
A Calculus for Constraint-Based Flow Typing

David J. Pearce
School of Engineering and Computer Science

Victoria University of Wellington
New Zealand

djp@ecs.vuw.ac.nz

ABSTRACT
Flow typing offers an alternative to traditional Hindley-Milner type
inference. A key distinction is that variables may have different
types at different program points. Flow typing systems are typi-
cally formalised in the style of a dataflow analysis. In the presence
of loops, this requires a fix-point computation over typing environ-
ments. Unfortunately, for some flow typing problems, the standard
iterative fix-point computation may not terminate. We formalise
such a problem we encountered in developing the Whiley program-
ming language, and present a novel constraint-based solution which
is guaranteed to terminate. This provides a foundation for others
when developing such flow typing systems.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming;
D.2.4 [Software/Program Verification]: Formal Methods; F.4.1
[Mathematical Logic]: Lambda calculus and related systems

General Terms
Languages, Theory

Keywords
Type Theory, Structural Typing, Flow Typing

1. INTRODUCTION
Type inference is useful for simplifying and reasoning about stat-

ically typed languages. Scala, C#3.0, OCaml all employ local type
inference (in some form) to reduce syntactic overhead. Type in-
ference can also be used to type existing untyped programs (e.g.
in JavaScript [12] or Python [5]). Traditional type inference in the
style of Hindley-Milner requires exactly one type be inferred for
each program variable. Flow typing offers an alternative where a
variable may have different types at different program points. The
technique is adopted from flow-sensitive program analysis and has
been used for non-null types [17], purity checking [23], informa-
tion flow [18, 14, 27], and more [8, 28]. Few languages exist

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2042-9 ...$15.00.

which incorporate flow typing directly. Typed Racket [28] pro-
vides a typed sister language for untyped Racket, where flow typ-
ing is essential to capture common idioms in the untyped language.
Similarly, the Whiley language employs flow typing to give it the
look-and-feel of a dynamically typed language [15, 25]. Finally,
Groovy 2.0 has very recently incorporated an optional flow typing
system [11].

A defining characteristic of flow typing is the ability to retype a
variable — that is, assign it a completely unrelated type. The JVM
Bytecode Verifier provides an excellent illustration:

public static void f(int):
iload 0 // load register 0 on stack
i2f // convert int to float
fstore 0 // store float to register 0
...

In the above, register 0 contains the parameter value on entry and,
initially, has type int. The type of register 0 is subsequently
changed to float by the fstore bytecode. To ensure type safety,
the JVM bytecode verifier employs a typing algorithm based upon
dataflow analysis [16]. This tracks the type of a variable at each
program point, allowing it easily to handle the above example.

1.1 Contributions
Existing flow typing systems are generally formulated in the style

of a dataflow analysis (e.g. [16, 17]). In the presence of loops, this
requires a fix-point computation over typing environments. Un-
fortunately, for some flow typing problems, the standard iterative
fix-point computation may not terminate. We formalise such a
problem that we encountered in developing the Whiley program-
ming language [15, 25], and present a novel constraint-based solu-
tion guaranteed to terminate. Finally, whilst our language of con-
straints is similar to previous constraint-based type inference sys-
tems (e.g. [22, 2, 29, 6]), the key novelty of our approach lies in a
mechanism for extracting recursive types from constraints via elim-
ination and substitution.

2. SYNTAX, SEMANTICS & SUBTYPING
We now introduce our calculus, called FT (for Flow-Typing),

which is specifically kept to a minimum to focus on the interesting
problem. The following gives a syntactic definition of types in FT:

T ::= void | any | int | {T1 f1, . . . , Tn fn} | T1 ∨ T2 | µX.T | X

Here, void represents the empty set of values (i.e. ⊥), whilst any
the set of all possible values (i.e. ⊤). Also, {T1 f1, . . . , Tn fn}
represents a record with one or more fields. The union T1∨ T2 is a
type whose values are in T1 or T2. Union types are used to char-
acterise information flow at meet points in the control-flow graph.

Types of the form µX.T describe recursive data structures. For ex-
ample, µX.({int data} ∨ {int data, X next}) gives the type of
a linked list, whilst µX.({int data} ∨ {int data, X lhs, X rhs})
gives the type of a binary tree. For simplicity, recursive types are
treated in an equi-recursive fashion [26]. That is, recursive types
and their unfoldings are not distinguished. For example, the recur-
sive type µX.(int ∨ {int data, X next}) and its one-step unfold-
ing int ∨ {int data, µX.(int ∨ {int data, X next}) next} are
considered identical, and so on. Thus, we don’t need to handle re-
cursive types explicitly as, whenever we encounter µX.T, we im-
plicitly unfold it to T[X 7→µX.T] as necessary.

2.1 Subtyping
The subtyping rules are given in Figure 1 and employ judge-

ments of the form “T1 ≤ T2 ⇂ C”, read as: T1 is a subtype of T2
under assumptions C.

DEFINITION 1 (SUBTYPING). Let T1 and T2 be types. Then,
T1 is a subtype of T2, denoted T1 ≤ T2, iff T1 ≤ T2 ⇂ ∅.

