
The Need for Capability Policies

Position Paper

Sophia Drossopoulou
Imperial College, London

s.drossopoulou@imperial.ac.uk

James Noble
Victoria University of Wellington

kjx@ecs.vuw.ac.nz

ABSTRACT
The object-capability model is one of the industry standards adopted
for the implementation of security policies for web-based software.
Object-capabilities in various forms are supported by programming
languages such as E, Joe-E, Newspeak, Grace, and the newer ver-
sions of Javascript. Unfortunately, code written using capabilities
tends to concentrate on the low-level mechanism rather than the
high-level policy.

In this position paper, we argue that current specification method-
ologies cannot adequately capture all aspects of the capability poli-
cies required to support object-capability systems. We outline in-
formally the features that such security policies should support, and
we demonstrate (also informally) how we can reason that examples
satisfy the capability policies.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming;
F.3.1 [Specifying and Verifying and Reasoning about Programs]:
Specification techniques; D.2.0 [General]: Protection mechanisms

General Terms
Object-Capability Security

Keywords
Security, Java, JavaScript, Grace

1. INTRODUCTION
Security is critically important to most programs written today

— certainly to any program reachable via the Internet or that exe-
cutes within a web browser or application server. Such programs
typically have a number of trusted objects (the core of a web browser,
or of an application server) that interact with untrusted objects (an-
imation scripts displayed in a web page, or individual business ser-
vices running on an application server). The key requirement of a
secure system is to ensure that the trusted parts of the system can
never be compromised by the untrusted parts: viewing a web page

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FTfJP ’13, Montpellier, France
Copyright 2013 ACM 978-1-4503-2042-9 ...$15.00.

should never leak a user’s address book or passwords, nor should
an error in a business service terminate the application server.

Capabilities — unforgeable authentication tokens — have been
used to provide security and task separation on multi-user machines
since the 60s [11], e.g. PDP-1, operating systems e.g. CAL-TSS [22],
and the CAP computer and operating system [48]. The key idea of
capability-based security is that resources can only be accessed via
capabilities: a program possessing a capability has the right to ac-
cess the resource represented by that capability.

Object capabilities [30] apply the concept of capability to object-
oriented programming languages. In an object capability system,
an object is a capability for the services the object provides: any
part of a program that has a reference to an object can always use all
the services of that object. To restrict authority over an object, one
can create an intermediate object which offers restricted services
on the original object.

Object capabilities afford more fine-grained protection than priv-
ilege levels (as in Unix), static types, ad-hoc dynamic security man-
agers (as in Java or JSand [1]), or state-machine-based event moni-
toring [5]. On the other hand, object capability systems are only se-
cure as long as trusted capabilities (that is, trusted objects) are never
leaked to untrusted code. Object capabilities have been adopted in
several programming languages [32, 28, 46] and are increasingly
used for the provision of security in web-programming in industry
[33, 47, 42].

The key problem with object capability programming as prac-
ticed today is that — because capabilities are just objects — code
manipulating capabilities is tangled together with code supporting
the functional behaviour of the program. The actual security poli-
cies enforced by a program are implicit, scattered throughout the
program’s code. Any part of a program that uses an object may
(by oversight, error, or fraud) hand that object to an untrusted part
of the program, giving the untrusted code access to all the services
provided by that object. This makes it difficult to determine what
security properties are guaranteed by a given program, and as a
result, programs are difficult to understand, check, and maintain.

In this position paper, we consider some approaches to this prob-
lem. Section 2 presents an example of object-capability program-
ming, implemented in both statically and dynamically typed lan-
guages. Section 3 then develops the idea of capability policies
that we hope to use to manage object-capability programs. Sec-
tion 4 then informally explores how we may be able to show that
programs adhere to capability policies: by specifying policies, rea-
soning about programs, potentially relying on specialised language
constructs. Since this is a position paper, we end not with a conclu-
sion, but by outlining the broad directions of our intended work in
section 5.

