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ABSTRACT
Information flow type systems, such as EnerJ (a type system
for energy e�ciency), and integrity and confidentiality, are
unsound if subtyping for references is allowed because of
the presence of mutable references. The standard approach
is to disallow subtyping for references, or in other words,
replace subtyping constraints with equality constraints. Un-
fortunately, this often leads to imprecision, causing the type
system to reject valid programs.

We observe that subtyping is safe when the left-hand-side
of the assignment is immutable. Therefore, we compose in-
formation flow systems with reference immutability, which
allows for limited subtyping for references. We infer types
with the standard approach (i.e., no subtyping for references),
and with the composition approach on 13 Java web appli-
cations. The composition approach achieves at least 20%
precision improvement over the standard approach.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features; D.1.5 [Programming Techniques]: Object-
oriented Programming

General Terms
Languages, Theory

Keywords
information flow, reference immutability, inference

1. INTRODUCTION
We consider a class of type systems, which we call poly-

morphic information flow systems. The general structure of
these systems is as follows. The universe of type qualifiers is

U = {neg, poly, pos}
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with subtyping hierarchy

neg <: poly <: pos

Here neg is the “negative” qualifier and pos is the “positive”
qualifier. The goal of the type system is to ensure that there
is no flow from a “positive” variable x to a “negative” variable
y. poly is a polymorphic qualifier, which is interpreted as pos
in some contexts, and as neg in other contexts.
The best examples of information flow systems are confi-

dentiality and integrity systems. A confidentiality system
instantiates neg to public and pos to secret. The goal of the
system is to ensure that there is no flow from secret sources
to public sinks. Intuitively, it is safe to assign a public variable
to a secret one, but it is not safe to assign a secret variable
to a public one; hence the direction of the subtyping relation:
public <: secret. Note that this is the desired subtyping,
but unfortunately, as we show in Section 3.3, allowing such
subtyping for references is not always safe. The standard
solution has been to disallow subtyping for references [17,
16], which unfortunately leads to loss of precision.

This paper proposes a principled approach for composing
information flow systems with reference immutability [23,
12]. Our approach allows for polymorphism in both the infor-
mation flow system and the reference immutability system.
The composition allows for limited subtyping, but even this
limited subtyping improves precision significantly.
The rest of the paper is organized as follows. Section 2

describes language syntax and other preliminaries. Section 3
describes the information flow system and Section 4 describes
reference immutability, which we contend, is a special case of
an information flow system. Section 5 describes the composi-
tion of information flow systems with reference immutability.
Section 6 and Section 7 describe our implementation and
empirical results. Section 8 briefly discusses related work,
and Section 9 concludes with an outline of future work.

2. PRELIMINARIES
This section describes our language syntax, the notion of

viewpoint adaptation and the generalized typing rules.

2.1 Syntax
We restrict our formal attention to a core calculus in the

style of Vaziri et al. [24] whose syntax appears in Figure 1.
The language models Java with a syntax in a “named form”,
where the results of field accesses, method calls, and instanti-
ations are immediately stored in a variable. Without loss of
generality, we assume that methods have parameter this, and
exactly one other formal parameter. Features not strictly



cd ::= class C extends D {fd md} class
fd ::= t f field
md ::= t m(t this, t x) { t y s; return y } method
s ::= s; s | x = new t() | x = y statement

| x = y.f | x.f = y | x = y.m(z)
t ::= q C qualified type

Figure 1: Syntax. C and D are class names, f is a field

name, m is a method name, and x, y, z are names of

local variables, formal parameters, or parameter this,
and q is type qualifier. As in the code examples, this
is explicit.

necessary are omitted from the formalism, but they are han-
dled correctly in the implementation. We write t y for a
sequence of local variable declarations.

A type t has two orthogonal components: type qualifier q
and Java class type C. A pluggable type system is orthogonal
to (i.e., independent of) the Java type system, which allows
us to specify typing rules over type qualifiers q alone.

