1 location[location_length];

The location length field specifies the number of elements in the variable-length location field. location

encodes 1which type argument or array element the annotation targets. Specifically, the ith item in location

denotes the index of the type argument or array dimension at the ith level of the hierarchy. Figure 2 shows
the values of the location length and location fields for the annotations in a sample field declaration.

TODO: The specification does not indicate how to differentiate @A and @B uniquely in OuterClass<@A

String>.InnerClass<@B String>.

5 Detailed grammar changes

This section gives detailed changes to the grammar of the Java language [GJSB05, ch. 18], based on the
conceptually simple summary from Section 2.2. Additions are underlined.

This section is of interest primarily to language tool implementers, such as compiler writers. Most users
can read just Sections 2.1 and B.1.

11

Infelicities in the Java grammar make this section longer than the simple summary of Section 2.2. Some
improvements are possible (for instance, by slightly refactoring the Java grammar), but this version attempts
to minimize changes to existing grammar productions.

Type:
[Annotations] UnannType

UnannType:
Identifier [TypeArguments]{ . Identifier [TypeArguments]} {[Annotations] []}
BasicType

FormalParameterDecls:
[final] [Annotations] UnannType FormalParameterDeclsRest

ForVarControl :
[final] [Annotations] UnannType Identifier ForVarControlRest

MethodOrFieldDecl :
UnannType Identifier MethodOrFieldRest

InterfaceMethodOrFieldDecl :
UnannType Identifier InterfaceMethodOrFieldRest

MethodDeclaratorRest :
FormalParameters {[Annotations] []} [Annotations] [throws QualifiedIdentifierList] (MethodBody | ;)

VoidMethodDeclaratorRest :
FormalParameters [Annotations] [throws QualifiedIdentifierList] (MethodBody | ;)

InterfaceMethodDeclaratorRest :
FormalParameters {[Annotations] []} [Annotations] [throws QualifiedIdentifierList] ;

VoidInterfaceMethodDeclaratorRest :
FormalParameters [Annotations] [throws QualifiedIdentifierList] ;

ConstructorDeclaratorRest :
FormalParameters [Annotations] [throws QualifiedIdentifierList] MethodBody

Primary :
...
BasicType {[Annotations] []} .class

IdentifierSuffix :
[Annotations] [(] {[Annotations] []} .class | Expression])
...

VariableDeclaratorRest :
{[Annotations] []} [= VariableInitializer]

ConstantDeclaratorRest :
{[Annotations] []} [= VariableInitializer]

12

VariableDeclaratorId :
Identifier {[Annotations] []}

FormalParameterDeclsRest :
VariableDeclaratorId [, FormalParameterDecls]
[Annotations] ... VariableDeclaratorId

TypeParameter :
[Annotations] Identifier [extends Bound]

13

A Example use of type annotations: Type qualifiers

One example use of annotation on types is to create custom type qualifiers for Java, such as @NonNull,
@ReadOnly, @Interned, or @Tainted. Type qualifiers are modifiers on a type; a declaration that uses a qualified
type provides extra information about the declared variable. A designer can define new type qualifiers using
Java annotations, and can provide compiler plug-ins to check their semantics (for instance, by issuing lint-like
warnings during compilation). A programmer can then use these type qualifiers throughout a program to
obtain additional guarantees at compile time about the program.

The type system defined by the type qualifiers does not change Java semantics, nor is it used by the Java
compiler or run-time system. Rather, it is used by the checking tool, which can be viewed as performing
type-checking on this richer type system. (The qualified type is usually treated as a subtype or a supertype
of the unqualified type.) As an example, a variable of type Boolean has one of the values null, TRUE, or FALSE

(more precisely, it is null or it refers to a value that is equal to TRUE or to FALSE). A programmer can depend
on this, because the Java compiler guarantees it. Likewise, a compiler plug-in can guarantee that a variable
of type @NonNull Boolean has one of the values TRUE or FALSE (but not null), and a programmer can depend on
this. Note that a type qualifier such as @NonNull refers to a type, not a variable, though JSR 308 could be
used to write annotations on variables as well.

Type qualifiers can help prevent errors and make possible a variety of program analyses. Since they are
user-defined, developers can create and use the type qualifiers that are most appropriate for their software.

A system for custom type qualifiers requires extensions to Java’s annotation system, described in this
document; the existing Java SE 6 annotations are inadequate. Similarly to type qualifiers, other pluggable
type systems [Bra04] and similar lint-like checkers also require these extensions to Java’s annotation system.

Our key goal is to create a type qualifier system that is compatible with the Java language, VM, and
toolchain. Previous proposals for Java type qualifiers are incompatible with the existing Java language and
tools, are too inexpressive, or both. The use of annotations for custom type qualifiers has a number of
benefits over new Java keywords or special comments. First, Java already implements annotations, and
Java SE 6 features a framework for compile-time annotation processing. This allows JSR 308 to build
upon existing stable mechanisms and integrate with the Java toolchain, and it promotes the maintainability
and simplicity of the modifications. Second, since annotations do not affect the runtime semantics of a
program, applications written with custom type qualifiers are backward-compatible with the vanilla JDK.
No modifications to the virtual machine are necessary.

Four compiler plug-ins that perform type qualifier type-checking, all built using JSR 308, are distributed
at the JSR 308 webpage, http://groups.csail.mit.edu/pag/jsr308/. The four checkers, respectively, help to
prevent and detect null pointer errors (via a @NonNull annotation), equality-checking errors (via a @Interned

annotation), mutation errors (via the Javari [BE04, TE05] type system), and mutation errors (via the
IGJ [ZPA+07] type system). A paper [PAC+08] discusses experience in which these plug-ins exposed bugs
in real programs.

A.1 Examples of type qualifiers

The ability to place annotations on arbitrary occurrences of a type improves the expressiveness of annotations,
which has many benefits for Java programmers. Here we mention just one use that is enabled by extended
annotations, namely the creation of type qualifiers. (Figure 3 gives an example of the use of type qualifiers.)

As an example of how JSR 308 might be used, consider a @NonNull type qualifier that signifies that a
variable should never be assigned null [Det96, Eva96, DLNS98, FL03, CMM05]. A programmer can annotate
any use of a type with the @NonNull annotation. A compiler plug-in would check that a @NonNull variable is
never assigned a possibly-null value, thus enforcing the @NonNull type system.

@Readonly and @Immutable are other examples of useful type qualifiers [ZPA+07, BE04, TE05, GF05, KT01,
SW01, PBKM00]. Similar to C’s const, an object’s internal state may not be modified through references that
are declared @Readonly. A type qualifier designer would create a compiler plug-in (an annotation processor) to
check the semantics of @Readonly. For instance, a method may only be called on a @Readonly object if the method
was declared with a @Readonly receiver. (Each non-static method has an implicit parameter, this, which is

14

1 @DefaultQualifier("NonNull")

2 class DAG {

3

4 Set<Edge> edges;

5

6 // ...

7

8 List<Vertex> getNeighbors(@Interned @Readonly Vertex v) @Readonly {

9 List<Vertex> neighbors = new LinkedList<Vertex>();

10 for (Edge e : edges)

11 if (e.from() == v)

12 neighbors.add(e.to());

13 return neighbors;

14 }

15 }

Figure 3: The DAG class, which represents a directed acyclic graph, illustrates how type qualifiers might be
written by a programmer and checked by a type-checking plug-in in order to detect or prevent errors.
(1) The @DefaultQualifier("NonNull") annotation (line 1) indicates that no reference in the DAG class may be
null (unless otherwise annotated). It is equivalent to writing line 4 as “@NonNull Set<@NonNull Edge> edges;”,
for example. This guarantees that the uses of edges on line 10, and e on lines 11 and 12, cannot cause a null
pointer exception. Similarly, the (implicit) @NonNull return type of getNeighbors() (line 8) enables its clients
to depend on the fact that it will always return a List, even if v has no neighbors.
(2) The two @Readonly annotations on method getNeighbors (line 8) guarantee to clients that the method does
not modify, respectively, its Vertex argument or its DAG receiver. The lack of a @Readonly annotation on the
return value indicates that clients are free to modify the returned List.
(3) The @Interned annotation on line 8 (along with an @Interned annotation on the return type in the declara-
tion of Edge.from(), not shown) indicates that the use of object equality (==) on line 11 is a valid optimization.
In the absence of such annotations, use of the equals method is preferred to ==.

called the receiver.) @Readonly’s immutability guarantee can help developers avoid accidental modifications,
which are often manifested as run-time errors. An immutability annotation can also improve performance.
The Access Intents mechanism of WebSphere Application Server already incorporates such functionality: a
programmer can indicate that a particular method (or all methods) on an Enterprise JavaBean is readonly.

Additional examples of useful type qualifiers abound. We mention just a few others. C uses the const,
volatile, and restrict type qualifiers. Type qualifiers YY for two-digit year strings and YYYY for four-digit year
strings helped to detect, then verify the absence of, Y2K errors [EFA99]. Expressing units of measurement
(e.g., SI units such as meter, kilogram, second) can prevent errors in which a program mixes incompatible
quantities; units such as dollars can prevent other errors. Range constraints, also known as ranged types, can
indicate that a particular int has a value between 0 and 10; these are often desirable in realtime code and in
other applications, and are supported in languages such as Ada and Pascal. Type qualifiers can indicate data
that originated from an untrustworthy source [PØ95, VS97]; examples for C include user vs. kernel indicating
user-space and kernel-space pointers in order to prevent attacks on operating systems [JW04], and tainted for
strings that originated in user input and that should not be used as a format string [STFW01]. A localizable

qualifier can indicate where translation of user-visible messages should be performed. Annotations can
indicate other properties of its contents, such as the format or encoding of a string (e.g., XML, SQL, human
language, etc.). Local and remote qualifiers can indicate whether particular resources are available on the
same machine or must be retrieved over the network. An interned qualifier can indicate which objects have
been converted to canonical form and thus may be compared via reference equality. Type qualifiers such as
unique and unaliased can express properties about pointers and aliases [Eva96, CMM05]; other qualifiers can
detect and prevent deadlock in concurrent programs [FTA02, AFKT03]. A ThreadSafe qualifier [GPB+06]
could indicate that a given field should contain a thread-safe implementation of a given interface; this is
more flexible than annotating the interface itself to require that all implementations must be thread-safe.