1 public final class Mint { } // the Mint capability
2

3 public final class Purse {
4 private final Mint mint;
5 private long balance;
6

7 public Purse(Mint mint, long balance) { // Create new purse with money from mint.
8 if (balance<0) { throw new IllegalArgumentException(); };
9 this.mint = mint; this.balance = balance;

10 }
11

12 public Purse(Purse pts) { //Create empty purse from same mint as Purse pts.
13 mint = pts.mint; balance = 0;
14 }
15

16 public void deposit(Purse prs, long amount) { // Transfer money from prs.
17 if (mint!=prs.mint || amount>prs.balance || amount+balance<0)
18 { throw new IllegalArgumentException(); };
19 prs.balance -= amount; balance += amount; }
20 }
21 }

Figure 1: The Purse example in Joe-E/Java, adapted from [28]

2. OBJECT-CAPABILITY EXAMPLE
To illustrate and concretise our claims and ideas, we will use as

running example a system for electronic money as proposed in [32].
The example allows for mints with electronic money, purses held
within mints, and transfers of funds between purses. The currency
of a mint is the sum of the balances of all purses created by that
mint. Purses trust the mint to which they belong, and programs
using the money system trust their purses (and thus the mint). Cru-
cially, separate users of the money system do not trust each other.
The standard presentation of the mint example [32] defines six ca-
pability policies: we repeat them all here, although our discussions
below will concentrate on the first three.

Pol_1 With two purses of the same mint, one can transfer money
between them.

Pol_2 Only someone with the mint of a given currency can violate
conservation of that currency.

Pol_3 The mint can only inflate its own currency.

Pol_4 No one can affect the balance of a purse they don’t have.

Pol_5 Balances are always non-negative integers.

Pol_6 A reported successful deposit can be trusted as much as one
trusts the purse one is depositing into.

An immediate consequence of these policies is that the mint ca-
pability gives its holder the ability to subvert the currency system
by “printing money”. This means that while purse capabilities may
safely be passed around the system, the mint capability must be
carefully protected.

Note, that there is also an implicit assumption that no purses are
destroyed.1

1Namely, without this assumption, when a purse is destroyed then
the currency of a mint may decrease, in opposition to Pol_3. The
implication of this assumption is that there will be no explicit de-
struction of purses, but also no garbage collection of purses.

Several different implementations have been proposed for the
mint. Fig.1 contains an implementation in Joe-E [28], a capability-
oriented subset of Java, which restricts static variables and reflec-
tion. Fig.2 contains an implementation written in E [32], an object-
based, capability-based language where the keywords def and to
introduce objects and methods. In both implementations, the poli-
cies are only expressed implicitly.

In the Joe-E version, the policies are adhered to through the inter-
play of appropriate actions in the method bodies (e.g. the check in
line 17), with the use of Java’s restrictive language features (private
members are visible to the same class only; final fields cannot
be changed after initialisation; and final classes cannot be ex-
tended). The code concerned with the functional behaviour is tan-
gled with the code implementing the policy (e.g. in deposit,
line 19 is concerned with the functionality, while line 17 is con-
cerned with Pol_2). The implementation of one policy is scattered
throughout the code, and may use explicit runtime tests, as well as
restrictive elements (e.g. Pol_2 is implemented through a check in
line 17, the private and final annotations, and the initialisa-
tions in lines 9 and 13). Note that an apparently innocuous change
to this code — such as a public getMint accessor that returned a
purse’s mint — would be enough to leak the mint to untrusted
code, destroying the security of the whole system.