The set of assumptions C helps ensure the subtype rules from Fig-
ure 1 terminate. The S-I rule is critical here as it protects against in-
finite recursion, following the standard treatment of recursive types
(see e.g. [26, 10]). Apart from assumption sets, the rules of Figure 1
are mostly straightforward. Subtyping of records is via rule S-R
which allows for depth but (for simplicity) not width [26]. Thus, it
follows that {T1 f1, . . . , Tn fn} ≤ {T′1 g1, . . . , T′m gm} if n = m and
∀1≤i≤n.(fi = gi ∧ Ti ≤ T′i) (i.e. both records have the same
fields and each field in the former subtypes its corresponding field
in the latter). Note, it is safe for e.g. {int f} ≤ {any f} to hold
because types in FT are not reference types (as in e.g. Java), but
value types. Rule S-U3 is perhaps the most interesting, as it cap-
tures distributivity over records. For example, it follows under S-
U3 that {int ∨ {int x} f} ≤ {int f} ∨ {{int x} f}.

Finally, FT’s subtype relation forms a join-semi lattice. That is,
any two types T1, T2 have a well defined least upper bound (denoted
T1 ⊔ T2). This is trivially true since it corresponds to T1 ∨ T2.

2.2 Syntax
Figure 2 gives the syntax of FT where

q
·
yℓ is not part of the

syntax but (following [19]) identifies the distinct program points
and associates each with a unique label ℓ (these will be explained
later). An example FT program is given below:

int f(int x) {

y = 11

z = {f : 1}2

while x < y3 { x = z.f4 }

return x5

}

Whilst FT programs are fairly limited, they characterise an inter-
esting flow typing problem which cannot easily be solved using
an iterative fix-point computation (such as is commonly used for
dataflow analysis).

2.3 Semantics
A small-step operational semantics for FT is given in Figure 3.

The semantics describe an abstract machine executing statements
of the program and (hopefully) halting to produce a value. Here, ∆
is the runtime environment, whilst v denotes runtime values. A run-
time environment ∆ maps variables to their current runtime value.

In Figure 3, halt(v) is used to indicate the machine has halted
producing value v. This must be distinguished from the notion of

Subtyping:

T ≤ T ⇂ C
{T1 ≤ T2} ⊆ C
T1 ≤ T2 ⇂ C (S-F, S-I)

void ≤ T ⇂ C T ≤ any ⇂ C (S-V, S-A)

C2 = C1 ∪ {T ≤ T′}
T1 ≤ T′1 ⇂ C2 . . . Tn ≤ T′n ⇂ C2

T = {T1 f1, . . . , Tn fn} T′ = {T′1 f1, . . . , T′n fn}
T ≤ T′ ⇂ C1

(S-R)

C2 = C1 ∪ {T1 ≤ T2 ∨ T3}
∃i∈{2, 3}.T1 ≤ Ti ⇂ C2

T1 ≤ T2 ∨ T3 ⇂ C1
(S-U1)

C2 = C1 ∪ {T1 ∨ T2 ≤ T3}
T1 ≤ T3 ⇂ C2 T2 ≤ T3 ⇂ C2

T1 ∨ T2 ≤ T3 ⇂ C1
(S-U2)

T = {T1 f1 . . . , Ti ∨ T′i fi . . . , Tn fn}
S1 = {T1 f1 . . . , Ti fi, . . . , Tn fn}
S2 = {T1 f1 . . . , T′i fi, . . . , Tn fn}

T ≤ S1∨ S2 ⇂ C
(S-U3)

Figure 1: Subtyping rules for FT.

Syntax:
F ::= T f(T1 n1, . . . , Tn nn) {B}
B ::= S B | ϵ
S ::=

q
n = v

yℓ |
q
n = m

yℓ |
q
n.f = m

yℓ |
q
n = m.f

yℓ

|
q
return n

yℓ | while
q
n < m

yℓ {B}
v ::= {f1 : v1, . . . , fn : vn} | i

Figure 2: Syntax for FT. Here, n, m represent variable identi-
fiers, whilst i represents the integer constants.

Semantics:

⟨∆,
q
n=v

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-VC)

v = ∆(m)

⟨∆,
q
n=m

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-VV)

∆(m) = {. . . , f : v, . . .}
⟨∆,

q
n=m.f

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-VF)

∆(n) = {f1 : v1, . . . , fn : vn}
v = ∆(n)[f 7→∆(m)]

⟨∆,
q
n.f=m

yℓ
B⟩ −→ ⟨∆[n 7→v], B⟩

(R-FV)

v = ∆(n)

⟨∆,
q
return n

yℓ
B⟩ −→ halt(v)

(R-RV)

∆(n) < ∆(m)

⟨∆, while
q
n<m

yℓ {B1} B2⟩
−→ ⟨∆, B1 while

q
n<m

yℓ {B1} B2⟩
(R-W1)

∆(n) ≥ ∆(m)

⟨∆, while
q
n<m

yℓ {B1} B2⟩ −→ ⟨∆, B2⟩
(R-W2)

Figure 3: Small-step operational semantics for statements in
FT.

being “stuck”. The latter occurs when the machine has not halted,
but cannot execute further (because none of the transition rules
from Figure 3 applies). For example, a statement n = m.f can re-
sult in the machine being stuck. To see why, notice that only rule
R-VF can be applied to such a statement. This has an explicit re-
quirement that m currently holds a record value containing at least
field f. Thus, in the case that m does not currently hold a record
value, or that it holds a record value which does not contain a field
f, then the machine will be stuck.