15

Annotations can identify performance characteristics or goals; for example, some collections should not be
iterated over, and others should not be used for random access. Annotations (both type qualifiers and others)
can specify cut points in aspect-oriented programming (AOP) [EM04]. Flow-sensitive type qualifiers [FTA02]
can express typestate properties such as whether a file is in the open, read, write, readwrite, or closed state,
and can guarantee that a file is opened for reading before it is read, etc. The Vault language’s type guards
and capability states are similar [DF01].

B Discussion of Java language syntax extensions

In Java SE 6, annotations can be written only on method parameters and the declarations of packages,
classes, methods, fields, and local variables. Additional annotations are necessary in order to fully specify
Java classes and methods.

B.1 Examples of annotation syntax

This section gives examples of the annotation syntax specified in Sections 2.1 and 5. This list is not necessarily
exhaustive (but if you notice something missing, let us know so that we can add it). Section B.2 motivates
annotating these locations by giving the meaning of annotations that need to be applied to these locations.

• for generic type arguments to parameterized classes:
Map<@NonNull String, @NonEmpty List<@Readonly Document>> files;

• for generic type arguments in a generic method or constructor invocation:
o.<@NonNull String>m("...");

• for type parameter bounds and wildcard bounds:
class Folder<F extends @Existing File> { ... }

Collection<? super @Existing File>

• for type parameters:
interface WonderfulList<@Reified E> { ... }

• for class inheritance:
class UnmodifiableList<T> implements @Readonly List<@Readonly T> { ... }

• for throws clauses:
void monitorTemperature() throws @Critical TemperatureException { ... }

• for method receivers:
public String toString() @Readonly { ... }

public void write() @Writable throws IOException { ... }

It is desirable for a method to express constraints on the generic parameters of the receiver, just as
is already possible for other formal parameters. The grammar of Section 5 does not currently permit
this, but it may be revised in the future. For example, here are examples of a possible syntax:

class C<T> {

public int size() @Readonly<@Readonly> { ... }

}

class Map<T,U> {

public void requiresNonNullKeys() <@NonNull,> { ... }

}

• for constructor results:
class Invocation {

@Immutable Invocation() { ... }

...

}

16

Note that the result of a constructor is different from the receiver. The receiver only exists for inner
class constructors. It is the containing object, and in the body of the constructor it is referred to as
Supertype.this. In the constructor body, the result is referred to as this. In any non-constructor, the
receiver (if any) is referred to as this.

• for arrays:
@Readonly Document [][] docs1 = new @Readonly Document [2][12]; // array of arrays of read-only documents

Document @Readonly [][] docs2 = new Document @Readonly [2][12]; // read-only array of arrays of documents

Document[] @Readonly [] docs3 = new Document[2] @Readonly [12]; // array of read-only arrays of documents

This syntax permits independent annotations for each distinct level of array, and for the elements.

• for typecasts:
myString = (@NonNull String) myObject;

It is not permitted to omit the Java type, as in myString = (@NonNull) myObject;; see Sections B.2
and D.2.3.

• for constructor results:
new @Interned MyObject()

For generic constructors (JLS §8.8.4), the annotation follows the explicit type arguments (JLS §15.9):
new <String> @Interned MyObject()

• for type tests:
boolean isNonNull = myString instanceof @NonNull String;

It is not permitted to omit the Java type, as in myString instanceof @NonNull; see Sections B.2 and D.2.3.

• for object creation:
new @NonEmpty @Readonly List<String>(myNonEmptyStringSet)

• for class literals:
Class<@NonNull String> c = @NonNull String.class;

• for static member access:
@NonNull Type.field

B.2 Uses for annotations on types

This section gives examples of annotations that a programmer may wish to place on a type. Each of these uses
is either impossible or extremely inconvenient in the absence of the new locations for annotations proposed
in this document. For brevity, we do not give examples of uses for every type annotation. The specific
annotation names used in this section, such as @NonNull, are examples only; this document does not define
any annotations, merely specifying where they can appear in Java code.

It is worthwhile to permit annotations on all uses of types (even those for which no immediate use
is apparent) for consistency, expressiveness, and support of unforeseen future uses. An annotation need
not utilize every possible annotation location. For example, a system that fully specifies type qualifiers
in signatures but infers them for implementations [GF05] may not need annotations on typecasts, object
creation, local variables, or certain other locations. Other systems may forbid top-level (non-type-argument,
non-array) annotations on object creation (new) expressions, such as new @Interned Object().

17

Generics and arrays Generic collection classes are declared one level at a time, so it is easy to annotate
each level individually.

It is desirable that the syntax for arrays be equally expressive. Here are examples of uses for annotations
on array levels:

• The Titanium [YSP+98] dialect of Java requires the ability to place the local annotation (indicating
that a memory reference in a parallel system refers to data on the same processor) on various levels of
an array, not just at the top level.

• In a dependent type system [Pfe92, Xi98, XP99], one wishes to specify the dimensions of an array type,
such as Object @Length(3) [] @Length(10) [] for a 3×10 array.

• An immutability type system, as discussed in Section A.1, needs to be able to specify which levels of an
array may be modified. Consider specifying a procedure that inverts a matrix in place. The procedure
parameter type should guarantee that the procedure does not change the shape of the array (does not
replace any of the rows with another row of a different length), but must permit changing elements of
the inner arrays. In other words, the top-level array is immutable, the inner arrays are mutable, and
their elements are immutable.

• An ownership domain system [AAA06] uses array annotations to indicate properties of array parame-
ters, similarly to type parameters.

• The ability to specify the nullness of the array and its elements separately is so important that
JML [LBR06] includes special syntax \nonnullelements(a) for a possibly-null array a with non-null ele-
ments.

A simple example is a method that accepts a list of files to search. null may be used to indicate that
there were no files to search, but when a list is provided, then the Files themselves must be non-null.
Using JSR 308, a programmer would declare the parameter as @NonNull File @Nullable [] filesToSearch

— more concisely, depending on the default nullness, as either File @Nullable [] filesToSearch or @NonNull

File [] filesToSearch

The opposite example, of a non-null array with nullable elements, is typical of fields in which, when
an array element is no longer relevant, it is set to null to permit garbage collection.

• In a type system for preventing null pointer errors, using a default of non-null, and explicitly anno-
tating references that may be null, results in the fewest annotations and least user burden [FL03,
CJ07, PAC+08]. Array elements can often be null (both due to initialization, and for other reasons),
necessitating annotations on them.

Receivers A type qualifier on a formal parameter is a contract regarding what the method may (or may
not) do with that parameter. Since the method receiver (this) is an implicit formal parameter, programmers
should be able to express type qualifiers on it, for consistency and expressiveness. An annotation on the
receiver is a contract regarding what the method may (or may not) do with its receiver.

For example, consider the following method:

package javax.xml.bind;

class Marshaller {

void marshal(@Readonly Object jaxbElement,

@Mutable Writer writer) @Readonly {

...

}

}

The annotations indicate that marshal modifies its second parameter but does not modify its first parameter
nor its receiver.

A receiver annotation is different than a class annotation, a method annotation, or a return value anno-
tation:

18

• There may be different receiver annotations on different methods that cannot be factored out into the
containing class.

• Stating that a method does not modify its receiver is different than saying the method has no side
effects at all, so it is not appropriate as a method annotation (such as JML’s pure annotation [LBR06]).

• A receiver annotation is also distinct from a return value annotation: a method might modify its
receiver but return an immutable object, or might not modify its receiver but return a mutable object.

Since a receiver annotation is distinct from other annotations, new syntax is required for the receiver anno-
tation. The syntax is adopted from C++, just as the overall syntax of Java was. This syntax is cleaner than
creating a parallel annotation, such as @ReadonlyReceiver, for each type annotation, and is also cleaner than
changing the definition of annotations to permit writing the similar @Receiver(@Readonly).

As with Java’s annotations on formal parameters, annotations on the receiver do not affect the Java
signature, compile-time resolution of overloading, or run-time resolution of overriding. The Java type of
every receiver in a class is the same — but their annotations, and thus their qualified type in a type qualifier
framework, may differ.

Some people question the need for receiver annotations. In case studies [PAC+08], every type system
required some receiver annotations. Even the Nullness type system required them to express whether the
receiver was fully initialized (only in a fully-initialized object can fields be guaranteed to be non-null). So,
the real question is how to express receiver annotations, not whether they should exist.

Casts There are two distinct reasons to annotate the type in a type cast: to fully specify the casted type
(including annotations that are retained without change), or to indicate an application-specific invariant
that is beyond the reasoning capability of the Java type system. Because a user can apply a type cast to any
expression, a user can annotate the type of any expression. (This is different than annotating the expression
itself; see Section D.2.2.)

1. Annotations on type casts permit the type in a type cast to be fully specified, including any appropriate
annotations. In this case, the annotation on the cast is the same as the annotation on the type of
the operand expression. The annotations are preserved, not changed, by the cast, and the annotation
serves as a reminder of the type of the cast expression. For example, in

@Readonly Object x;

... (@Readonly Date) x ...

the cast preserves the annotation part of the type and changes only the Java type. If a cast could not
be annotated, then a cast would remove the annotation:

@Readonly Object x;

... (Date) x ... // annotation processor issues warning due to casting away @Readonly

This cast changes the annotation; it uses x as a non-@Readonly object, which changes its type and would
require a run-time mechanism to enforce type safety.