In the E version, as the language does not offer many restric-
tive features compared with Java, the function makeBrandPair
creates two associated objects, a sealer and an unsealer, such that
the sealer can seal any entity in a box and the unsealer is the only
object which can retrieve the contents of the box. Execution of
p1.deposit(p2,_)will apply p1’s unsealer to unseal the decr
closure of p2, sealed by p2’s sealer. Unsealing will be successful
only if the unsealer of p1 corresponds to the sealer of p2 - i.e. if p1
and p2 belong to the same mint. The E implementation creates ex-
tra objects whose sole purpose is the implementation of the policy.
For example, a mint with two purses requires a sealer, an unsealer,
and two decr closures, while the execution of deposit creates
the intermediately sealed version of the argument’s decr closure.
Again, a small change to the code — such as the purse returning
the unsealer or passing it to another object — would leak that

1 def makeMint(name) :any {
2 def [sealer, unsealer] := makeBrandPair(name)
3 def mint {
4 to makePurse(var balance :(int >= 0)) :any {
5 def decr(amount :(0..balance)) :void {
6 balance -= amount
7 }
8 def purse {
9 to sprout() :any { return mint.makePurse(0) }

10 to getDecr() :any { return sealer.seal(decr) }
11 to deposit(amount :int, src) :void {
12 unsealer.unseal(src.getDecr())(amount)
13 balance += amount
14 }
15 }
16 return purse
17 }
18 }
19 return mint
20 }

Figure 2: The Purse example in E, taken from [32]

capability and undermine the security.
Both in the Joe-E and the E version, we have tangling of policy

with functionality, as well as scattering of the policy implementa-
tions.

3. CAPABILITY POLICIES
We define a capability policy as a specification that determines

how capabilities are intended to be used within a program: which
objects are trusted, which are untrusted, and precisely which ca-
pabilities can be accessed by which object. A key feature of ca-
pability systems is the principle of least authority — a program
object should only be able to access the capabilities (i.e. the other
objects) that it needs in order to function correctly: even a trusted
object should not have access to all the capabilities (objects) in the
system [40, 34, 48]. A range of object capability policies are dis-
cernible from the literature [30, 32, 31].These policies generally
have the following characteristics:

• They are program centred: they talk about properties of pro-
grams rather than protocols.

• They are fine-grained: they can talk about individual objects,
while coarse-grained policies only talk about large compo-
nents such as System or DOM.

• They are open. Open requirements must be satisfied for any
use of the code extended in any possible manner, while closed
requirements need only be satisfied for any use of code itself.

• They have rely as well as deny elements. Rely elements
promise that execution on a state satisfying a given pre-condition
will reach another state which satisfies some post-condition [19].
Deny elements promise that if an execution reaches a cer-
tain state, or changes state in a certain way, or accesses some
program entity, then the code must satisfy some given prop-
erties. In other words, rely policies are about sufficient con-
ditions, while deny policies are about necessary conditions.

None of the terms above are standard; we coined them to help us
delineate our intended research. The mint’s policies are capability
policies, because:

• They talk about actual programs;

• They talk about individual purses and mints;

• The policy in [32] is open; any expansion of the code (through
dynamic loading, subclassing, mashups etc.) should satisfy
the requirements.

• Pol_1 is a rely requirement: executing deposit in a state
where the two purses belong to the same mint leads to a state
where the money has been transferred.

• Pol_2 is a deny requirement; it says that a currency may be
changed by some code only if the code contained a function
call executed by the mint owning the currency.

• Pol_3 is another deny requirement; it says that if the currency
should change, then it increases.

• Pol_4 is also a deny requirement, preventing objects that can-
not access a purse from modifying its value.

• Pol_5 is very similar to Pol_3, requiring purses’ balances to
be positive.

• Pol_6 can be formulated as a combination of a conditional
rely requirement (if the purse is trusted then the deposit is
trusted) and a deny requirement (that a deposit operation can-
not have a larger effect than the footprint of the purse into
which it is deposited — and, presumably, the purse from
which the deposited funds are withdrawn, although that is
not explicitly stated in the policy).

Open policies are central for Javascript security, which requires
that in any mashup, untrusted code cannot access the trusted security-
critical resources of the execution environment (e.g. the DOM),
nor interfere with the execution of any other component [27, 21].
These works usually implement coarse-grained, fixed-in-advance
policies. SecureJS [45] leverages local scoping (a restrictive fea-
ture) to prove fine-grained confinement (e.g.decr is confined), but
cannot express the high-level policies (e.g. currency cannot be af-
fected). JSand [1] uses Secure ECMAScript and proxies (other re-
strictive features) to isolate the DOM, and then ensures access to

that DOM proxy are mediated by dynamically checking security
policies expressed as JavaScript predicates.