2.2 Viewpoint Adaptation and Typing Rules
Viewpoint adaptation is a concept from Universe Types [5],

which applies to other ownership type systems as well [4, 24].
For example, the type of x.f is not just the declared type
of field f — it is the type of f adapted from the viewpoint
of x. In Universe Types, rep x denotes that the current this
object is the owner of the object i referenced by x. If field f
has type peer, this means that the object i and the object j
referenced by field f have the same owner. Thus, the type of
x.f, or the type of f adapted from the viewpoint of x, is rep —
the object j’s owner is the current this object as well.
Ownership type systems make use of a viewpoint adap-

tation operation. This viewpoint adaptation operation is
performed at field accesses and method calls. It is written
q ⇤ q0, which denotes that type q0 is adapted from the view-
point of type q, to the viewpoint of the current object this.
Traditional viewpoint adaptation always adapts from the
viewpoint of the receiver at the corresponding field access or
method call.
The typing rules for all systems in this paper fit into the

framework for ownership-like types we developed in previ-
ous work [11]. The rules are shown in Figure 2. Explicit
assignments ((tnew), (tassign), (tread), (twrite)) create the ex-
pected subtyping constraints from the right-hand-side of the
assignment to the left-hand-side. So do implicit assignments
at (tcall): there are subtyping constraints that link actual
arguments to formal parameters, and return value to the
left-hand-side of the call assignment. Rules for field access
and method calls make use of viewpoint adaptation.

We use a generalization of traditional viewpoint adaptation.
Specifically, we allow for adaptation from di↵erent viewpoints,
not only from the viewpoint of the receiver. Essentially,
viewpoint adaptation encodes context sensitivity directly in
the typing rules. Varying the viewpoint adaptation operation
and/or the choice of viewpoint adapter at (tcall), allows for
encoding of di↵erent kinds of context sensitivity (e.g., CFL-
reachability, object sensitivity, etc.). Returning to Figure 2,
rule (tcall) is parameterized by context of adaptation a,
where a instantiates to some combination of the types at the
method call (i.e., qx, qy and qz) and the types at the method
definition (qret, qthis and q). For now on, we refer to q in q ⇤ q0

as the context of adaptation, or simply as the context.

(tnew)
�(x) = qx q <: qx

� ` x = new q C()

(tassign)
�(x) = qx �(y) = qy qy <: qx

� ` x = y

(twrite)
�(x) = qx typeof (f) = qf �(y) = qy qy <: qx ⇤ qf

� ` x.f = y

(tread)
�(y) = qy typeof (f) = qf �(x) = qx qy ⇤ qf <: qx

� ` x = y.f

(tcall)
�(y) = qy typeof (m) = qthis, q ! qret �(x) = qx �(z) = qz

qy <: a⇤ qthis qz <: a⇤ q a⇤ qret <: qx

� ` x = y.m(z)

Figure 2: Typing rules. Function typeof retrieves the

types of fields and methods. � is a type environment

that maps references to qualifiers. a is the context

of adaptation.

3. POLYMORPHIC INFORMATION FLOW
SYSTEM N

The type qualifiers and subtyping hierarchy in N is

neg <: poly <: pos

as described in Section 1. We now elaborate on this system.
Instance fields in N are interpreted in the context of the

receiver object. Field types are restricted to poly or pos.
Thus, a field f that is typed pos, is guaranteed to be pos
in all x.f, while a field that is poly is interpreted depending
on the type of x. We disallow neg qualifiers on fields. If
they were allowed, the meaning of a pos reference with a neg
field becomes di�cult to interpret. Essentially, this would
amount to excluding the neg field from the state of the object,
analogously to the way Javari [23] excluded assignable fields
from the state of the object. This complicates the semantics
of the system and for this reason, we have chosen to disallow
neg fields in the current version of our system. Other choices
are possible, and we plan to explore them in future work.

Viewpoint adaptation q ⇤ q0 is defined as follows:

⇤ pos = pos
⇤ neg = neg

q ⇤ poly = q

Therefore, pos and neg qualifiers remain the same, regard-
less of the context of adaptation, while poly qualifiers assume
the type of q. Local poly variables are adapted in the context
of invocation.

We should mention that our information flow systems only
handle explicit flows (also known as data dependences). This
is evident from the syntax and the rules in Figure 2. Implicit

flows (known as control dependences) are important as well,
but unfortunately, it has been di�cult to incorporate them
into practical information flow analysis tools. Taint analy-
sis tools targeting large applications do not detect implicit
flows [13, 21, 19, 22, 7]. Similarly, commercial tools such
as IBM’s AppScan and HP’s Fortify, do not detect implicit



flows (see [7] for a detailed evaluation). Our analysis targets
large applications as well, and for this reason, we choose to
exclude implicit flows (we believe that they can be handled
by extending the type system, in a manner similar to the
way we extended the reference immutability system ReIm to
handle method purity [12]).