An annotation processor could permit the unannotated cast syntax but implicitly add the annotation,
treating the cast type as @Readonly Date. This has the advantage of brevity, but the disadvantage of
being less explicit and of interfering somewhat with the second use of cast annotations. Experience
will indicate which design is better in practice.

2. A second use for annotations on type casts is — like ordinary Java casts — to provide the compiler with
information that is beyond the ability of its typing rules. Such properties are often called “application
invariants”, since they are facts guaranteed by the logic of the application program.

As a trivial example, the following cast changes the annotation but is guaranteed to be safe at run
time:

19

final Object x = new Object();

... (@NonNull Object) x ...

An annotation processing tool could trust such type casts, perhaps issuing a warning to remind users
to verify their safety by hand or in some other manner. An alternative approach would be to check the
type cast dynamically, as Java casts are, but we do not endorse such an approach, because annotations
are not intended to change the run-time behavior of a Java program and because there is not generally
a run-time representation of the annotations.

Type tests Annotations on type tests (instanceof) allow the programmer to specify the full type, as in the
first justification for annotations on type casts, above. However, the annotation is not tested at run time
— the JVM only checks the base Java type. In the implementation, there is no run-time representation
of the annotations on an object’s type, so dynamic type test cannot determine whether an annotation is
present. This abides by the intention of the Java annotation designers, that annotations should not change
the run-time behavior of a Java program.

Annotation of the type test permits the idiom

if (x instanceof MyType) {

... (MyType) x ...

}

if (x instanceof MyType) {

... (MyType) x ...

}

to be used with the same annotated type T in both occurrences. By contrast, using different types in the
type test and the type cast might be confusing.

To prevent confusion caused by incompatible annotations, an annotation processor could require the
annotation parts of the operand and the type to be the same:

@Readonly Object x;

if (x instanceof Date) { ... } // error: incompatible annotations

if (x instanceof @Readonly Date) { ... } // OK

Object y;

if (y instanceof Date) { ... } // OK

if (y instanceof @NonNull Date) { ... } // error: incompatible annotations

(As with type casts, an annotation processor could implicitly add a missing annotation; this would be
more concise but less explicit, and experience will dictate which is better for users.)

As a consequence of the fact that the annotation is not checked at run time, in the following

if (x instanceof @A1 T) { ... }

else if (x instanceof @A2 T) { ... }

the second conditional is always dead code. An annotation processor may warn that one or both of the
instanceof tests is a compile-time type error.

A non-null qualifier is a special case because it is possible to check at run time whether a given value
can have a non-null type. A type-checker for a non-null type system could take advantage of this fact, for
instance to perform flow-sensitive type analysis in the presence of a x != null test, but JSR 308 makes no
special allowance for it.

Object creation Java’s new operator indicates the type of the object being created. As with other Java
syntax, programmers should be able to indicate the full type, even if in some cases (part of) the type can
be inferred. In some cases, the annotation cannot be inferred; for instance, it is impossible to tell whether a
particular object is intended to be mutated later in the program or not, and thus whether it should have a
@Mutable or @Immutable annotation. Annotations on object creation expressions could also be statically verified
(at compile time) to be compatible with the annotations on the constructor.

20

Type bounds Annotations on type parameter bounds (extends) and wildcard bounds (extends and super)
allow the programmer to fully constrain generic types. Creation of objects with constrained generic types
could be statically verified to comply with the annotated bounds.

Inheritance Annotations on class inheritance (extends and implements) are necessary to allow a programmer
to fully specify a supertype. It would otherwise be impossible to extend the annotated version of a particular
type t (which is often a valid subtype or supertype of t) without using an anonymous class.
These annotations also provide a convenient way to alias otherwise cumbersome types. For instance, a

programmer might declare

final class MyStringMap extends

@Readonly Map<@NonNull String, @NonEmpty List<@NonNull @Readonly String>> {}

so that MyStringMap may be used in place of the full, unpalatable supertype. (However, also see Section D.5
for problems with this approach.)

Throws clauses Annotations in the throws clauses of method declarations allow programmers to enhance
exception types. For instance, programs that use the @Critical annotation from the above examples could
be statically checked to ensure that catch blocks for @Critical exceptions are not empty.

B.3 Syntax of array annotations

As discussed in Section B.2, it is desirable to be able to independently annotate both the base type and
each distinct level of a nested array. Forbidding annotations on arbitrary levels of an array would simplify
the syntax, but it would reduce expressiveness to an unacceptable degree. The syntax of array annotations
follows the same general prefix rule as other annotations, though it looks slightly different because the syntax
of array types is different than the syntax of other Java types. (Arrays are less commonly used than generics,
so even if you don’t like the array syntax, it need not bother you in most cases.)

Most programmers read the Java type String[][] as “array of arrays of Strings”. Analogously, the
construct new String[2][5] is “new length-2 array of length-5 array of Strings”. After a = new String[2][5], a

is an array with 2 elements, and a[1] is a 5-element array.
In other words, the order of reading an array type is left-to-right for the brackets, then left-to-right for

the base type.

type: String [] []

order of reading: 2-------------> 1 ------------------------>

To more fully describe the 2x5 array, a programmer could use the type “length-2 array of length-5 array
of Strings”:

type: String @Length(2) [] @Length(5) []

order of reading: 2-------------> 1 ------------------------>

The prefix notation is natural, because because the type is read in exactly the same order as any Java array
type. As another example, to express “non-null array of length-10 arrays of English Strings” a programmer
would write

type: @English String @NonNull [] @Length(10) []

order of reading: 2-------------> 1 ----------------------->

An important property of this syntax is that adding array levels does not change the meaning of existing
annotations. For example, var1 has the same annotations as the elements of arr2:

21

@NonNull String var1;

@NonNull String[] arr2;

because in each case @NonNull refers to the String, not the array. This consistency is especially important
since the two variables may appear in a single declaration:

@NonNull String var1, arr2[];

A potential criticism is that a type annotation at the very beginning of a declaration does not refer to
the full type, even though variable annotations (which also occur at the beginning of the declaration) do
refer to the entire variable. As an example, in @NonNull String[] arr2; the variable arr2 is not non-null. This
is actually a criticism of Java itself, not of the JSR 308 annotation extension, which is merely consistent
with Java. In a declaration String[] arr2;, the top-level type constructor does not appear on the far left. An
annotation on the whole type (the array) should appear on the syntax that indicates the array — that is,
on the brackets.

Other array syntaxes can be imagined, but they are less consistent with Java syntax and therefore harder
to read and write. Examples include making annotations at the beginning of the type refer to the whole
type, using a postfix syntax rather than a prefix syntax, and postfix syntax within angle brackets as for
generics.

B.4 Disambiguating type and declaration annotations

An annotation before a method declaration annotates either the return type, or the method declaration.
There is never any ambiguity regarding the programmer intention: a type annotation in that location
annotates the return type, and a non-type annotation annotates the method itself. The @Target meta-
annotation indicates whether an annotation is a type annotation.1 Field declarations are treated similarly.

Suppose that we have these annotation declarations:

@Target(ElementType.TYPE_USE)

@interface NonNegative { }

@Target(ElementType.METHOD)

@interface Override { }

@Target(ElementType.FIELD)

@interface GuardedBy { ... }

Then, in

@Override

@NonNegative int getHeight() { ... }

@Override applies to the method and @NonNegative applies to the return type. Furthermore, in these two field
declarations

@NonNegative int balance;

@GuardedBy("myLock") long lastAccessedTime;

the annotation @NonNegative applies to the field type int, not to the whole variable declaration nor to the
variable balance itself. The annotation @GuardedBy("accessLock") applies to the field lastAccessedTime.

Here are a few facts that follow from the specification. For brevity, we use “type annotation” as shorthand
for “an annotation that is meta-annotated with @Target(ElementType.TYPE USE)”. A type annotation need not
also specify the targets ElementType.TYPE, ElementType.METHOD, or ElementType.FIELD in order to be applied to
a class, a method return type, or a field type — and it generally should not specify those targets. A

1Strictly speaking, a @Target meta-annotation could indicate that an annotation is both a type annotation and a non-type
annotation. In such a case, the annotation would apply to both the return type and the method declaration, and it would exist
twice in the class file. We have not found an example where that is desirable; although it is legal, it is considered bad style.

22

type annotation may not appear before a void method. A type annotation may not appear on a package
(packages do not contain a use of a type). A type annotation may appear before a constructor, in which
case it represents the object that the constructor is creating. As with any other non-static method, a type
annotation may appear on the receiver of an inner class constructor.

In summary: for certain syntactic locations, which target (Java construct) is being annotated depends on
the annotation. There is no ambiguity for the compiler: the compiler applies the annotation to every target
that is consistent with its meta-annotation (see Section 2.3). In practice, programmers have no difficulty in
understanding what a given annotation means.

C Discussion of tool modifications

This section primarily discusses tool modifications that are consequences of JSR 308’s changes to the Java
syntax and class file format, as presented in Sections 2 and 4.

C.1 Compiler

The syntax extensions described in Section 2 require the javac Java compiler to accept annotations in the
proposed locations and to add them to the program’s AST. The relevant AST node classes must also be
modified to store these annotations.

Javac’s -Xprint functionality reads a .class file and prints the interface (class declarations with signatures
of all fields and methods). (The -Xprint functionality is similar to javap, but cannot provide any information
about bytecodes or method bodies, because it is implemented internally as an annotation processor.) This
must be updated to print the extended annotations as well. Also see Section C.4.