Deny policies are related to deny-guarantee specifications [13]
which can forbid given locations from being modified by the cur-
rent, or by the other threads. Deny policies typically apply through-
out program execution, rather than during specific functions, and
may talk about any properties of the program (e.g. the currency),
rather than specific locations.

Deny policies are also related to correspondence assertions [49,
17], which require that a principal reaching a certain point in a
protocol must be preceded by some other principal reaching a cor-
responding point. Recently, correspondence assertions have been
adapted to talk about program state, and thus can prove that the
code adheres to security, authentication, and privacy policies [6]:
functions are annotated by refinement types which require that the
function is only called if its arguments satisfy the type’s conditions.

Deny policies go further than correspondence assertions in the
following significant ways:

• They support implicit properties, i.e. properties which depend
on state reachable from more than one object, perhaps quan-
tifying over the complete heap, or even on the history of exe-
cution. In our example, the currency is the sum of the balance
of all purses from the same mint, and therefore is an implicit
property.

• They are pervasive, i.e. they are not attached to one function,
and may be affected by several different methods. For exam-
ple, the currency may be affected by the creation of purses
and the payments.

• They are persistent, i.e. they allow the comparison of proper-
ties of the state at different times in execution. For example,
Pol_3 compares the currency between any two times in exe-
cution.

Deny policies could be transformed into equivalent refinement
types; however, the transformation would not be trivial, and the re-
sulting policies would not be open (because the refinement types
cannot prevent the addition of functions which break the require-
ments), and less abstract (how would refinement types express that
the currency can only grow?).

4. REASONING ABOUT CAPABILITY POLI-
CIES

Our ultimate goal is to make capabilities and capability policies
explicit in specifications as well as in programs, and then to for-
mally prove that programs adhere to policies. In this section we
outline our current ideas on the specification of capability policies,
and on the verification that code does, indeed, adhere to such poli-
cies. We also consider specialised language constructs to support
this reasoning.

The ideas in this section are starting points only. More work is
needed, and planned.

4.1 Specifying Policies
To specify capability policies, we must be able to specify both

rely and deny policies. For rely properties, we can draw from
specification languages for functional properties, e.g. JML [23], or
separation-logic-based [41, 36], enhanced so as to also talk about
indirect properties.

Unfortunately, the pervasive nature of deny properties means
that they cannot be treated through preconditions on methods (as

e.g. in [6]). Instead, we will need to draw upon ideas from vari-
ous modal and temporal logics [16, 4], but talking about program
entities, rather than events. For example, in an expanded nota-
tion, � ∀p1, p2 : Purse, amt : Nat. (p1.deposit(p2, amt) −→
∃m :Mint._p1 = m.Purse() ∧ _p2 = m.Purse()), says that trans-
fer of moneys is successful only if the purses had been previously
created by the same mint.2

The persistent nature of deny properties necessitates refining the
relations between different instants in time, e.g. a change in the bal-
ance of a purse is preceded by a transfer, which in its turn, again,
is preceded by the mint creating the two purses. In more detail:
if the balance of a purse of p1 decreases by amt over its immedi-
ately previous value, then the immediately preceding step executed
p1.deposit(p2,mt), and at some times prior to that step, the purses
p1 and p2 were created by the same mint. The annotation valprev is
meant to indicate a value immediately before the event in question,
and the annotation θprec is meant to indicate an event immediately
preceding the event in question. Thus, we express this policy as
follows:
� ∀p1:Purse, amt :Nat :

p1.balance == ({p1.balance}prev − amt) −→
(∃p2:Purse.{p1.deposit(p2, amt)}prec∧

∃m :Mint._(p1 = m.Purse()) ∧ _(p2 = m.Purse())).
Another facet of deny properties is the different modes of causal-

ity. For example, does Pol_2 mean that a change in the currency
implies that the mint object was accessible, or, more strongly, that
the mint executed a method? Classical approaches to ownership,
for example, support the latter approach[12].