To make discussion concrete, we examine two polymorphic
information flow systems, EnerJ and SFlow. EnerJ is a type
system for energy e�ciency [16]. SFlow is a confidentiality
(taint) system that prevents flow from secret variables to
public variables.

3.1 EnerJ
EnerJ allows programmers to designate certain variables

as precise and other variables as approximate. Operations
on approximate variables are more energy e�cient than
operations on precise variables. EnerJ allows for polymorphic
variables. Essentially, certain methods have an approximate
(and more energy e�cient) version, and a precise (and less
energy-e�cient) version. Depending on invocation context,
which in EnerJ is the type of the receiver, the call invokes
the approximate or the precise version of the method.

EnerJ’s qualifiers are:

precise <: poly <: approx

(although in [16], poly is called context). Thus, EnerJ allows
assignment from a precise variable to an approximate one,
but disallows assignment from an approximate variable to a
precise one. As already mentioned, EnerJ selects the receiver

as the context of adaptation at (tcall). That is, a is qy. EnerJ
guarantees that no approx variable “influences” the value of
a precise variable.

3.2 SFlow
SFlow1 has three qualifiers:

• A public reference x, and its transitively reachable state,
may flow to an untrusted party (i.e., to a sink).

• A secret reference x, and its transitively reachable state,
cannot flow to a sink.

• A poly reference x is polymorphic, i.e., it can be in-
stantiated to public in some invocation contexts of x’s
enclosing method, and to secret in other invocation
contexts.

The subtyping hierarchy is:

public <: poly <: secret

Thus, we choose secret as the positive qualifier and public
as the negative qualifier. Just as with EnerJ, SFlow selects
the receiver as the context of adaptation at (tcall): a is qy.
SFlow guarantees that there is no interference from secret
variables to public variables.

Note that our choice of secret as the positive qualifier
and public as the negative qualifier is arbitrary. We could
have chosen public as the positive qualifier and secret as the
negative one. Our choice corresponds to a confidentiality
system, which prevents flow from secret variables to public
variables. The opposite choice reflects the dual integrity
(also known as “taint”) system, which prevents flow from
low-integrity (i.e., public) variables to high-integrity ones.
1Systems similar to SFlow were described in [17, 1]

To illustrate the importance of poly, consider the follow-
ing excerpt from Stanford’s securibench-micro from http://

suif.stanford.edu/~livshits/work/securibench-micro/

protected void doGet(secret HttpServletRequest req,
public HttpServletResponse resp) {

secret String s1 = req.getParameter(”name”);
public String s2 = ‘‘abc’’;
secret String s3 = s1.toUpperCase();
public String s4 = s2.toUpperCase();

public PrintWriter writer = resp.getWriter();
writer.println(s3); /* BAD */
writer.println(s4); /* OK */

}

The return value of HttpServletRequest.getParameter is
a source and getParameter is typed as follows (we make
parameter this explicit):

secret String getParameter(poly HttpServletRequest this,
poly String name)

The parameter of PrintWriter.println is a sink and thus,
println is typed as follows:

void println(poly PrintWriter this, public String name)

SFlow must prevent flow from the source to the sink.
String.toUpperCase is polymorphic:

poly String toUpperCase(poly String this)

Recall that the context of adaptation is the receiver. Thus,
at call s3 = s1.toUpperCase(), the rules in Figure 2 entail
constraints:

qs1 <: qs1 ⇤ poly qs1 ⇤ poly <: qs3

qs1 is secret, thus poly instantiates to secret in the context
of s1. Since s3 is secret, the constraints hold. On the other
hand, at call s4 = s2.toUpperCase() we have constraints:

qs2 <: qs2 ⇤ poly qs2 ⇤ poly <: qs4

qs2 is public and therefore poly instantiates to public. Since
s4 is public, the constraints hold.

Call writer.println(s3) does not type-check because

qs3 <: qwriter ⇤ public ⌘ secret <: public

does not hold. Call writer.println(s4) type-checks.