Some observations can be made from Figure 3. Firstly, variables
do not need to be explicitly declared — rather, they are declared im-
plicitly by assignment. Secondly, variables must be defined before
being used — as, otherwise, the machine will get stuck. Finally,
assignments to fields succeed even when the assigned field doesn’t
exist. This is captured in rule R-FV, where the record value being
assigned is updated with a (potentially new) field f. For example:

{any f, int g} f(any y) {

x = {f : 1}1

x.f = y2

x.g = 13

return x4

}

This program executes under the rules of Figure 3 without getting
stuck. Furthermore, as we will see, it can be type checked with
appropriate flow typing rules (§4). The key to this is that variable x
has different types at different program points: after initialisation,
it has type {int f}; after the subsequent assignment to field f this
becomes {any f}; and, finally, after the assignment to field g it has
type {any f, int g}.

The ability to safely update field types in FT contrasts with tra-
ditional object-oriented languages (e.g. Java) where assignments
must respect the declared type of the assigned field. The semantics
of FT are (in some ways) closer to those of a dynamically typed
language where one can assign to fields and variables at will.

3. DATAFLOW-BASED FLOW TYPING
We now formulate the typing rules for FT as a dataflow anal-

ysis. This is an intuitive and commonly used approach (e.g. [16,
17]). Our purpose is to highlight an inherent limitation of using
this approach for FT — namely, that it requires finding a fix-point
over typing environments for which the standard iterative fix-point
computation fails to terminate in some cases.

Dataflow-based flow typing requires a separate environment, Γℓ,
for each program point ℓ. This gives the types of all variables im-
mediately before the statement at ℓ. For example, consider a small
program (left) along with its typing environments (right):

int f(int x) {

y = x1 // Γ1 = {x 7→ int}
return y2 // Γ2 = {x 7→ int, y 7→ int}

}

Since y is defined on line 1, it is absent from Γ1 (which represents
the environment immediately before line 1). Now, consider:

int ∨ {int g} f(int x) {

y = 11

while x < x2 { y = {g : 1}3 }

return y4

}

Function Typing (dataflow):

{n1 7→ T1, . . . , nk 7→ Tk, $ 7→ T} ⊢ B : Γ
⊢ T f(T1 n1, . . . , Tk nk) {B}

(T-FUN)

Block Typing (dataflow):

Γ0 ⊢ S : Γ1 Γ1 ⊢ B : Γ2
Γ0 ⊢ S B : Γ2

(T-BLK)

Statement Typing (dataflow):

⊢ v : T

Γ ⊢
q
n=v

yℓ
: Γ[n 7→T]

Γ(m) = T

Γ ⊢
q
n=m

yℓ
: Γ[n 7→T]

(T-VC,
T-VV)

Γ(m) = {. . . , T f, . . .}
Γ ⊢

q
n=m.f

yℓ
: Γ[n 7→T]

Γ(n) = {T1 f1, . . . , Tn fn}
T = Γ(n)[f 7→ Γ(m)]

Γ ⊢
q
n.f=m

yℓ
: Γ[n 7→T]

(T-VF,
T-FV)

Γ(n) ≤ Γ($)

Γ ⊢
q
return n

yℓ
: ∅

(T-RV)

Γ0 ⊔ Γ1 ⊢ B : Γ1
Γ0 ⊔ Γ1(n)=int Γ0 ⊔ Γ1(m)=int

Γ0 ⊢ while
q
n < m

yℓ {B} : Γ0 ⊔ Γ1

(T-WHILE)

Figure 4: Dataflow-based typing rules for FT.

The question is, what type does y have in Γ4? We know that y has
type int if the loop isn’t taken, or {int g} otherwise. To capture
this, we compute the least upper bound of the type environments:

Γ4 = {x 7→int, y 7→int} ⊔ {x 7→int, y 7→{int g}}
↪→{x 7→int, y 7→int∨{int g}}

Here, Γ4(y) = int∨{int g} as an int value can flow from before
the loop, whilst {int g} can flow from around the loop. Here, we
are tacitly assuming the loop can be executed zero or more times,
even though (in principle) we could be more precise. This follows
the standard approach used in dataflow analysis (see e.g. [19]).

DEFINITION 2 (ENVIRONMENT SUBTYPING). Let Γℓ1 and Γℓ2

be typing environments. Then, we say that Γℓ1 subtypes Γℓ2, de-
noted Γℓ1 ≤ Γℓ2, iff ∀x∈dom(Γℓ2).Γℓ1(x) ≤ Γℓ2(x).

For example, the following hold under Definition 2:

{x 7→ int} ≤ {x 7→ any}
{x 7→ {int f}, y 7→ int} ≤ {x 7→ any}

Since the underlying subtype relation over types forms a join semi-
lattice, it follows that environment subtyping does as well (where
⊥ = ∅ and ⊤ maps all program variables to any). Hence, it follows
that any two environments have a unique least upper bound.

3.1 Dataflow-Based Typing Rules
The typing rules for statements describe their effect on the typing

environment. They are judgements of the form Γ ⊢ S : Γ′ where Γ

represents the environment immediately before S, and Γ′ represents
that immediately after. For example, consider:

int f(any x) { x = 11 ; return x2 }

Here, Γ1 = {x 7→any, $ 7→int} gives the environment immediately
before the assignment. Then, the typing environment obtained im-
mediately after it is Γ2 = {x 7→int, $ 7→int}.

The dataflow-based typing rules for FT are given in Figure 4.
Rule T-FUN states that an FT function can be typed if its body can
be typed with parameters mapped to their declared types. The spe-
cial variable $ is included to provide access to the return type. Rule
T-BLK threads an environment through a sequence of statements.