Section 3 requires compilers to place certain annotations in the class file. This is consistent with the
principle that annotations should not affect behavior: in the absence of an annotation processor, the compiler
produces the same bytecodes for annotated code as it would have for the same code without annotations.
(The class file may differ, since the annotations are stored in it, but the bytecode part does not differ.)

This may change the compiler implementation of certain optimizations, such as common subexpression
elimination, but this restriction on the compiler implementation is unobjectionable for three reasons.

1. Java-to-bytecode compilers rarely perform sophisticated optimizations, since the bytecode-to-native
(JIT) compiler is the major determinant in Java program performance. Thus, the restriction will not
affect most compilers.

2. The compiler workarounds are simple. Suppose that two expressions that are candidates for common
subexpression elimination have different type annotations. A compiler could: not perform the opti-
mization when the annotations differ; create a single expression whose type has both of the annotations
(e.g., merging (@Positive Integer) 42 and (@Even Integer) 42 into (@Positive @Even Integer) 42); or create
an unannotated expression and copy its value into two variables with differently-annotated types.

3. It seems unlikely that two identical, non-trivial expressions would have differently-annotated types.
Thus, any compiler restrictions will have little or no effect on most compiled programs.

Java compilers can often produce bytecode for an earlier version of the virtual machine, via the -target

command-line option. For example, a programmer could execute a compilation command such as javac

-source 7 -target 5 MyFile.java. A Java 7 compiler produces a class file with the same attributes for type
annotations as when the target is a version 7 JVM. However, the compiler is permitted to also place type
annotations in declaration attributes. For instance, the annotation on the top level of a return type would
also be placed on the method (in the method attribute in the class file). This enables class file analysis tools
that are written for Java SE 5 to view a subset of the type qualifiers (lacking generics, array levels, method
receivers, etc.), albeit attached to declarations.

A user can use a Java SE 5/6 compiler to compile a Java class that contains type annotations, so long as
the type annotations only appear in places that are legal in Java SE 5. Furthermore, the compiler must be

23

provided with a definition of the annotation that is meta-annotated not with @Target(ElementType.TYPE USE)

(since ElementType.TYPE USE does not exist in Java SE 5/6), but with no meta-annotation or with a meta-
annotation that permits annotations on any declaration.

C.2 ASTs and annotation processing

The Java Model AST of JSR 198 (Extension API for Integrated Development Environments) [Cro06] gives
access to the entire source code of a method. This AST (abstract syntax tree) must be updated to represent
all new locations for annotations.

Sun’s Tree API, which exposes the AST (including annotations) to authors of javac annotation processors
(compile-time plug-ins), must be updated to reflect the modifications made to the internal AST node classes
described in Section 2. The same goes for other Java compilers, such as that of Eclipse).

Like reflection, the JSR 269 (annotation processing) model does not represent constructs below the
method level, such as individual statements and expressions. Therefore, it needs to be updated only with
respect to declaration-related annotations (the top of Figure 1; also see Section D.7). The JSR 269 model,
javax.lang.model.*, already has some classes representing annotations; see http://java.sun.com/javase/6/docs/

api/javax/lang/model/element/package-summary.html. The annotation processing API in javax.annotation.processing

must also be revised.

C.3 Reflection

The java.lang.reflect.* and java.lang.Class APIs give access to annotations on public API elements such
as classes, method signatures, etc. They must be updated to give the same access to the new extended
annotations in the top of Figure 1.

Here are a few examples (the design is not yet complete).

1. java.lang.reflect.Type needs to implement java.lang.reflect.AnnotatedElement. (An alternative would be
an java.lang.reflect.AnnotatedType interface, with two methods that return an annotation and a type.
This design seems suboptimal, because most clients would immediately cast the result of the latter
method.)

C.3.1 Non-changes to reflection

Reflection gives no access to method implementations, so no changes are needed to provide access to annota-
tions on casts (or other annotations inside a method body), type parameter names, or similar implementation
details.

The Mirror API com.sun.mirror.* need not be updated, as it has been superseded by JSR 269 [Dar06].
Method Method.getParameterAnnotations() returns the annotations on the parameter declarations, just as

in Java SE 6. It does not return type annotations. There is no point in new methods that parallel it, such
as Method.getReceiverAnnotation (for the receiver this) and Method.getReturnAnnotation (for the return value).
Rather, the interface will provide a uniform mechanism for querying annotations on types.

The semantics of reflective invocation is not changed. (The changes described in this section are to APIs
that query classes, method signatures, etc.) For instance, suppose that a program reflectively calls a method
with a parameter whose type is annotated as @Readonly, but the corresponding argument has a declared type
that is non-@Readonly. The call succeeds. This is a requirement for backward compatibility: the existence of
annotations in the class file should not cause a standard JVM to behave differently than if the annotations
are not present (unless the program uses reflection to explicitly examine the annotations). Likewise, other
reflective functionality such as AtomicReferenceFieldUpdater can bypass annotation constraints on a field.

C.4 Virtual machine and class file analysis tools

No modifications to the virtual machine are necessary. (The changes to reflection (Section C.3) do change
virtual machine APIs in a minor way, but the representation of execution of bytecodes is unaffected.)

24

The javap disassembler must recognize the new class file format and must output annotations.
The pack200/unpack200 tool must preserve the new attributes through a compress-decompress cycle.
The compiler and other tools that read class files are trivially compatible with class files produced by

a Java SE 5/6 compiler. However, the tools would not be able to read the impoverished version of type
qualifiers that is expressible in Java SE 5 (see Section C.1). It is desirable for class file tools to be able to
read at least that subset of type qualifiers. Therefore, APIs for reading annotations from a class file should
be dependent on the class file version (as a number of APIs already are). If the class file version indicates
Java 5 or 6, and none of the extended annotations defined by JSR 308 appear in the class file, then the
API may return (all) annotations from declarations when queried for the annotations on the top-level type
associated with the declaration (for example, the top-level return type, for a method declaration).

C.5 Other tools

Javadoc must output annotations at the new locations when those are part of the public API, such as in a
method signature.

Similar modifications need to be made to tools outside the Sun JDK, such as IDEs (Eclipse, IDEA,
JBuilder, jEdit, NetBeans), other tools that manipulate Java code (grammars for CUP, javacc), and tools
that manipulate class files (ASM, BCEL). These changes need to be made by the authors of the respective
tools.

A separate document, “Custom type qualifiers via annotations on Java types” (http://groups.csail.mit.
edu/pag/jsr308/java-type-qualifiers.pdf), explores implementation strategies for annotation processors that
act as type-checking compiler plug-ins. It is not germane to this proposal, both because this proposal does
not concern itself with annotation semantics and because writing such plug-ins does not require any changes
beyond those described in this document.

A separate document, “Annotation File Specification” (http://groups.csail.mit.edu/pag/jsr308/annotation-file-utilities/
annotation-file-format.pdf), describes a textual format for annotations that is independent of .java or .class

files. This textual format can represent annotations for libraries that cannot or should not be modified. We
have built tools for manipulating annotations, including extracting annotations from and inserting annota-
tions in .java and .class files. That file format is not part of this proposal for extending Java’s annotations;
it is better viewed as an implementation detail of our tools.

D Other possible extensions to Java annotations

The Type Annotations (JSR 308) specification may be extended in the future, both to improve the specifi-
cation and also to add new material. Any improvement to Java’s annotation system is within bounds. The
JSR is titled “Type Annotations” to avoid a vague and inelegant title such as “Extensions to Java’s anno-
tation system”, and because the initial extensions enable annotations on types. However, non-type-related
improvements to annotations are within scope and will be considered. This is especially true if the additional
changes are small, there is no better venue to add such an annotation, and the new syntax would permit
unanticipated future uses.

This section gives examples of further extensions to Java’s annotation system that may be considered,
either for JSR 308 or in the future. Inclusion here is not an endorsement; this list is intended to be a resource
for current and future language designers, explaining pros and cons of possible changes. If you care enough
about one of these extensions, please volunteer to be the point person for the work. That could make them
a reality.

Java has a massive worldwide user base, so the bar to modifying the Java language is quite high. Any
proposed modification requires both compelling use cases (for many users, not just a niche community)
that are currently impossible, and it requires a convincing demonstration (not just a claim) that there are
no negative consequences, such as undesirable interactions with current language features or tools. Where
possible, this section gives a brief discussion of benefits and potential problems as a starting point. (Problems

25

that potentially apply to all extensions, such as existing code that reflects over annotations encountering
unexpected structures, are not repeated for each extension.)

The last annotations JSR. It is not a goal that JSR 308 is the last annotation-related JSR. It is
acceptable to leave some issues to future language designers, just as JSR 175 (the previous annotations
JSR [Blo04a]) did. Leaving issues unresolved is preferable to making hasty decisions, or decisions with
unknown technical implications. By contrast, it is a goal of JSR 308 not to unnecessarily close off realistic
future avenues of extension.

D.1 Duplicate (multiple, repeated) annotations at a location

It may be desirable for some annotations to be specified more than once at a single location. Currently,
this is impossible: “It is a compile-time error if a declaration is annotated with more than one annotation
for a given annotation type” [GJSB05, §9.7]. (By contrast, C# supports duplicate annotations on a given
program element.)

As a related motivation, array-valued annotations can be clumsy to write:

@Resources({

@Resource(name = "db1", type = DataSource.class)

@Resource(name = "db2", type = DataSource.class)

})

public class MyClass { ... }

A cleaner syntax may be desirable for both purposes:

@Resource(name = "db1", type = DataSource.class)

@Resource(name = "db2", type = DataSource.class)

public class MyClass { ... }

We note two possible approaches to this problem.
For backward compatibility, in both approaches an annotation may be repeated only if its definition is

meta-annotated with @Repeatable:

public @interface Repeatable {

public boolean value() = true;

}

1. Desugar duplicate annotations into the current array syntax. For instance, desugar

@A(1) @B @A(2) Object x;

into

@AContainer({@A(1), @A(2)}) @B Object x;

This approach treats duplicate annotations as purely a syntactic convenience; it does not change
annotations in any deep way. This approach is compatible with certain existing J2EE annotation
processors that are already written to process both @A and @AContainer.