3.3 Issues with System N

So far, we overlooked the thorny issue of subtyping in the
presence of mutable references. If we allowed subtyping for
references, then the type system would permit flow from a
pos variable to a neg variable as in the following example
with SFlow:

secret X sx;
secret A sa;
public X px;
public A pa;

px = new public X;
sx = px; // allowed by subtying
sx.f = sa;
pa = px.f;

With subtpying for references, this program type-checks,
but it allows flow from secret sa to public pa. This in fact, is
the well-known issue with Java’s covariant arrays [15].
The standard solution is to disallow subtyping for refer-

ences [17, 16]. For example, EnerJ [16] defines two sets of
qualifiers: precise <: poly <: approx for simple types, and
Precise,Poly,Approx for references. While subtyping is al-
lowed for simple types, it is disallowed for references.

http://suif.stanford.edu/~livshits/work/securibench-micro/
http://suif.stanford.edu/~livshits/work/securibench-micro/


Unfortunately, disallowing subtyping for references leads
to imprecision, i.e., the type system rejects perfectly valid
programs. It amounts to using equality constraints as op-
posed to subtyping constraints, and thus, propagating neg
qualifiers bi-directionally, resulting in often unnecessary prop-
agation. Disallowing subtyping is in some sense analogous to
using unification constraints as opposed to subset constraints
in points-to analysis. It is well-known that Steensgaard’s
points-to analysis [20], which uses unification (i.e., equal-
ity) constraints, is substantially less precise than Andersen’s
points-to analysis [2], which uses subset constraints.

To illustrate the problem, consider Long.valueOf from the
standard JDK (slightly modified):

static Long valueOf(long l) {
final int o↵set = 128;
Long result;
if (l >= �128 && l <= 127) {
int t = (int) l+o↵set;
result = LongCache.cache[t];
return result;

}
result = new Long(l);
return result;

}

The desired typing of Long.valueOf is poly ! poly:

poly Long valueOf(poly long l)

or in other words, if the argument of a call to Long.valueOf is
secret, then the left-hand-side of the call assignment should
be secret, and vice versa, if the left-hand-side is public, then
the argument should be public.2 However, LongCache.cache
is a global array, and as such, the array and its elements
must be typed public (clearly, in some invocation contexts of
Long.valueOf, the elements of LongCache will flow to public
outputs). If subtyping for references were disallowed, the
public LongCache.cache[t] would force result, as well as formal
parameter l to be public. The only possible typing would be:

public Long valueOf(public long l)

Therefore, code such as

secret long li = ...
... lhs = Long.valueOf(li);

would be untypable, even if lhs does not flow to a sink.
The key observation behind our proposed approach is that

when a reference x is immutable, then subtyping in the N
qualifiers in assignments x = ... , is safe. Section 4 describes
reference immutability, which ensures that references are
immutable. Interestingly, reference immutability presents a
special case of information flow. Section 5 presents a system
which composes N with reference immutability, which allows
for limited subtyping in N ’s qualifiers.

4. REFERENCE IMMUTABILITY
Reference immutability enforces the property that the

state of an object, including its transitively reachable state,
cannot be mutated through an immutable reference. Refer-
ence immutability is di↵erent from object immutability in
that the former enforces constraints on references while the
latter focuses on the object instance. For instance, in the
following code, we cannot mutate the Date object by using
the immutable reference rd, but we can mutate the same
Date object through the mutable reference md:
2The context at static calls is the left-hand-side of the call.

Date md = new Date(); // mutable by default
readonly Date rd = md; // an immutable reference
md.setHours(1); // OK, md is mutable
rd.setHours(1); // error, rd is immutable

Reference immutability has been studied extensively in
the literature [23, 12]. In previous work we presented ReIm,
a type system for reference immutability [12]. ReIm works
with qualifiers mutable, polyread, and readonly:

• A mutable reference can be used to mutate the refer-
enced object. This is the implicit and only option in
standard object-oriented languages.

• A readonly reference x cannot be used to mutate the ref-
erenced object nor anything it references. For example,
all of the following are forbidden:

– x.f = z

– x.setField(z) where setField sets a field of its re-
ceiver

– y = id(x); y.f = z where id is a function that returns
its argument

– y = x.f; y.g = z

• A polyread reference x cannot be used to mutate the
object it references, nor anything it references. Just as
the poly qualifier in N , the polyread qualifier enables
polymorphism. polyread can be instantiated to mutable
in some invocation contexts and to readonly in other
invocation contexts. For example,

– x.f = y is not allowed, but

– z = id(y); z.f = 0, where id is polyread X id(polyread
X x) { return x; }, and z and y are mutable, is
allowed. In this case, polyread is instantiated to
mutable.