Rule T-VC exploits the fact that values have fixed types (ob-
tained via ⊢ v : T). The requirement Γ(m) = {. . . , T f, . . .} in rule
T-VF ensures that m holds a record containing field f at the given
point. Similarly, in T-VF, {T1 f1, . . . , Tn fn}[f 7→T] constructs a
type identical to {T1 f1, . . . , Tn fn}, but where field f now has type
T (even if the original didn’t contain a field f). Rule T-RV confirms
the returned value is a subtype of the declared return type. Finally,
rule T-WHILE requires a fix-point be found for the environment
produced from the body, and we discus this in more detail below.

3.2 Termination
Computing a fix-point for a dataflow analysis is normally done

using an iterative computation (see e.g. [19]). Unfortunately, using
such a computation to solve the typing rules of Figure 4 will not
always terminate. The following illustrates:

void loopy(int x, int y) {

z = {f:1}1 ; while x < y2 { z.f = z3 }
}

This example causes an iterative fix-point solver for rule T-WHILE
to iterate forever, generating larger and larger environments:

Γ3 = {z 7→ {int f}, . . .}
Γ3 = {z 7→ {int ∨ {int f} f}, . . .}
Γ3 = {z 7→ {int ∨ {int f} ∨ {int ∨ {int f} f} f}, . . .}
. . .

Proving that an iterative fix-point computation always terminates is
normally done by showing two key properties: firstly, the domain
(i.e. types) and partial order (i.e. subtyping) must form a join semi-
lattice (of finite height); secondly, the transfer functions (i.e. the
rules of Figure 4) must be monotonic. Sadly, the lattice of types
in FT has infinite height, hence such a proof can’t apply. Observe,
however, that intuitively a valid typing of the above example exists:

Γ
3 = {x 7→ int, y 7→ int, z 7→ µX.{(int ∨ X) f}} (1)

The key problem, then, is how one could obtain such a typing in
practice. In fact, there are many examples in the dataflow analy-
sis literature of systems with lattices of infinite height (e.g. integer
range analysis [19]). Such systems are forced to terminate through
the introduction of a widening operator. Such an operator is ap-
plied after a certain number of iterations of the computation. Typi-
cally, it will attempt to “guess” a value which causes the computa-
tion to converge and, if that fails, will move to a worst-case default
(e.g. Γ3 = {x 7→ int, y 7→ int, z 7→ any} — which in this case
prevents the program from being typed).

4. CONSTRAINT-BASED FLOW TYPING
We now present a novel constraint-based formulation of the typ-

ing rules for FT in the style of e.g. [13, 2]. Critically, this does not
require a fix-point computation and, hence, is guaranteed to termi-
nate. Our language of type constraints is as follows:

c ::= nℓ⊒ e | T ⊒ e

e ::= T | nℓ | e.f | e1[f 7→e2] |
⊔
ei

Here, T represents a fixed type from those outlined in §2, whilst
nℓ denotes the set of labelled type variables which range over types

(though, for simplicity, we will sometimes omit the label). Further-
more, e represents constraint expressions which are used to build
up the right-hand side of a constraint. Finally, e1[f 7→ e2] can be
viewed as updating the record returned by e1 such that field f now
contains the value obtained from e2.

The idea is that, for a given FT program, we generate a set of
such constraints and subsequently solve them. The following illus-
trates the idea:

int ∨ {int g} f(int x,int y){ // x0⊒int, y0⊒int

r = 01 // r1 ⊒ int

while x < y2 { // r2 ⊒ r1 ⊔ r3

r = {g : 1}3 // r3 ⊒ {int g}
}

return r4 // int ∨ {int g} ⊒ r2
}

Here, we see that each program variable may be split across multi-
ple constraint variables (e.g. r is represented by r1, r2 and r3).

DEFINITION 3 (TYPING). A typing, Σ, maps variables to types
and satisfies a constraint set C, denoted by Σ |= C, if for all e1⊒e2 ∈ C
we have E(Σ, e1) ≥ E(Σ, e2). Here, E(Σ, e) is the evaluation func-
tion, defined as follows:

E(Σ, T) = T (1)
E(Σ, nℓ) = T if {nℓ 7→ T} ⊆ Σ (2)

E(Σ, e.f) =
∨
Ti if E(Σ, e)=

∨
{. . . , Ti f, . . .} (3)

E(Σ, e1[f 7→e2]) =∨
{T f}[f 7→ T] if E(Σ, e1)=

∨
{T f} and E(Σ, e2)=T (4)

E(Σ,
⊔
ei) =

∨
Ti if E(Σ, e1) = T1, . . . , E(Σ, en) = Tn (5)

Rule (3) selects field f from a union of one or more records con-
taining that field (e.g. E(∅, ({int f}∨{any f}).f) = int ∨ any).
Rule (4) updates the type of field f across a union of one or more
records. Here,

∨
{T f} is short-hand notation for a union of records

{T11 f11, . . . , T1n f1n}∨. . .∨{Tk1 fk1, . . . , Tkm fkm}, while {T f}[f 7→ T]
constructs a type identical to {T f}, but where field f now has type
T (even if the original didn’t contain a field f). Thus, it follows that
E(∅, ({int f}∨{int g})[f 7→any])={any f}∨{any f, int g}.

Finally, a given FT program is considered type safe if a valid
typing exists which satisfies the generated typing constraints.