This proposal would need to specify what happens if both @A and @AContainer annotations are present.

One problem with this proposal is that it loses the ordering of differently-named annotations (even if
the ordering of same-named annotations is preserved within the container). For example, it cannot
distinguish these declarations:

@A(1) @B @A(2) Object x;

@A(1) @A(2) @B Object x;

26

Another problem is that it requires defining an @AContainer annotation for each annotation @A, or else
annotation @A cannot be duplicated.

2. Add new methods that return multiple annotations.

(a) Each method of the form
<T extends Annotation> T getAnnotation(Class<T> annotationClass)

would have its specification slightly modified. When duplicate annotations exist, method getAnnotation

could either give the first one (convenient for backward compatibility) or throw an exception (con-
venient to prevent erroneous processing).
The relevant methods are in java.lang.reflect.AnnotatedElement and its implementations, and in
javax.lang.model.element.Element.

(b) Each getAnnotation method would be augmented by a new method:
<T extends Annotation> T[] getAnnotations(Class<T> annotationClass)

that returns all annotations for the specified annotation type that are present on the receiver
element. As with getAnnotations, the return value is never null but may have zero length.

The arrays returned by the methods getAnnotations(Class), getAnnotations(), and getDeclaredAnnotations()

are required to preserve the ordering of the annotations as they were declared in the original .java source
file.

No other changes would be necessary. Existing code that uses some other workaround (like special
@AContainer annotations) would continue to work. Or, it could be converted to take advantage of this
new mechanism.

The JSR 175 Design FAQ [Blo04b] states,

Why is it illegal [to] annotate a single element repeatedly with the same annotation
type?

A similar effect is available by annotating once with an annotation type whose sole element is
of an array type. The resulting system is simpler and cleaner: you don’t have to worry about
whether you’re going to get back a single instance of the annotation type or multiple instances
when you query an annotation. Also it’s consistent with the usual restriction on modifiers.

D.2 Locations for annotations

D.2.1 Annotations on statements

Annotations on statements (or on some subset of statements, such as blocks or loops) would be useful
for a variety of purposes, including atomicity/concurrency. Supporting annotations on statements would
require defining both Java syntax and a convention for storing the information in the class file. See
http://doc.ece.uci.edu/mediawiki/index.php/JSR-308 Statements for a proposal that summarizes why statement
annotations are desirable, and that proposes a Java syntax, a classfile storage format, and how other tools
will accommodate them. If you would like to help this feature become a reality, then please pitch in!
You can join the jsr308-statements@lists.csail.mit.edu mailing list (via https://lists.csail.mit.edu/mailman/

listinfo/jsr308-statements/), expand the partial design on the wiki, or work on the implementation.
The JSR 175 Design FAQ [Blo04b] states,

Why can’t you annotate arbitrary program elements such as blocks and individual
statements?

This would greatly complicate the annotation syntax: We would have to sacrifice the simplicity
of saying that annotations are simply modifiers, which can be used on declarations.

27

D.2.2 Expression annotations

Annotating an expression indicates some property of the computation, such as that it should be performed
atomically, that it acquires no locks, or that it should be formatted specially by an IDE. JSR 308 does
not support expression annotations, because we have not yet discovered compelling use cases for them that
cannot be equally well supported by statement annotations. (A minor inconvenience is that the use of
statement annotations may require the programmer to create a separate statement for the expression to be
annotated.) Expression annotations are not type annotations and are different than annotating a type cast,
which indicates a property of a value (the result of an expression).

D.2.3 Implicit Java types in casts

Arbitrary values can be annotated using an annotation on a cast:

(@Language("SQL") String) "select * from foo"

A possible shorthand would be to permit the Java type to be implicit:

(@Language("SQL")) "select * from foo"

This is not permitted, nor may a cast be omitted in a type test, as in “x instanceof @NonNull”. There are
several reasons for this decision:

1. Erasing the annotations should leave a valid Java program.

2. Stating the type reinforces that the annotation is a type annotation rather than an expression anno-
tation.

3. Especially in a type test, stating the type reinforces that the run-time effect is to check and change
the Java type. In general, no run-time check of the annotation is possible.

4. The benefit of omitting the type in the cast seems relatively minor.

An even shorter shorthand would drop the parentheses:

@Language("SQL") "select * from foo"

In addition to the benefits and problems noted above, such an annotation is syntactically ambiguous with
an expression annotation. Whether an annotation applies to expressions or to types is clear from the
annotation’s documentation and its @Target meta-annotation, similarly to how it is determined whether an
annotation applies to a type or to a declaration (Section B.4).

D.2.4 Only certain statements

It would be possible to permit annotations only on blocks and/or loops, as a restricted special case of
statements. This is less general than permitting annotations on statements, and uses are more syntactically
cluttered (for instance, this requires a statement to be converted into a block before it can be annotated).
Most declarations could not be annotated as statements because enclosing the declaration in a block to
annotate it would change (and limit) the variable’s scope. This limitation in flexibility does yield the
advantage that there would be no syntactic ambiguity between (say) statement annotations and declaration
or type annotations.

Similarly, permitting annotations on partial constructs (such as only the body of a loop) appears both
more complex, and no more useful, than annotating complete constructs (such as a full statement).

28

D.3 Changes to the annotation type

D.3.1 Inheritance among annotations (subclassing/subtyping annotations)

Annotations cannot subclass one another, and an annotation is not allowed to extend/implement any inter-
faces. These restrictions make it difficult to share behavior or to express similarities or relationships among
annotation types. For example, it is inconvenient to define annotations with choices in their structure, such
as a discriminated union that uses field names that act as explicit tags. It is impossible to create annotation
processors or APIs that work with a specific set of annotations (say, all those with a given set of element
names).

Permitting inheritance among annotations would solve these problems. (To work around the problem,
one could meta-annotate an annotation as a “subannotation” of another, and then the annotation processor
could do all the work to interpret the meta-annotation. This is clumsy and indirect.)

Without other changes, inheritance among annotations would not enable recursive or self-referential
annotations (see Section D.3.2).

There are two general designs that permit inheritance among annotations: permitting annotations to
subclass other annotations, or permitting annotations to extend/implement interfaces, or both. We briefly
elaborate on the two designs.

Subclassing annotations Permitting inheritance among annotations requires that the final modifier on
an annotation type declaration works just like for ordinary classes: it prevents creation of subtypes of the
given annotation. A framework that defines annotation @A will not want to load an untrusted subclass @B of
@A into the framework.

Subclassing annotations raises the possibility of multiple effective annotations applying at a location.
Suppose that annotation types Sub1 and Sub2 are subtypes of Super which has an int value field and a location
is annotated with both @Sub1(1) and @Sub2(2). The old getAnnotation(Class) method should throw an error
in this case. If duplicate annotations are permitted (see Section D.1), then the new getAnnotations(Class)

method returns all of the annotations. (Then, the client can decide what to do with them, such as raise an
error, merge the annotations, or take some other action.)

It is already possible in Java SE 6 for a location to have both an inherited and an explicit annotation of
the same type. The @Inherited meta-annotation specification states that a getAnnotation[s] query returns only
the explicit annotation. This requirement should perhaps be relaxed, even if inheritance among annotations
is not permitted. For some annotation processors, it is best to check that the explicit annotation is consistent
with the overridden, inherited one and possibly merge information in the two annotations.

The JSR 175 Design FAQ [Blo04b] states, without further elaboration,

Why don’t you support annotation subtyping (where one annotation type extends
another)?

It complicates the annotation type system, and makes it much more difficult to write “Specific
Tools”.

. . .

“Specific Tools” — Programs that query known annotation types of arbitrary external programs.
Stub generators, for example, fall into this category. These programs will read annotated classes
without loading them into the virtual machine, but will load annotation interfaces.

Extending/implementing interfaces Permitting annotation types to extend/implement interfaces is
less powerful than subclassing among annotations. For example, interfaces can’t define default values, nor is
it possible to subclass an annotation to enhance functionality. An advantage of this approach is that there
is no possibility of multiple annotations with a given supertype appearing at a location.

One use case is marker interfaces. In another use case, the interface could define several elements/methods
These could define a standard set of element names that are used by a set of specific annotations. APIs that
use the interface could work with any annotation from that set.

29

The currently permitted annotation member types (“primitive types, String, Class and any invocation of
Class, an enum type, an annotation type, or an array of one of the preceding types” [GJSB05, §9.6]) should
be extended to include interfaces (or perhaps only interfaces that extend java.lang.annotation.Annotation).

D.3.2 Potentially recursive annotations (Annotations as members of annotations)

In Java, an annotation can have a parameter (equivalently, a member) that is an annotation (JLS §9.6 and
§9.7). JLS §9.7 gives this example:

@Author(@Name(first = "Joe", last = "Hacker"))

However, an annotation type cannot have a member of its own type. “It is a compile-time error if
an annotation type T contains an element of type T, either directly or indirectly” [GJSB05, §9.6]. (If
inheritance among annotations is permitted (see Section D.3.1), then the natural interpretation of this is
that no element’s declared type may be either the annotation itself or any supertype thereof.)

As a particular example, it is not possible to define an annotation that takes an arbitrary annotation as
a parameter, as in

@DefaultAnnotation(@AnyAnnotation)

These limitations reduce the expressiveness of annotations. Here are some examples:

• It is impossible to define annotations that take an arbitrary annotation as an argument.

Two examples of such annotations are the @DefaultAnnotation example above, and an annotation that
expresses that a method is polymorphic over annotations (as opposed to polymorphic over types, as
generics do).