ReIm’s subtyping hierarchy is as follows:

mutable <: polyread <: readonly

Viewpoint adaptation q ⇤ q0 in ReIm is analogous to N :

⇤ readonly = readonly
⇤mutable = mutable

q ⇤ poyread = q

Just as in N , fields are typed polyread or readonly.
The rules in Figure 2 apply to ReIm with the following

two extensions. First, at rule (twrite), ReIm forces qx to be
mutable. Second, the context of adaptation at (tcall) is the
left-hand-side of the call assignment, i.e., a is qx. At calls
without a left-hand-side, the context is readonly.

As an example, let us consider class DateCell.

class DateCell {
polyread Date date;
polyread Date getDate(polyread DateCell this) {
return this.date;

}
void m1(mutable DateCell this) {
mutable Date md = this.getDate();
md.setHours(1); // md is mutatated

}
void m2(readonly DateCell this) {
readonly Date rd = this.getDate();
int hour = rd.getHours();

}
}



Field date is polyread, which means that in some contexts,
date is interpreted as mutable and in other contexts, date is
interpeted as readonly. Parameter this and return value ret
of getDate are polyread, meaning that they are interpreted
di↵erently in di↵erent invocation contexts.

Consider the call md = this.getDate() in m1. The context
of adaptation is the left-hand-side of the call assignment,
that is, qmd. The typing rules in Figure 2 entail constraints:

qthism1 <: qmd ⇤ qthis qmd ⇤ qret <: qmd

Since qthis instantiates to mutable in this context, qthism1 must
be mutable as well (and it is).
On the other hand, at the call to rd = this.getDate() in

m2, the context of adaptation is qrd. There are the following
constraints:

qthism2 <: qrd ⇤ qthis qrd ⇤ qret <: qrd

qthis now instantiates to readonly, which allows qthism2 to be
readonly.

The goal of reference immutability is to ensure that there is
no flow from positive readonly references to negative mutable
references. Thus, in its essence, reference immutability is an
information flow system in our sense, albeit a special case of
an information flow system, as we argue below.
Firstly, in information flow systems such as EnerJ and

SFlow, the type qualifier of a reference x reflects on the
content of the object x refers to, not on the reference or
object itself. For example, in EnerJ, an approx reference
x indicates that the simple-type fields, e.g., int and char

fields, of the object referenced by x are approximate, not
that the address stored in x or the object are somehow
approximate. For reference immutability, qualifiers mutable,
polyread and readonly reflect the mutability of the reference
itself, in addition to the mutability of its content (i.e., fields)
of reference type. For example, mutable x may mean that x
is updated directly at some x.f = y, or that a field obtained
through x is mutated, even though x itself is not updated
directly (e.g., y = x.f; y.g = 0).
Furthermore, unlike in EnerJ and SFlow, subtyping in

ReIm is always safe. Consider b = y.f, where b is mutable.
The mutable b forces y to be mutable (as we discussed above,
mutable reflects on the reference and its content). The muta-
bilty of b also forces f to be polyread. At x.f = a, the polyread
field adapts to mutable, making it impossible to transmit a
readonly a to the mutable b.

5. COMPOSITION SYSTEM N ⇥R

The composition system N ⇥R consists of two orthogonal
components. N is an information flow system (e.g., EnerJ,
SFlow), and R is a reference immutability system. Our
discussion instantiates R to ReIm, but in general, R can be
instantiated to other reference immutability systems.
The universe of type qualifiers is the cartesian product

of N and ReIm: UN⇥ReIm = {hpos readonlyi, hpos polyreadi,
hpos mutablei, hpoly readonlyi, hpoly polyreadi, hpoly mutablei,
hneg readonlyi, hneg polyreadi, hneg mutablei}.
The viewpoint adaptation operation in N ⇥ ReIm is as

expected: it amounts to component-wise application of the
respective viewpoint adaptation operations of N and ReIm.
We use superscript n to denote the N component of a N ⇥
ReIm type qualifier, and r to denote the ReIm component.
For example, in qx = hqnx qrx i, qnx denotes the N component
of the type of x, and qrx denotes the ReIm component. q ⇤ q1