4.1 Constraint-Based Typing Rules
Figure 5 gives the constraint-based typing rules for FT which

have a general form of Γ0 ⊢ S : Γ1 ⇂ C (except T-FUN, which is
similar). In the constraint-based formulation, a typing environment
Γ maps each variable to the program point where its current value
was defined. Finally, C is the constraint set which must hold (i.e.
admit a valid solution) for that statement to be type safe.

As before, T-FUN initialises the typing environment from the
parameter types, and adds a constraint for the return type. The
latter employs a special variable, $, to connect the return type with
any returned values (via T-RV). The following illustrates:

int f(any x) { // x0⊒ any, int⊒ $ (T-FUN)

x = 11 // x1⊒ int (T-VC)

return x2 // $ ⊒ x1 (T-RV)

}

Here, x1 is connected to the return type through $. Rule T-VC
constrains the type of the assigned variable to that of the assigned
(constant) value. The environment produced (i.e. Γ[n 7→ ℓ]) equals
the old (i.e. Γ) but with n mapped to ℓ. Rule T-VV constrains the
type of the assigned variable to that of the right-hand side. Here,

Function Typing (constraints):

{n1 7→ 0, . . . , nk 7→ 0} ⊢ B : Γ1 ⇂ C1
C2 = C1 ∪ {n10 ⊒ T1, . . . , nk0 ⊒ Tk, T ⊒ $}

⊢ T f(T1 n1, . . . , Tk nk) B ⇂ C2
(T-FUN)

Block Typing (constraints):

Γ0 ⊢ S : Γ1 ⇂ C1 Γ1 ⊢ B : Γ2 ⇂ C2
Γ0 ⊢ S B : Γ2 ⇂ C1 ∪ C2

(T-BLK)

Statement Typing (constraints):

⊢ v : T

Γ ⊢
q
n=v

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒T}

(T-VC)

Γ(m) = κ

Γ ⊢
q
n=m

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒mκ}

(T-VV)

Γ(m) = κ

Γ ⊢
q
n=m.f

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒mκ.f}

(T-VF)

Γ(n) = κ Γ(m) = λ

Γ ⊢
q
n.f=m

yℓ
: Γ[n 7→ ℓ] ⇂ {nℓ⊒nκ[f 7→mλ]}

(T-FV)

Γ(n) = κ

Γ ⊢
q
return n

yℓ
: ∅ ⇂ {$ ⊒nκ}

(T-RV)

defs(B) = n

Γ1 = Γ0[n 7→ ℓ] Γ1 ⊢ B : Γ2 ⇂ C1
Γ0(n) = κ Γ2(n) = λ
Γ1(n) = κ Γ1(m) = λ

C2 = {int ⊒ nκ, int ⊒ mλ}
C3 = C1 ∪ C2 ∪ {nℓ⊒nκ⊔ nλ}

Γ0 ⊢ while
q
n < m

yℓ {B} : Γ1 ⇂ C3

(T-WHILE)

Variable Definitions:

defs(S ; B) = defs(S) ∪ defs(B)
defs(

q
n = . . .

yℓ
) = {n}

defs(
q
n.f = . . .

yℓ
) = {n}

defs(
q
return n

yℓ
) = ∅

defs(while
q
n < m

yℓ {B}) = defs(B)

Figure 5: Constraint-Based Typing rules for FT.

Γ(m) = κ determines the program point (κ) where the type variable
currently representing m was defined (mκ). Rule T-VF constrains
the assigned variable to the corresponding field of the right-hand
side. Rule T-FV uses a constraint of the form nℓ⊒nκ[f 7→mλ]. This
constrains all fields of nℓ (except for f) to their corresponding type
in nκ, whilst field f now maps to mλ.

Finally, in rule T-WHILE the overbar (e.g. n) is a short-hand
indicating a list (or set) of items. The rule employs a support func-
tion, defs(B), to identify variables assigned in B. Each variable
n∈defs(B) requires a constraint to merge flow from before the loop
(i.e. nκ) with that from around the loop (i.e. nλ). For each, a vari-
able nℓ is created to capture this flow. This corresponds (roughly)
to the placement of ϕ−nodes in SSA form [7].

4.2 Variable Elimination
We now begin presenting our algorithm for solving the typing

constraints generated for a given function. We first consider the
variable elimination step. The essence is, for each variable nℓ, to
generate a single constraint from which we can extract its typing.

DEFINITION 4 (VARIABLE SCOPING). Let CX denote a con-
straint set where X defines the variables permissible in any con-
straint e1⊒e2 ∈ CX .

DEFINITION 5 (SINGLE ASSIGNMENT). A constraint set CX
is in single assignment form if, for each nℓ ∈ X , there is at most
one constraint in CX of the form nℓ⊒ e.

Any constraint set CX generated from the rules of Figure 5 is
almost in single assignment form. This is because only T-RV can
give rise to multiple constraints with the same left-hand side (i.e.
$). Thus, we can transform CX into single assignment form by
collecting all such constraints and combining them:

$ ⊒ nℓ0, . . . , $ ⊒ nℓn =⇒ $ ⊒ nℓ0 ⊔ . . . ⊔ nℓn

We now apply successive substitutions to eliminate variables and
narrow down the final constraint for a given variable:

DEFINITION 6 (ELIMINATION STEP). Let CX be a constraint
set in single assignment form, where we have nℓ⊒ e ∈ CX . Then,
we can eliminate nℓ from CX to form a (smaller) constraint set as
follows: CX−{nℓ}={e1⊒ e2Jnℓ 7→eK | e1⊒ e2 ∈ CX ∧ e1 ̸= nℓ}.