Object invariants [29, 35, 44] are relevant, e.g. an object’s sealer
and unsealer must come from the same mint. Monotonic properties
are relevant too, e.g. Pol_3 says that the currency can only grow.
Such properties are akin to history invariants [25]. Accommodat-
ing for object and history invariants poses the challenge of deciding
at which point they may be broken/must be restored [3, 24]; known
approaches follow different, but fixed rules [14], we shall investi-
gate whether the rules could be part of user-defined policies.

To address the crucial issue of capabilities leaking from trusted
to untrusted code, we can apply techniques drawn from ownership
types [8, 18, 7, 15]. Ownership types restrict heap topology to
manage access between objects, and have generally been used to
support encapsulation and concurrency. By applying ownership to
capabilities, we will be able to support many deny policies directly:
Pol_4 and Pol_5, for example, or the policy of a client object of the
currency system: that if an object owns its purse, no other objects
should be able to access that purse.

We also expect to be able to employ effects systems [26] to re-
strict interactions between sets of object, e.g.∀m,m′ : Mint.m ,
m′ → m.Purse()#m′.Purse() says that Purses created by differ-
ent Mints will not affect each other. These systems can expand
our earlier work on effects and isolation [9, 15].

We expect to define the semantics of the specification language
by means of satisfiability of assertions in the context of a given
stack and heap [36]. For deny policies, we will have to expand the
approach, define satisfiability over the history of executions. [4].

2As in [4], the operator � θ expresses that formula θ holds in
all subsequent states, while the operator _ θ expresses that θ
held at some earlier stage. Therefore, in more detail, the re-
quirement � ∀p1, p2 : Purse, amt : Nat. (p1.deposit(p2, amt) −→
∃m : Mint._p1 = m.Purse() ∧ _p2 = m.Purse()), says that for
any two purses p1 and p2, if the term p1.deposit(p2, amt) executes
successfully, then, for some Mint m, at some earlier time, p1 was
created by calling the method Purse on m, and at some other earlier
time, p2 was created by calling the method Purse on the same mint,
m.

4.2 Reasoning About Capability Policies
The main challenge in reasoning about programs’ adherence to

capability policies is reasoning about deny policies, and the combi-
nation of rely and deny steps. We have no full logics yet, but have
initial ideas, which we discuss in terms of the code examples.

We first consider the code written in Joe-E/Java (Fig.1). In this
example, the currency of a mint is the sum of balances of the purses
whose mint field points to that mint.

The treatment of Pol_1 requires nothing more than standard Hoare
Logic: if prs1 and prs2 share mints, then a call of

prs1.deposit(prs2,amt)
transfers amt from prs2 to prs1 (for appropriate amounts and
balances).

In contrast, Pol_2 requires a novel kind of reasoning. Because
mint is final (and implicitly assuming Purses are not destroyed)
the set of purses within a mint can only be affected through the
creation of a new Purse. By inspection of lines 8 and 19, the
method deposit and constructor Purse(Purse) preserve the
currency in the mint. Moreover, since balance is private, any
modifications to balance must be done through the methods of
class Purse. Therefore, the only way to affect the currency is
through the constructor Purse(_,_), which takes the mint as a
parameter.

We now briefly look at the E code in Fig.2. and its adherence
to Pol_2: The function makeMint creates a mint and a sealer/un-
sealer pair. Here the currency of the mint is the sum of the balance
of all purses that have been sealed by the mint’s sealer, and conse-
quently can be unsealed by the mint’s unsealer. The makePurse
function creates objects which have access to the sealer/unsealer.
Other than the mint itself, and its purses, no other object has access
to that pair. By inspection of lines 5,6 and 9-13, we see that the only
operation which affects the currency is makePurse(balance),
which can only be executed by the mint object.