!"#$%&'()#*+,-%

!"#$%"#+,&'()-%

!"#$%./0(1+'-%

!"#+,%&'()#*+,-%

!"#+,%"#+,&'()-%

!"#+,%./0(1+'-%

!*'2%&'()#*+,-%

!*'2%"#+,&'()-%

!*'2%./0(1+'-%

Figure 3: N ⇥ReIm subtyping hierarchy. Arrows link

subtypes to supertypes.

is as follows (we abuse notation a bit by overloading ⇤ to
act on tuples as well as on individual components):

hqn qri⇤ hqn1 qr1i = hqn ⇤ qn1 qr ⇤ qr1i

The subtyping hierarchy is shown in Figure 3. <: is the
relation that induces the maximal number of pairs q <: q1
such that the following three conditions hold for each q <: q1:

1. q <: q1 ) qn <: qn1 and qr <: qr1

2. q <: hqn1 mutablei ) q = hqn1 mutablei. In other
words, if the left-hand-side of an assignment is mutable,
not only that the right-hand-side becomes mutable,
but the N components of q and q1 must be equal.
Thus, subtyping of mutable references is disallowed, as
expected. If it were allowed, we would have encountered
the unsoundness issues described in Section 3.3.

3. Viewpoint adaptation is order preserving : that is, for
every q, q1, q2 2 UN⇥ReIm, q1 <: q2 ) q ⇤ q1 <: q ⇤ q2.
Intuitively, if q1 and q2, where q1 <: q2, qualify re-
spectively local variables x and y in some method m,
adapting m (and thus q1 and q2) from some context q,
should preserve subtyping for x and y. Order preser-
vation is necessary to ensure soundness. As an exam-
ple, order preservation forbids that hpoly polyreadi is
a subtype of hpos polyreadi (note that there is no link
in Figure 3), even though subtyping holds for the in-
dividual components. However, if we adapted from
hneg mutablei, hpoly polyreadi would be hneg mutablei
and hpos polyreadi would be hpos mutablei. Clearly,
hneg mutablei cannot be a subtype of hpos mutablei for
the reasons discussed in 2.

The important benefit of the composition of N and R is
that it allows subtyping in the N -component whenever the
left-hand-side of the assignment is a readonly reference. As a
result, it achieves better precision.

Returning to the Long.valueOf example from the previous
section, it can now be typed poly ! poly in SFlow:

static hpoly readonlyi Long valueOf(hpoly readonlyi long l) {
final hpoly readonlyi int o↵set = 128;
Long hpoly readonlyi result;
if (l >= �128 && l <= 127) {
hpoly readonlyi int t = (int) l+o↵set;
result = LongCache.cache[t];
return result;

}
result = new Long(l);
return result;

}

Since result is readonly in ReIm, we can subtype in the
SFlow component at result = LongCache.cache[t].



6. TYPE INFERENCE
Type inference is structured in the framework we developed

in [11]. The key idea is to compute a set-based solution S
which maps variables to sets of type qualifiers. The set-based
solver initializes every programmer-annotated variable to the
singleton set that contains the programmer-provided qualifier.
It initializes unannotated variables to the maximal set of
qualifiers (e.g. the set of {pos, poly, neg} in the case of N).

There is a function fs for each statement s. Each fs takes
as input the current mapping S and outputs an updated
mapping S0. fs removes infeasible qualifiers from the set of
each reference that participates in s according to the typing
rule for s in Figure 2.

For example, consider statement x = y.f, which corresponds
to the typing rule (tread) defined in Figure 2. Suppose that
before the application of the transfer function, we have S(x) =
{poly}, S(y) = {pos, poly, neg}, and S(f) = {pos, poly}. The
function removes pos from S(y) because there does not exist
qf 2 S(f) and qx 2 S(x) that satisfy pos ⇤ qf <: qx. After
the application of the transfer function, S0 is updated to
S0(x) = {poly}, S0(y) = {poly, neg}, and S0(f) = {poly}.
Note the di↵erence in inferring N and N ⇥ ReIm types.