Here, the choice of nℓ to eliminate is arbitrary. Recall that e1 is
either a variable nκ, or a type T (i.e. not an arbitrary expression).
Furthermore, e2Jnℓ 7→eK substitutes all occurrences of nℓ with e in
e2. To determine the typing for a given variable nℓ, we progres-
sively eliminate variables until only nℓ remains. Then, we have
nℓ⊒ e ∈ C{nℓ} and from this we extract the type for nℓ (discussed
further in §4.3). To illustrate, we revisit our running example:

void loopy(int x, int y) { // x0⊒ int, y0⊒ int,
// void⊒ $ (T-FUN)

z = {f : 1}1 // z0⊒ {int f} (T-VC)

while x < y2 { // z1⊒ z0 ⊔ z2, int⊒x0,
// int⊒y0 (T-WHILE)

z.f = z3 // z2⊒ z1[f 7→ z1] (T-FV)

} }

Eliminating for each of the constraint variables contained in the
above yields the following constraint sets (left) and extracted vari-
able typings (right):

C{$}={void ⊒ $} =⇒ Σ($)=void

C{x0}={x0 ⊒ int} =⇒ Σ(x0)=int

C{y0}={y0 ⊒ int} =⇒ Σ(y0)=int

C{z0}= {z0 ⊒ {int f}} =⇒ Σ(z0)={int f}
C{z1}={z1⊒{int f} ⊔ z1[f 7→z1]}

=⇒ Σ(z1)=µX.({(int ∨ X) f})
C{z2}={z2⊒({int f} ⊔ z2)[f 7→{int f}⊔z2]}

=⇒ Σ(z2)=µX.({{int f}∨X f})

An interesting observation lies in the difference between the type of
z1 and z2. The “smallest” type contained in z1 is {int f}, whilst
for z2 it is {{int f} f}. These types correspond to the first itera-
tion of the loop, with the latter representing the case where {int f}
(i.e. z’s initial value) was already assigned into field f of variable
z. Furthermore, it is relatively easy to show that Σ (as shown above)
is a valid typing (under Definition 3) for the constraints generated
for loopy().

The variable elimination process is trivially guaranteed to termi-
nate. However, an important property is to show that it preserves
solutions. That is, if a solution for the original constraint set exists,
then a solution still exists a after variable elimination:

LEMMA 1 (SAFE SUBSTITUTION). Assume e1, e2, nℓ, E and
Σ where E(Σ, e1) ≤ Σ(nℓ) and E(Σ, e2) is well-defined. Then, it
follows that E(Σ, e2Jnℓ 7→ e1K) ≤ E(Σ, e2).

PROOF. Proof omitted for brevity — see [24] for details.

THEOREM 1 (ELIMINATION PRESERVATION). Let CX be a
constraint set in single assignment form where {nℓ⊒e} ⊆ CX , and
Σ an arbitrary typing. If Σ |= CX then, Σ |= CX−{nℓ} for any nℓ ∈ X .

PROOF. Proof omitted for brevity — see [24] for details.

4.3 Type Extraction
Given the final constraint set C{nℓ} for a variable nℓ, the remain-

ing challenge is to extract a type for nℓ. In such case, we know there
is a single constraint of the form nℓ⊒e ∈ C{nℓ} where e either uses
no variables (i.e. it’s non-recursive) or uses at most nℓ (i.e. it’s
recursive). For the non-recursive case, this is straight-forward as
E(∅, e) (if it is well-defined) gives the typing for nℓ (recall E(Σ, e)
from Definition 3). For example, for nℓ⊒{int f}[f 7→ any] we
have E(∅, {int f}[f 7→ any]) = {any f}. If E(∅, e) is not well-
defined (e.g. E(∅, int.f)) then the original program contained a
type error. For the recursive case, things are more involved. Given
a recursive constraint of the form nℓ ⊒ e (i.e. where nℓ is used in
e), we first check no other nλ is used in e (if not we default to re-
jecting the program — see §4.4), and then proceed as follows:

Base Extraction. To extract the base case, we use the following
function, where • indicates a path exists to the recursive variable,
nℓ, being extracted:

B(nℓ, T) = T (1)
B(nℓ, nℓ) = • (2)
B(nℓ, e.f) = • if B(nℓ, e) = • (3)

B(nℓ, e.f) =
∨
Ti if B(nℓ, e) =

∨
{. . . , Ti f, . . .} (4)

B(nℓ, e1[f 7→ e2]) = • if B(nℓ, e1) = • or B(nℓ, e2) = • (5)
B(nℓ, e1[f 7→ e2]) =∨

{T f}[f 7→ T] if B(e1)=
∨
{T f} and B(e2)=T (6)

B(nℓ,
⊔
ei) =

∨
Tj forall Tj where ∃i.B(nℓ, ei) = Tj (7)

Essentially, this factors out expressions which cannot generate con-
crete types (i.e. because they reference the recursive variable nℓ).
For example, we have B(z1, {int f} ⊔ z1[f 7→z1])={int f} and
B(z2, ({int f} ⊔ z2)[f 7→{int f} ⊔ z2]) = {{int f} f} for the
recursive constraints generated for loopy() above.