Another example is annotation parameters that do not correspond to a type parameter. Consider a
container class that is designed to hold things of a specific type (say, it interacts with the elements in
domain-specific ways), not of an arbitrary type. The container has no type parameter, but it may still
make sense to have annotations on the contained thing. Most of the examples of generics and arrays
from Section B.2 also serve as examples here. The argument applies not just to container classes but
also to algorithms that process data of a specific type.

These examples require the annotation declaration to be potentially recursive. However, they do not
require that any recursive annotation ever be created in practice. They could be achieved even if
creation of recursive annotation instances was prohibited.

• It is impossible to define annotations with recursive structure.

More generally, the kind of data that can be encoded in annotations is limited. It is generally possible
to store data which has a fixed structure, but it is much more difficult to encode more complex data,
including hierarchical data. As the success of XML, YAML, and other such technologies has shown,
the ability to encode structured data is very powerful for a wide variety of uses, many of which we
cannot anticipate today. Today’s annotations only fulfill a small piece of that potential.

To express the base case, recursive annotations also require either inheritance among annotations
(Section D.3.1), or nullable members (Section D.3.3), or a requirement that recursion takes place
through an array (an empty array would terminate the recursion).

A more modest approach that makes annotations somewhat more expressive would be to permit inheri-
tance among annotations (see Section D.3.1) without permitting possibly self-referential annotations.

The JSR 175 Design FAQ [Blo04b] states,

Why is it illegal for an annotation type to contain an element of the same type?

At first glance it would appear that you could never annotate with such a type, so the prohibition
might seem unnecessary, but you can get yourself into trouble if you also provide a default:

30

@interface Foo {

Foo foo() default @Foo;

}

@Foo int i;

If this were legal, the resulting annotation would self-referential (or infinite), as well as useless.

D.3.3 Null as an annotation field value (nullable fields)

Currently, it is possible to choose/create a special value and to store that value in an annotation field. The
proposal would permit use of null instead of an explicit user-specified value.

The proposal makes some programming idioms slightly shorter. For example, specifying the base case
of a recursive data structure will require simply writing null instead of calling a constructor. The proposal
does not eliminate any substantial complexity when processing a data structure, but only converts a check
against a given value into a check against null.

We note some possible objections to the proposal.
The proposal doesn’t make anything possible that was not possible before.
The programmer-defined special value provides better documentation than null, which might mean

“none”, “uninitialized”, null itself, etc.
The proposal is more error-prone. It’s much easier to forget checking against null than to forget checking

for an explicit value.
The proposal may make the standard idiom more verbose. Currently only the users of an annotation

need to check for its special values. With the proposal, many tools that process annotations will have to
check whether a field’s value is null lest they throw a null pointer exception.

D.3.4 Positional arguments

Annotation types cannot have positional arguments (except for the value argument, when it is the only
argument). This limitation makes writing annotations with multiple arguments more verbose than necessary.

On a somewhat related topic, the “SingleElementAnnotation” form relies on the field name value. This
name is not always appropriate; designers who wish to permit the “SingleElementAnnotation” form are
forced to give a member a confusing name. It would be nice to permit the “SingleElementAnnotation” form
to initialize a different member than value (say, via a @ValueMember annotation).

D.4 Semantics of annotations

D.4.1 Annotations for specific purposes

JSR 308 does not define any annotations. JSR 308 extends the Java and class file syntax to permit an-
notations to be written in more places, and thus makes existing and future annotations more useful to
programmers.

By contrast, JSR 305 “Annotations for Software Defect Detection” aims to define a small set of an-
notations. Examples include type annotations such as non-nullness (@Nonnull), signedness (@Nonnegative),
tainting, and string format; and also non-type annotations such as whether a method’s return value should
always be checked by the caller. A programmer who cares about code quality will use both annota-
tions defined in the JSR 305 “standard library”, and also others that are defined by third parties or
by the programmer himself. For more details about JSR 305, see http://jcp.org/en/jsr/detail?id=305 and
http://groups.google.com/group/jsr-305/.

Any type annotation, including those defined by JSR 305, is of limited use without the JSR 308 syntax.
Without the JSR 308 annotation syntax, a static checker may lose track of type qualifiers whenever a
program uses generic types (e.g., collection classes), whenever a method is invoked on an object, whenever
a cast is performed, whenever a class is subclassed, etc. From the point of code checking, using the old
Java annotation syntax is even worse than the type unsoundness of pre-generics Java, when there was no

31

compiler-enforced type correctness guarantee for collections classes. Therefore, use of JSR 305 without JSR
308 is much less effective.

As of fall 2008, no reference implementation that uses JSR 305 annotations is planned. This hinders
both programmers who want to use the annotations, and also people trying to interpret the meaning of the
specification. By contrast, the JSR 308 reference implementation and the Checker framework for compile-
time type-checking have been available since January 2007.

D.4.2 Annotation inheritance

(This section is not about whether the definition of an annotation may inherit from other classes/interfaces.
Rather, it is about whether a class/interface inherits annotations from its superclasses/interfaces.)

The annotation type java.lang.annotation.Inherited (JLS §9.6.1.3) indicates that annotations on a class C

corresponding to a given annotation type are inherited by subclasses of C. This implies that annotations on
interfaces are not inherited, nor are annotations on members (methods, constructors, fields, etc.).

It might be useful to permit methods, fields, etc. to inherit annotations.
It might be useful to permit an annotation to be inherited from an interface as well as from a superclass.
It might be useful to permit annotation inheritance to merge information from the current and inherited

annotations, instead of always choosing the inherited one.

D.4.3 Default annotations

Specifying a default for annotations can reduce code size and (when used carefully and sparingly) increase
code readability. For instance, Figure 3 uses @DefaultQualifier("NonNull") to avoid the clutter of 5 @NonNull

annotations. It would be nicer to have a general mechanism, such as
@DefaultAnnotation(NonNull.class, locations={ElementType.LOCAL_VARIABLE})

Defaults for annotations are a semantic issue that is out of the scope of JSR 308. It will be taken up by JSR
305 (“Annotations for Software Defect Detection” [Pug06]).

The defaulting syntax must also be able to specify the arguments to the default annotation (in the above
example, the arguments to @NonNull).

A better syntax would use an annotation, not a string or class literal, as the argument to @DefaultAnnotation,
as in

@DefaultAnnotation(@MyAnnotation(arg="foo"))

In Java, it is not possible to define an annotation that takes an arbitrary annotation as a parameter; see
Section D.3.2.

An issue for JSR 260 (Javadoc) and JSR 305 (Annotation semantics) is how inherited and defaulted
annotations are handled in Javadoc: whether they are written out in full, or in some abbreviated form. Just
as too many annotations may clutter source code, similar clutter-reduction ideas may need to be applied to
Javadoc.

D.5 Type abbreviations and typedefs

An annotated type may be long and hard to read; compare Map<String, Object> to @NonNull Map<@NonNull

String, @NonNull Object>. Class inheritance annotations and subclassing provides a partial solution, as noted
on page 21 in Section B.2 with the following example:

final class MyStringMap extends

@Readonly Map<@NonNull String, @NonEmpty List<@NonNull @Readonly String>> {}

This approach limits reusability: if a method is declared to take a MyStringMap parameter, then a Map (even
of the right type, including annotations) cannot be passed to it. (By contrast, a MyStringMap can always be
used where a Map of the appropriate type is expected.) Goetz [GPB+06] recommends exploiting Java’s type
inference to avoid some (but not all) instances of the long type name.

In summary, a built-in typedef mechanism might achieve both code readability and reusability.

32

D.6 Class file syntax

Changes to the class file syntax are out of the scope of JSR 308, which, for backward compatibility, currently
does not change the way that existing annotations are stored in the class file. Class file syntax changes
require modification of compilers, JVMs, javap, and other class file tools (see Sections C.4 and C.5).

D.6.1 Reducing class file size via use of the constant pool

Annotations could be stored in the constant pool, and use constant pool references from the annotation
points. That would reduce class file size, especially if an annotation is used in many places in the same class,
as is more likely once JSR 308 support is in place.

D.6.2 Optional/default fields in annotations

In order to reduce the size of the class file, some fields may be omitted from the .class file, in which case any
access of them returns their default value.

D.7 Access to method bodies in annotation processing API

A type-checking compiler plug-in (annotation processor) must process annotations (including those in method
bodies), and it also must check each use of a variable/method whose declared type is annotated. For example,
if a variable x is declared as @NonNull Object x;, then every assignment to x must be checked, because any
assignment x = null; would be illegal.

The JSR 269 annotation processing API does not process annotations on local variables, as it is not
designed to access method bodies. This limitation makes JSR 269 insufficient for creating a type-checking
compiler plug-in.

An annotation and source code processing API for JSR 308 annotations could take advantage of JSR
198’s Java Model. The Java Model defines a parsed view into the contents of a source file that is intended for
construction of IDE extensions that are portable across multiple IDEs — precisely the situation with compiler
plug-ins. JSR 308 may be shipped without defining this API, but defining this API may be desirable in the
future (say, in a later version of Java), particularly after more experience is gained with JSR 308 annotation
processors.

E Logistical matters

JSR 308 (“Type annotations”) should be included under the Java SE 7 umbrella JSR (which lists the JSRs
that are part of the Java SE 7 release). However, it should be a separate JSR because it needs a separate
expert group. The expert group will have overlap with any others dealing with other added language features
that might be annotatable (such as method-reference types or closures), to check impact.

The specification and the TCK will be freely available, most likely licensed under terms that permit
arbitrary use. The reference implementation is built on the OpenJDK Java implementation and is publicly
available; our goal is for Sun to incorporate JSR 308 into the official OpenJDK release.