The arguments used above do not fit the Hoare Logic nor the
type-inference format. Nevertheless, they reflect the way one in-
formally reasons about code. They argue in terms of the footprint
of a property, and of the set of method calls which might affect
that footprint. They consider the uses of restrictive language fea-
tures (e.g. final) in the program to reduce that set. They also
use rely reasoning (e.g. calls to deposit or Purse(Purse)
preserve the currency in the mint).

A formal logic to support reasoning about capability policies will
need to combine both rely and deny steps. It will have the usual
Hoare Logic rules, as well as inference rules for the calculation
of footprints of properties, the effect of restrictive features, for the
passing of object capabilities, for lexically scoped languages. To
prove soundness of our logic [39] we will need to expand the ap-
proach to deal with the deny arguments, perhaps applying ideas
from provenance [37], and considerate reasoning [43].

4.3 Language Features
We are also considering the extent to which particular language

constructs can support reasoning about policies — both for ex-
tant features and potential novel features. We have already seen
how reasoning about object-capability programming in the class-
based Java style (in Fig.1) differs in some important respects from
a lexically-scoped E style (in Fig.2): we would like to extend this
analysis to understand particular constructs in more detail.

We have begun collecting programming language idioms often
used in capability programs (e.g. sealers, revocation, membranes
[20, 47, 30], e.t.c.), and identify idioms which have the same effect
(e.g., the use of field mint in Fig.1 has the same effect as that of
sealer/unsealer in Fig.2). We will lift idioms to more suc-

cinct, abstract language features.
Consider the use of the field mint in the code in Fig.1: its pur-

pose is to ensure that no transactions involve Purses from differ-
ent Mints. This is enforced through the private annotation (line
4), initialisation (lines 9 and 13), and check (line 17). The idiom
would be directly expressible more directly in a variation of own-
ership types [8] which allowed for dynamic checks for owners [18,
38]. Making the Mint the owner of the Purses and replacing the
field declaration, the initialisation, and the check mentioned above
through one type argument to Mintwould reduce the code by 30%.
Crucially, it would also prevent a purse from ever leaking its mint
capability to an untrusted object.

An extension of the money example is that Purses should be-
long to Persons, and that Persons should not have access to
Purses belonging to other Persons. Thus, a person p1 wanting
to pay person p2, could create a Purse, pay some amount into
it, and then make it belonged to p2, thus ensuring that the purse
can be safely passed around and not be tampered with. This can be
modelled by multiple ownership, here with a Mint and a Person
owner [7, 15] although we need to discriminate to allow for differ-
ent treatment of, and different roles for, the different owners: the
Person owner guarantees encapsulation, is checked statically, and
is mutable, while the Mint owner makes no encapsulation guaran-
tees, is checked dynamically, and is immutable. Encapsulation is
often implicitly present in programs written in dynamic languages:
In Fig.2, all purses created by the same mint share, and do not
leak further, the same sealer/unsealer pair. The code could
be made more succinct and more abstract — not to mention more
secure — with dynamically checked owners[18].

More generally, we are interested in the role of restrictive fea-
tures in supporting deny policies. We expect to expand these fea-
tures and allow dynamically enforced versions of the restrictions:
dynamic application and revocation of the restrictions, dynamic
linking of ownership domains[2], dynamic merger or dissolution
of ownership boxes, etc.Such features have their counterpart in the
dynamic treatment of capabilities,e.g. revocation, membranes, and
proxies [20, 47, 10]. These kind of dynamically enforced properties
inspired by static type systems seems to offer interesting opportu-
nities for cross-pollination between static and dynamic languages.

5. CONCLUSION AND FUTURE WORK
In this position paper, we have advocated that capability policies

are a necessary adjunct to reasoning about programs using object-
capability security. Object capabilities make it possible to write
secure programs even in dynamically typed object-oriented lan-
guages, but whether dynamically or statically typed, such programs
security properties will be implicit in their source code. Capability
policies have the potential to allow programmers to specify their ex-
pectations about programs’ security properties, and hopefully will
let us check (statically or dynamically), and then argue formally,
that a particular program does in fact obey its desired security poli-
cies.