Base Substitution. To extract a type for nℓ we exploit knowledge
of the e1[f 7→ e2] construct using the following substitution func-
tion:

S(Σ, T) = T (1)
S(Σ, nℓ) = T if {nℓ 7→ T} ⊆ Σ (2)

S(Σ, e1.f) = e2.f if S(Σ, e1) = e2 (3)
S(Σ, e1[f 7→ e2]) = e3[f 7→ e2] if S(Σ, e1) = e3 (4)

S(Σ,
⊔
ei) =

⊔
e′i if

S(Σ, e1) = e′1, . . . ,S(Σ, en) = e′n (5)

For e1[f 7→e2], rule (4) substitutes into e1 but not e2. For example,
S({z1 7→{int f}}, {int f}⊔z1[f 7→z1])={int f}⊔{int f}[f 7→z1].

Final Extraction. For a recursive constraint nℓ⊒e1 we extract the
base type TB=B(nℓ, e1) and substitute to give e2=S({nℓ 7→TB}, e1).
The type for nℓ is then determined as µX.E({nℓ 7→X}, e2). For ex-
ample, for z1 ⊒ {int f} ⊔ z1[f 7→z1] we get µX.({int f} ∨ {X f})
and, likewise, for z2 ⊒ ({int f} ⊔ z2)[f 7→{int f} ⊔ z2] we ob-
tain µX.({{int f}∨X f} ∨ {{int f}∨X f}).

4.4 Limitations
The typing procedure described above is not complete because it

is possible (in some cases) that generated constraints contain mul-
tiple variables in the right-hand side after elimination:

void loopy(int x, int y) { // x0⊒ int, y0⊒ int,
// void⊒ $ (T-FUN)

z = {f : 1}1 // z0⊒ {int f} (T-VC)

while x < y2 { // z1⊒ z0 ⊔ z2, int⊒x0,
// int⊒y0 (T-WHILE)

z.f = z3 // z2⊒ z1[f 7→ z1] (T-FV)

}

while x < y4 { // z3⊒ z1 ⊔ z4, int⊒x0,
// int⊒y0 (T-WHILE)

z.f = z5 // z4⊒ z3[f 7→ z3] (T-FV)

} }

In this case, we have the following for z3:

C{z1,z3} = {z1 ⊒ {int f} ⊔ z1[f 7→ z1], z3 ⊒ z1 ⊔ z3[f 7→ z3]}
↪→ C{z3} = {z3 ⊒ {int f} ⊔ z1[f 7→ z1] ⊔ z3[f 7→ z3]}

Here, we have not successfully eliminated z1 from C{z3} because
it was a recursive constraint. Therefore, in some cases, our extrac-
tion procedure cannot be applied and we must reject the program
(even if it could, in principle, be typed). A more expressive lan-
guage of constraints would help overcome this limitation.

Claim. Our typing procedure can be used to type many interesting
examples (such as loopy() from above). Furthermore, it is trivial
to show that it is both sound and complete for sets of non-recursive
constraints. Thus, our procedure is at least as good as the dataflow-
based approach outlined in §3 with the added benefit of guaranteed
termination. Observe that we need not be concerned about whether
our extraction procedure is sound or not. This is because we can
simply extract a typing and then certify via Definition 3 that it does
(or does not) satisfy the generated constraints. And, of course, if it
does not satisfy the constraints we reject the program (for safety).

5. RELATED WORK
Numerous systems have been developed for object-oriented lan-

guages (e.g. [22, 20, 2, 29, 6, 9]). These, almost exclusively, as-
sume the original program is completely untyped and employ set
constraints (see [1, 13]) as the mechanism for inferring types. As
such, they address a somewhat different problem to that studied
here. To perform type inference, such systems generate constraints
from the program text, formulate them as a directed graph and solve
them using an algorithm similar to transitive closure.

Our earlier work on flow-typing [25] considers the problem of
handling type tests in a sound and complete manner. The aim is
to automatically retype variables as a result of runtime type tests.
Consider a variable x which has type T1 and is the subject of a type
test, such as x instanceof T2. It should follow that variable x au-
tomatically has type T1 ∧ T2 on the true branch (i.e. the intersection
of its original type and the tested type). The key challenge is that,
on the false branch, it should have type T1 ∧ ¬T2 (i.e. the inter-
section of its original type and everything except the tested type).
Developing a type system which supports union, intersection and
negation types which is both sound and complete is a significant
algorithmic challenge, and our solution relies on a carefully con-
structed normal form representation of types. Note that the system
presented in [25] differs from that presented here, as it does not
support recursive types at all and, hence, termination is not a con-
sideration.

Palsberg and O’Keefe consider the problem of finding a type
system equivalent to a constraint-based safety analysis [21]. They
find that a type system previously studied by Amadio and Cardelli
(which includes subtyping and recursive types [4]) accepts exactly
the same set of programs as the particular safety analysis they ex-
amined. Their work shows some similarity with the problem stud-
ied in this paper. In particular, Palsberg and O’Keefe develop a
constraint-based type inference where typings are generated by solv-
ing constraints and extracting a least solution for each variable.
However, their type system does not include union types and this
limits the possible constraint forms needing to be considered. As
such, the problem of extracting a typing from a constraint set is
strictly simpler in their system than that studied here.

The work of Guha et al. focuses on flow-sensitive type check-
ing for JavaScript [12]. The system retypes variables as a result of
runtime type tests, although only simple forms are permitted. Re-
cursive data types are not supported, although structural subtyping
would be a natural fit here. Tobin-Hochstadt and Felleisen consider
the problem of typing previously untyped Racket (aka Scheme)
programs and develop a technique called occurrence typing [28].
They employ union types to increase the range of possible values
from the untyped world which can be described, but do not permit
retyping through assignment. The earlier work of Aiken et al. is
similar to that of Tobin-Hochstadt and Felleisen [3]. This operates
on a function language with single-assignment semantics. They
support more expressive types, but do not consider recursive struc-
tural types. Furthermore, instead of type checking directly on the
AST, conditional set constraints are generated and solved. Follow-
ing the soft typing discipline, their approach is to insert runtime
checks at points which cannot be shown type safe.