To ease the transition from standard Java SE 6 code to code with the extended annotations, the reference
implementation recognizes the extended annotations when surrounded by comment markers:

List</*@Readonly*/ Object> myList;

This permits use of both standard Java SE 6 tools and the new annotations even before Java SE 7 is released.
However, it is not part of the proposal; that is, it is not required that every Java compiler parses comments.
The final Java SE 7 implementation may or may not support a switch that makes it recognize the new
annotations when embedded in comments. The Spec# [BLS04] extension to C# can be made compilable by
a standard C# compiler in a similar way, by enclosing its annotations in special /*^. . . ^*/ comment markers.
The /*@ comment syntax is a standard part of the Splint [Eva96], ESC/Java [FLL+02], and JML [LBR06]
tools (that is, not with the goal of backward compatibility).

33

E.1 Edits to existing standards documents

Edits to the Java Language Specification (JLS): We need a document, complementary to the design docu-
ment, that lists every edit that is required in the JLS. A preliminary step would be a list of all the locations
that must be edited (for instance, by searching the entire JLS for uses of “annotation”, but the list will
be a superset of the list of locations that were edited for JSR 175). The most important locations are the
following.

• Changes to sections 9.6 and 9.7

• Merge the BNF description of the Java syntax changes (Sections 2.2 and 5) into JLS chapter 18:
Syntax.

Edits to the Java Virtual Machine Specification (JVMS) [LY99, LY07]: We need a document, comple-
mentary to the design document, that lists every edit that is required in the JVMS. The most important of
these is the following:

• Sections 4.8.15-18 define the RuntimeV,Invisible,ParameterAnnotations attributes. (See http://java.
sun.com/docs/books/jvms/second edition/ClassFileFormat-Java5.pdf for the JDK 1.5 revisions
to chapter 4, “The class file Format”.) Similar definitions are required for Runtime[In]visibleType-
Annotations.

E.2 Testing (TCK, Technology Compatibility Kit)

JSR 308 will ship with a test suite (known as a TCK, or Technology Compatibility Kit).
Each tool that needs to be tested appears in Section 3; the TCK will include tests for each of them.
For each modified tool, we will test backward compatibility by passing all of its existing tests. (We may

need to modify a few of them, for instance those that depend on specific bytecodes that are created by the
compiler.)

We will test most other functionality by creating a set of Java programs that include annotations in every
possible location. For instance, this can be used to test all aspects of the compiler (parsing, code generation,
-Xprint).

We will provide multiple annotation processors (including at least one for checking @NonNull and one for
checking @Interned) that utilize the new annotations, along with a test suite for each one. Each annotation
processor’s test suite consists of annotated code, along with expected output from the given annotation
processor. Since the annotation processors utilize all aspects of JSR 308, this serves as an additional end-to-
end test of the JSR 308 implementation. As a side benefit, the annotation processors will be useful in their
own right, will thereby illustrate the utility of JSR 308, and will serve as examples for people who wish to
create their own type-checking plug-ins.

E.3 Process

JSR 308 follows an unusually open and transparent process. Any interested party may participate, decisions
are made by consensus to the greatest extent possible, and discussions are publicly archived. The Java
Community Process requires that an expert group formally approve the JSR at each stage. The expert
group members will only decide issues on which the group cannot obtain consensus.

When posting, please act professionally and courteously. For example, your arguments should be tech-
nical, specific, and based on logic; do not rely on your status or past accomplishments to convince others,
and give specific examples rather than vague descriptions. As another example, it is perfectly acceptable to
criticize a technical proposal, but do not make personal attacks. Obviously, you should read the specification
and, preferably, try the implementation before posting to the mailing list.

34

F Related work

Section A.1 gave many examples of how type qualifiers have been used in the past. Also see the related work
section of [PAC+08].

C#’s attributes [ECM06, chap. 24] play the same role as Java’s annotations: they attach metadata to
specific parts of a program, and are carried through to the compiled bytecode representation, where they can
be accessed via reflection. The syntax is different: C# uses [AnnotationName] or [AnnotationName: data] where
Java uses @AnnotationName or @AnnotationName(data); C# uses AttributeUsageAttribute where Java uses Target;
and so forth. However, C# permits metadata on generic arguments, and C# permits multiple metadata
instances of the same type to appear at a given location.

Like Java, C# does not permit metadata on elements within a method body. (The “[a]C#” lan-
guage [CCC05], whose name is pronounced “annotated C sharp”, is an extension to C# that permits
annotation of statements and code blocks.)

Harmon and Klefstad [HK07] propose a standard for worst-case execution time annotations.
Pechtchanski’s dissertation [Pec03] uses annotations in the aid of dynamic program optimization. Pecht-

chanski implemented an extension to the Jikes compiler that supports stylized comments, and uses these
annotations on classes, fields, methods, formals, local variable declarations, object creation (new) expressions,
method invocations (calls), and program points (empty statements). The annotations are propagated by the
compiler to the class file.

Mathias Ricken’s LAPT-javac (http://www.cs.rice.edu/∼mgricken/research/laptjavac/) is a version of javac
(version 1.5.0 06) that encodes annotations on local variables in the class file, in new Runtime{Inv,V}isible-
LocalVariableAnnotations attributes. The class file format of LAPT-javac differs from that proposed in this
document. Ricken’s xajavac (Extended Annotation Enabled javac) permits subtyping of annotations (http:
//www.cs.rice.edu/∼mgricken/research/xajavac/).

The Java Modeling Language, JML [LBR06], is a behavioral modeling language for writing specifications
for Java code. It uses stylized comments as annotations, some of which apply to types.

Ownership types [CPN98, Boy04, Cla01, CD02, PNCB06, NVP98, DM05, LM04, LP06] permit pro-
grammers to control aliasing and access among objects. Ownership types can be expressed with type
annotations and have been applied to program verification [LM04, Mül02, MPHL06], thread synchroniza-
tion [BLR02, JPLS05], memory management [ACG+06, BSBR03], and representation independence [BN02].

JavaCOP [ANMM06] is a framework for implementing pluggable type systems in Java. Whereas JSR 308
uses standard interfaces such as the Tree API and the JSR 269 annotation processing framework, JavaCOP
defines its own incompatible variants. A JavaCOP type checker must be programmed in a combination of
Java and JavaCOP’s own declarative pattern-matching and rule-based language. JavaCOP’s authors have
defined over a dozen type-checkers in their language. The paper does not report that they have run any of
these type-checkers on a real program; this is due to limitations that make JavaCOP impractical (so far) for
real use.

JACK makes annotations on array brackets refer to the array, not the elements of the array [MPPD08].

Acknowledgments

Matt Papi designed and implemented the JSR 308 compiler as modifications to Sun’s OpenJDK javac
compiler, and contributed to the JSR 308 design.

The members of the JSR 308 mailing list (https://lists.csail.mit.edu/mailman/listinfo/jsr308/) provided
valuable comments and suggestions. Additional feedback is welcome.

JSR 308 received the Most Innovative Java SE/EE JSR of the Year award in 2007, at the 5th annual
JCP Program Awards. JSR 308’s spec leads (Michael Ernst and Alex Buckley) were nominated as Most
Outstanding Spec Lead for Java SE/EE in 2008, at the 6th annual JCP Program Awards.

35

References

[AAA06] Marwan Abi-Antoun and Jonathan Aldrich. Bringing ownership domains to mainstream Java. In
Companion to Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
2006), pages 702–703, Portland, OR, USA, October 24–26, 2006.

[ACG+06] Chris Andrea, Yvonne Coady, Celina Gibbs, James Noble, Jan Vitek, and Tian Zhao. Scoped
types and aspects for real-time systems. In ECOOP 2006 — Object-Oriented Programming,
20th European Conference, pages 124–147, Nantes, France, July 5–7, 2006.

[AFKT03] Alex Aiken, Jeffrey S. Foster, John Kodumal, and Tachio Terauchi. Checking and inferring local
non-aliasing. In PLDI 2003, Proceedings of the ACM SIGPLAN 2003 Conference on Program-
ming Language Design and Implementation, pages 129–140, San Diego, CA, USA, June 9–11,
2003.

[ANMM06] Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A framework for imple-
menting pluggable type systems. In Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA 2006), pages 57–74, Portland, OR, USA, October 24–26, 2006.

[BE04] Adrian Birka and Michael D. Ernst. A practical type system and language for reference im-
mutability. In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
2004), pages 35–49, Vancouver, BC, Canada, October 26–28, 2004.

[BHP07] Lilian Burdy, Marieke Huisman, and Mariela Pavlova. Preliminary design of BML: A behavioral
interface specification language for Java bytecode. In Fundamental Approaches to Software
Engineering, pages 215–229, Braga, Portugal, March 27–30, 2007.

[Blo04a] Joshua Bloch. JSR 175: A metadata facility for the Java programming language. http://jcp.
org/en/jsr/detail?id=175, September 30, 2004.

[Blo04b] Joshua Bloch. JSR175: A program annotation facility for the Java programming language:
Proposed final draft 2. http://jcp.org/en/jsr/detail?id=175, August 12, 2004.

[BLR02] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe program-
ming: Preventing data races and deadlocks. In Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA 2002), pages 211–230, Seattle, WA, USA, October 28–30,
2002.

[BLS04] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system: An
overview. In Construction and Analysis of Safe, Secure, and Interoperable Smart Devices, pages
49–69, Marseille, France, March 10–13, 2004.

[BN02] Anindya Banerjee and David A. Naumann. Representation independence, confinement, and
access control. In Proceedings of the 29th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 166–177, Portland, Oregon, January 16–18, 2002.

[Boy04] Chandrasekhar Boyapati. SafeJava: A Unified Type System for Safe Programming. PhD thesis,
MIT Department of Electrical Engineering and Computer Science, Cambridge, MA, February
2004.