Acknowledgments
We are grateful to Mark Miller, Sylvan Klebsch, Robert O’Calla-
ghan, Neal Glew, Sergio Maffeis, Lawrence Tratt, Marco Servetto,
Gavin Bierman, Chris Hawlblitzel, Manuel Faehndrich, and the
anonymous reviewers for discussions on this material; their chal-
lenges helped us clarify our ideas. This work is supported by the
Royal Society of New Zealand Marsden Fund.

6. REFERENCES
[1] Pieter Agten, Steven Van Acker, Yoran Brondsema, Phu H.

Phung, Lieven Desmet, and Frank Piessens. Jsand: Complete
client-side sandboxing of third-party JavaScript without
browser modifications. In ACSAC, 2012.

[2] Jonathan Aldrich and Craig Chambers. Ownership domains:
Separating aliasing policy from mechanism. In ECOOP,
Springer, 2004.

[3] M. Barnett and D. Naumann. Friends need a bit more:
Maintaining invariants over shared state. In MPC, LNCS,
2004.

[4] David Basin, , Felix Klaedtke, and Samuel Müller.
Monitoring security policies with metric first-order temporal
logic. In SACMAT, 2010.

[5] Lujo Bauer, Jay Ligatti, and David Walker. Composing
security policies with polymer. In PLDI, 2005.

[6] Jesper Bengtson, Kathiekeyan Bhargavan, Cedric Fournet,
Andrew Gordon, and S.Maffeis. Refinement Types for
Secure Implementations. ACM ToPLAS, 2011.

[7] Nicholas Cameron, Sophia Drossopoulou, James Noble, and
Matthew Smith. Multiple Oownership. In OOPSLA, ACM,
2007.

[8] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for
flexible alias protection. In OOPSLA. ACM, 1998.

[9] Dave Clarke and Sophia Drossopoulou. Ownership,
Encapsulation and the Disjointness of Types and Effects. In
OOPSLA, 2002.

[10] Tom Van Cutsem and Mark S. Miller. Trustworthy proxies:
Virtualizing objects with invariants. In ECOOP, 2013.

[11] Jack B. Dennis and Earl C. Van Horn. Programming
Semantics for Multiprogrammed Computations. Comm.
ACM, 9(3), 1966.

[12] Werner M. Dietl and Peter Müller. Object Ownership in
Program Verification. Aliasing in Object-Oriented
Programming, 2012.

[13] Mike Dodds, Xinyu Feng, Matthew Parkinson, and Viktor
Vafeiadis. Deny-guarantee reasoning. In ESOP. Springer,
2009.

[14] S. Drossopoulou, A. Francalanza, P. Müller, and A. J.
Summers. A unified framework for verification techniques
for object invariants. In ECOOP, LNCS. Springer, 2008.

[15] Sophia Drossopoulou, David Clarke, and James Noble.
Roles for Owners - Work in Progress. In IWACO 2011, ACM
DL, July 2011.

[16] Deepak Garg, Lujo Bauer, Kevin D. Bowers, Frank Pfenning,
and Michael K. Reiter. A linear knowledge of authorization
and knowledge. In ESoRICS, LNCS. Springer, 2006.

[17] Andrew D. Gordon and Alan Jeffrey. Typing correspondence
assertions for communication protocols. In MFPS. Elsevier,
ENTCS, 2001.

[18] Donald Gordon and James Noble. Dynamic Ownership in a
Dynamic Language. In Dynamic Languages Symposium.
ACM, 2007.

[19] C. A. R. Hoare. Proofs of correctness of data representation.
Acta Informatica, 1:271–281, 1972.

[20] Yves Jaradin, Fred Piessens, and Peter Van Roy. Capability
confinement by membranes, 2005. TR Université Catholique
De Louvain.

[21] Rezwana Karim, Mohan Dhawan, Vinod Ganapathy, and
Chung-Chieh Shan. An Analysis of the Mozilla Jetpack
Extension Framework. In ECOOP, Springer, 2012.

[22] Butler W. Lampson and Howard E. Sturgis. Reflection on an

Operating System Design. Communications of the ACM,
19(5), 1976.