Finally, the Java Bytecode Verifier employs flow typing. Since
locals and stack locations are untyped in Java Bytecode, it must
infer their types to ensure type safety. A dataflow analysis is used
to do this [16], although the problem is simpler than that studied
here since one cannot retype through field assignment.

6. CONCLUSION
We presented a small calculus, FT, for reasoning about flow typ-

ing systems motivated from our experiences developing Whiley [15,
25]. This characterises a flow-typing problem not suitable for a
dataflow-style solution, because this requires a fix-point computa-
tion over typing environments which, unfortunately, may not ter-
minate. We then presented a novel constraint-based formulation of
typing which is guaranteed to terminate. This provides a founda-
tion for others developing such flow typing systems. More details,
including proofs of progress and preservation for FT, can be found
in [24]. Finally, whilst our language of constraints is similar to pre-
vious constraint-based type inference systems (e.g. [22, 2, 29, 6]),
the key novelty of our approach lies in a mechanism for extracting
recursive types from constraints via elimination and substitution.

Acknowledgements. This work is supported by the Marsden Fund,
administered by the Royal Society of New Zealand.

7. REFERENCES
[1] A. Aiken and E. L. Wimmers. Solving systems of set

constraints. In Proceedings of LICS, pages 329–340, 1992.
[2] A. Aiken and E. L. Wimmers. Type inclusion constraints and

type inference. In Proc. FPCA, pages 31–41, 1993.
[3] A. S. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft

typing with conditional types. In Proc. POPL, pages
163–173, 1994.

[4] R. M. Amadio and L. Cardelli. Subtyping recursive types.
ACM TOPLAS, 15:575–631, 1993.

[5] D. Ancona, M. Ancona, A. Cuni, and N. D. Matsakis.
RPython: a step towards reconciling dynamically and
statically typed OO languages. In Proc. DLS, pages 53–64,
2007.

[6] C. Anderson, P. Giannini, and S. Drossopoulou. Towards
type inference for JavaScript. In Proc. ECOOP, pages
428–452, 2005.

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. K. Wegman, and
F. K. Zadeck. An efficient method of computing static single
assignment form. In Proc. POPL, pages 25–35, 1989.

[8] J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type
qualifiers. In Proc. PLDI, pages 1–12. ACM Press, 2002.

[9] M. Furr, J.-H. An, J. Foster, and M. Hicks. Static type
inference for Ruby. In Proc. SAC, pages 1859–1866, 2009.

[10] V. Gapeyev, M. Y. Levin, and B. C. Pierce. Recursive
subtyping revealed. JFP, 12(6):511–548, 2002.

[11] The Groovy programming language.
http://groovy.codehaus.org/.

[12] A. Guha, C. Saftoiu, and S. Krishnamurthi. Typing local
control and state using flow analysis. In Proc. ESOP, pages
256–275, 2011.

[13] N. Heintze. Set-based analysis of ML programs. In Proc.
LFP, pages 306–317. ACM Press, 1994.

[14] S. Hunt and D. Sands. On flow-sensitive security types. In
Proc. POPL, pages 79–90. ACM Press, 2006.

[15] D. J.Pearce and J. Noble. Implementing alanguage with
flow-sensitive + structural typing on the JVM. In Proc.
BYTECODE, 2011.

[16] X. Leroy. Java bytecode verification: algorithms and
formalizations. JAR, 30(3/4):235–269, 2003.

[17] C. Male, D. J. Pearce, A. Potanin, and C. Dymnikov. Java
bytecode verification for @NonNull types. In Proc. CC,
pages 229–244, 2008.

[18] A. C. Myers. JFlow: Practical mostly-static information flow
control. In Proc. POPL, pages 228–241, 1999.

[19] F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of
Program Analysis. Springer-Verlag, 1999.

[20] N. Oxhøj, J. Palsberg, and M. Schwartzbach. Making type
inference practical. In Proc. ECOOP, pages 329–349, 1992.

[21] J. Palsberg and P. O’Keefe. A type system equivalent to flow
analysis. ACM TOPLAS, 17(4):576–599, 1995.

[22] J. Palsberg and M. I. Schwartzbach. Object-oriented type
inference. In Proc. OOPSLA, pages 146–161, 1991.

[23] D. J. Pearce. JPure: a modular purity system for Java. In
Proc. CC, volume 6601 of LNCS, pages 104–123, 2011.

[24] D. J. Pearce. A calculus for constraint-based flow typing.
Technical Report ECSTR12-10, Victoria University of
Wellington, 2012.

[25] D. J. Pearce. Sound and complete flow typing with unions,
intersections and negations. In Proc. VMCAI, pages
335–354, 2013.

[26] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[27] A. Russo and A. Sabelfeld. Dynamic vs. static flow-sensitive
security analysis. In Proc. CSF, pages 186–199, 2010.

[28] S. Tobin-Hochstadt and M. Felleisen. Logical types for
untyped languages. In Proc. ICFP, pages 117–128, 2010.

[29] T. Wang and S. Smith. Precise constraint-based type
inference for Java. In Proc. ECOOP, pages 99–117, 2001.