[Bra04] Gilad Bracha. Pluggable type systems. In OOPSLA Workshop on Revival of Dynamic Lan-
guages, Vancouver, BC, Canada, October 2004.

[BSBR03] Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, Jr., and Martin Rinard. Own-
ership types for safe region-based memory management in real-time java. In PLDI 2003, Pro-
ceedings of the ACM SIGPLAN 2003 Conference on Programming Language Design and Imple-
mentation, pages 324–337, San Diego, CA, USA, June 9–11, 2003.

36

[CCC05] Walter Cazzola, Antonio Cisternino, and Diego Colombo. Freely annotating C#. Journal of
Object Technology, 4(10):31–48, December 2005. Special Issue: OOPS Track at SAC 2005.

[CD02] Dave Clarke and Sophia Drossopoulou. Ownership, encapsulation and the disjointness of type
and effect. In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA
2002), pages 292–310, Seattle, WA, USA, October 28–30, 2002.

[CJ07] Patrice Chalin and Perry R. James. Non-null references by default in Java: Alleviating the
nullity annotation burden. In ECOOP 2007 — Object-Oriented Programming, 21st European
Conference, pages 227–247, Berlin, Germany, August 1–3, 2007.

[Cla01] David Clarke. Object Ownership and Containment. PhD thesis, University of New South Wales,
Sydney, Australia, 2001.

[CMM05] Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type qualifiers. In PLDI 2005,
Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and
Implementation, pages 85–95, Chicago, IL, USA, June 13–15, 2005.

[CPN98] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexible alias protection.
In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’98), pages
48–64, Vancouver, BC, Canada, October 20–22, 1998.

[Cro06] Jose Cronembold. JSR 198: A standard extension API for Integrated Development Environ-
ments. http://jcp.org/en/jsr/detail?id=198, May 8, 2006.

[Dar06] Joe Darcy. JSR 269: Pluggable annotation processing API. http://jcp.org/en/jsr/detail?
id=269, May 17, 2006. Public review version.

[Det96] David L. Detlefs. An overview of the Extended Static Checking system. In Proceedings of the
First Workshop on Formal Methods in Software Practice, pages 1–9, January 1996.

[DF01] Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level software. In
PLDI 2001, Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language
Design and Implementation, pages 59–69, Snowbird, UT, USA, June 20–22, 2001.

[DLNS98] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended static
checking. SRC Research Report 159, Compaq Systems Research Center, December 18, 1998.

[DM05] Werner Dietl and Peter Müller. Universes: Lightweight ownership for JML. Journal of Object
Technology, 4(8):5–32, October 2005.

[ECM06] Ecma 334: C# language specification, 4th edition. ECMA International, June 2006.

[EFA99] Martin Elsman, Jeffrey S. Foster, and Alexander Aiken. Carillon — A System to Find Y2K
Problems in C Programs, July 30, 1999.

[EM04] Michael Eichberg and Mira Mezini. Alice: Modularization of middleware using aspect-
oriented programming. In 4th International Workshop on Software Engineering and Middleware
(SEM04), pages 47–63, Linz, Austria, December 2004.

[Eva96] David Evans. Static detection of dynamic memory errors. In PLDI 1996, Proceedings of the
SIGPLAN ’96 Conference on Programming Language Design and Implementation, pages 44–53,
Philadelphia, PA, USA, May 21–24, 1996.

[FL03] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types in an
object-oriented language. In Object-Oriented Programming Systems, Languages, and Appli-
cations (OOPSLA 2003), pages 302–312, Anaheim, CA, USA, November 6–8, 2003.

37

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In PLDI 2002, Proceedings of the ACM
SIGPLAN 2002 Conference on Programming Language Design and Implementation, pages 234–
245, Berlin, Germany, June 17–19, 2002.

[FTA02] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In PLDI
2002, Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, pages 1–12, Berlin, Germany, June 17–19, 2002.

[GF05] David Greenfieldboyce and Jeffrey S. Foster. Type qualifiers for Java. http://www.cs.umd.
edu/Grad/scholarlypapers/papers/greenfiledboyce.pdf, August 8, 2005.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Addison Wesley, Boston, MA, second edition, 2000.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification.
Addison Wesley, Boston, MA, third edition, 2005.

[GPB+06] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. Java
Concurrency in Practice. Addison-Wesley, 2006.

[HK07] Trevor Harmon and Raymond Klefstad. Toward a unified standard for worst-case execution
time annotations in real-time Java. In WPDRTS 2007, Fifteenth International Workshop on
Parallel and Distributed Real-Time Systems, Long Beach, CA, USA, March 2007.

[JPLS05] Bart Jacobs, Frank Piessens, K. Rustan M. Leino, and Wolfram Schulte. Safe concurrency for
aggregate objects with invariants. In Proceedings of the Third IEEE International Conference on
Software Engineering and Formal Methods, pages 137–147, Koblenz, Germany, September 7–9,
2005.

[JW04] Rob Johnson and David Wagner. Finding user/kernel pointer bugs with type inference. In 13th
USENIX Security Symposium, pages 119–134, San Diego, CA, USA, August 11–13, 2004.

[KT01] Günter Kniesel and Dirk Theisen. JAC — access right based encapsulation for Java. Software:
Practice and Experience, 31(6):555–576, 2001.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. ACM SIGSOFT Software Engineering Notes, 31(3),
March 2006.

[LM04] K. Rustan M. Leino and Peter Müller. Object invariants in dynamic contexts. In ECOOP
2004 — Object-Oriented Programming, 18th European Conference, pages 491–, Oslo, Norway,
June 16–18, 2004.

[LP06] Yi Lu and John Potter. Protecting representation with effect encapsulation. In Proceedings of the
33rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 359–371, Charleston, SC, USA, January 11–13, 2006.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-Wesley,
Reading, MA, USA, 2nd edition, 1999.

[LY07] Tim Lindholm and Frank Yellin. The class file format. http://java.sun.com/docs/books/
jvms/second edition/ClassFileFormat-Java5.pdf, December 2007. Revision to chapter 4 of
[LY99] for JDK 1.5.

[Mor06] Rajiv Mordani. JSR 250: Common annotations for the Java platform. http://jcp.org/en/
jsr/detail?id=250, May 11, 2006.

38

[MPHL06] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered
object structures. Science of Computer Programming, 62:253–286, October 2006.

[MPPD08] Chris Male, David Pearce, Alex Potanin, and Constantine Dymnikov. Java bytecode verification
for @NonNull types. In Compiler Construction: 14th International Conference, CC 2008, pages
229–244, Budapest, Hungary, April 3–4, 2008.

[Mül02] Peter Müller. Modular Specification and Verification of Object-Oriented Programs. Number 2262
in Lecture Notes in Computer Science. Springer-Verlag, 2002.

[NVP98] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In ECOOP ’98, the
12th European Conference on Object-Oriented Programming, pages 158–185, Brussels, Belgium,
July 20-24, 1998.

[PAC+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D.
Ernst. Practical pluggable types for Java. In ISSTA 2008, Proceedings of the 2008 International
Symposium on Software Testing and Analysis, pages 201–212, Seattle, WA, USA, July 22–24,
2008.

[PBKM00] Sara Porat, Marina Biberstein, Larry Koved, and Bilba Mendelson. Automatic detection of
immutable fields in Java. In CASCON, Mississauga, Ontario, Canada, November 13–16, 2000.

[Pec03] Igor Pechtchanski. A Framework for Optimistic Program Optimization. PhD thesis, New York
University, September 2003.

[Pfe92] Frank Pfenning. Dependent types in logic programming. In Frank Pfenning, editor, Types in
Logic Programming, chapter 10, pages 285–311. MIT Press, Cambridge, MA, 1992.

[PNCB06] Alex Potanin, James Noble, Dave Clarke, and Robert Biddle. Generic ownership for generic
Java. In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 2006),
pages 311–324, Portland, OR, USA, October 24–26, 2006.

[PØ95] Jens Palsberg and Peter Ørbæk. Trust in the λ-calculus. In Proceedings of the Second Interna-
tional Symposium on Static Analysis, SAS ’95, pages 314–329, Glasgow, UK, September 25–27,
1995.

[Pug06] William Pugh. JSR 305: Annotations for software defect detection. http://jcp.org/en/jsr/
detail?id=305, August 29, 2006. JSR Review Ballot version.

[STFW01] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting format string
vulnerabilities with type qualifiers. In 10th USENIX Security Symposium, Washington, DC,
USA, August 15–17, 2001.

[SW01] Mats Skoglund and Tobias Wrigstad. A mode system for read-only references in Java. In
FTfJP’2001: 3rd Workshop on Formal Techniques for Java-like Programs, Glasgow, Scotland,
June 18, 2001.

[TE05] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability to Java.
In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 2005), pages
211–230, San Diego, CA, USA, October 18–20, 2005.

[VS97] Dennis M. Volpano and Geoffrey Smith. A type-based approach to program security. In TAP-
SOFT ’97: Theory and Practice of Software Development, 7th International Joint Conference
CAAP/FASE, pages 607–621, Lille, France, April 14–18, 1997.

[Xi98] Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, December 1998.

39

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceedings
of the 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 214–227, San Antonio, TX, January 20–22, 1999.

[YSP+98] Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind Krishna-
murthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex Aiken. Titanium:
A high-performance Java dialect. Concurrency: Practice and Experience, 10(11–13):825–836,
September–November 1998.

[ZPA+07] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieżun, and Michael D. Ernst.
Object and reference immutability using Java generics. In ESEC/FSE 2007: Proceedings of
the 11th European Software Engineering Conference and the 15th ACM SIGSOFT Symposium
on the Foundations of Software Engineering, pages 75–84, Dubrovnik, Croatia, September 5–7,
2007.

40