[23] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R.
Cok, P. Müller, J. Kiniry, and P. Chalin. JML Reference
Manual. Iowa State Univ. www.jmlspecs.org, February
2007.

[24] K. Rustan M. Leino and Peter Müller. Object invariants in
dynamic contexts. In ECOOP, Springer, 2004.

[25] K. Rustan M. Leino and Wolfram Schulte. Using history
invariants to verify observers. In ESOP, 2007.

[26] Y. Lu and J. Potter. Protecting Representation with Effect
Encapsulation. In POPL, pages 359–371, 2006.

[27] S. Maffeis, J.C. Mitchell, and A. Taly. Object capabilities
and isolation of untrusted web applications. In Proc of IEEE
Security and Privacy, 2010.

[28] Adrian Mettler, David Wagner, and Tyler Close. Joe-E a
Security-Oriented Subset of Java. In NDSS, 2010.

[29] B. Meyer. Object-Oriented Software Construction.
Prentice-Hall, 1988.

[30] Mark Samuel Miller. Robust Composition: Towards a
Unified Approach to Access Control and Concurrency
Control. PhD thesis, Baltimore, Maryland, 2006.

[31] Mark Samuel Miller. Secure Distributed Programming with
Object-capabilities in JavaScript. Talk at Vrije Universiteit
Brussel, mobicrant-talks.eventbrite.com, October 2011.

[32] Mark Samuel Miller, Chip Morningstar, and Bill Frantz.
Capability-based Financial Instruments: From Object to
Capabilities. In Financial Cryptography. Springer, 2000.

[33] Mark Samuel Miller, Mike Samuel, Ben Laurie, Ihab Awad,
and Mike Stay. Safe active content in sanitized JavaScript.
code.google.com/p/google-caja/.

[34] Roger Needham. Protection systems and protection
implementations. In Joint Computer Conference, pages
571–578, 1972.

[35] Matthew Parkinson. Class invariants: the end of the road? In
IWACO, 2007.

[36] Matthew Parkinson and Alexander J. Summers. The
Relationship between Separation Logic and Implicit
Dynamic Frames. In ESOP, 2011.

[37] Roly Perera, Umut Acar, James Cheney, and Paul Blain
Levy. Functional programs that explain their work. In ICFP.
ACM, 2012.

[38] Alex Potanin, Monique Damitio, and James Noble. Are your
incoming aliases really necessary? Counting the cost of
object ownership. In ICSE, 2013.

[39] Azalea Raad and Sophia Drossopoulou. A Sip of the Chalice.
In FTFJP, July 2011.

[40] Jerome H. Saltzer. Protection and the control of information
sharing in Multics. CACM, 17(7):p.389ff, 1974.

[41] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit
Dynamic Frames. ToPLAS, 2012.

[42] Marc Stiegler. The lazy programmer’s guide to security. HP
Labs, www.object-oriented-security.org.

[43] Alexander J. Summers and Sophia Drossopoulou.
Considerate Reasoning and the Composite Pattern. In
VMCAI, 2010.

[44] Alexander J. Summers, Sophia Drossopoulou, and Peter
Müller. The need for Flexible Object Invariants. In IWACO,
ACM DL, July 2009.

[45] Ankur Taly, Ulfar Erlingsson, John C. Mitchell, Mark S.
Miller, and Jasvir Nagra. Automated Analysis of

Security-Critical JavaScript APIs. In IEEE Symposium on
Security and Privacy (SP), 2011.

[46] The NewpeakTeam. Several Newspeak Documents.
newspeaklanguage.org/, September 2012.

[47] Tom van Cutsem. Membranes in Javascript.
prog.vub.ac.be/ tvcutsem/invokedynamic/js-membranes.

[48] M. V. Wilkes and R. M. Needham. The Cambridge CAP
computer and its operating system, 1979.

[49] T. Wood and S. Lam. A semantic model for authentication
protocols. In IEEE Computer Society Symposium on
Research in Security and Privacy, 1993.