When inferring N , subtyping constraints at explicit and
implicit assignments degenerate into equality constraints
whenever reference types are involved. For example, at field
read, whenever x and f are of reference type, the constraint
we must satisfy becomes qy ⇤ qf = qx, not qy ⇤ qf <: qx. When
inferring N ⇥ ReIm, we first infer ReIm types with our tool
ReImInfer [12]. Subsequently, we infer the N component: if
the right-hand side of a constraint has readonly type in its
ReIm component, we apply the subtyping constraint in the
N component; otherwise, we apply the equality constraint.
The set-based solver repeats the above process for each

statement and refines the sets until either (1) the iteration
reaches a fixpoint, or (2) a variable gets assigned the empty
set, in which case the inference terminates with a type error.
If the set-based solver arrives at a type error, this means
that the initial set of programmer-provided annotations is
inconsistent.

The resulting set-based solution S contains all valid typings
in the program (just as in ownership types, there are many
valid typings for a program). The question is, how do we
extract a“desirable”valid typing from this set-based solution?

First, we provide a preference ranking over the qualifiers:

pos > poly > neg

This ranking induces a ranking over the valid typings as
we describe in detail in [11]. The “best” typing is the one
that has the largest number of variables typed pos. If there
are two or more typings that have the largest number of pos
variables, the one (or ones) with the larger number of poly
variables is “best”. The worst typing is the one that types
each variable neg. Informally, the “best” typing maximizes
the number of positive qualifiers and minimizes the number
of negative ones. Our goal is to infer a typing as close to the
“best” typing as possible.

One potential typing, which we call the maximal typing, is
derived as follows: for each variable x, we pick the maximal
element of S(x) according to the above qualifier ranking. If
the maximal typing type checks (it provably type checks for
many interesting systems: Universe Types [5, 11], ReIm [12],
AJ [24, 10]), then it is the “best” typing.

Unfortunately, the maximal typing does not always type

Valid Set-based

Benchmark

SFlow SFlow

⇥
ReIm

Change SFlow SFlow

⇥
ReIm

Change

blojsom-1.9.6 531 317 -40% 346 160 -54%

blueblog-1.0 262 153 -42% 210 129 -39%

friki-2.1.1 158 115 -27% 80 35 -56%

gestcv-1.0 65 52 -20% 60 49 -18%

jboard-0.3 127 47 -63% 46 28 -39%

jspwiki-2.4 7789 5093 -35% 6439 3657 -43%

jugjobs-alpha 75 16 -79% 55 16 -71%

pebble-1.6beta1 1811 998 -45% 959 317 -67%

personalblog-1.2.6 564 223 -60% 443 80 -82%

photov-2.1 1917 615 -68% 1571 377 -76%

roller-0.9.9 4489 2232 -50% 3393 1321 -61%

snipsnap-1.0beta 3638 2174 -40% 1887 1182 -37%

webgoat-0.9 546 211 -61% 242 102 -58%

Table 1: public variables for SFlow and SFlow⇥ReIm.

The Valid column contains the numbers for the in-

ferred valid typing. The Set-based column contains

the numbers for the set-based solution.

check for N . Suppose the set-based solution for statement x
= y.m() is: S(x) = {neg}, S(y) = {poly, neg}, and S(ret) =
{poly, neg}. The resulting maximal tying is �(x) = neg,
�(y) = poly, and �(ret) = poly. Clearly, this does not type
check, because y ⇤ ret is poly ⇤ poly = poly, which is not a
subtype of neg x. We call a statement a conflict if it does
not type check with the maximal typing derived from the
set-based solution.

Fortunately, conflicts occur in only two, well-defined cases:

• At method calls y.m(z), when S(z) = {neg}, y⇤p is not
readonly, S(p) is {poly, neg} and S(y) � {neg}. In this
case, we have a choice between (1) being polymorphic
in the parameter p, or (2) being neg in p.

• Method return x = y.m() when S(x) = {neg}, S(ret) =
{poly, neg} and S(y) � {neg}. Again, we have choice
between (1) being polymorphic in the return type, or
(2) being neg in the return type.

We resolve conflicts automatically by always opting for
choice (1). I.e., we choose to be polymorphic in the parame-
ter/return type. This choice is natural as it strives to infer
polymorphic method signatures. Fortunately, conflicts are
relatively rare and the inference arrives at a valid typing. We
note however that we have no guarantee as for how close this
typing is to the “best” typing.

7. EMPIRICAL RESULTS
In order to evaluate the precision improvement resulting

from composing with ReIm, we implement SFlow with equal-
ity constraints and SFlow⇥ReIm within our type inference
framework [11]. We run SFlow and SFlow⇥ReIm on 13
Java web applications of size ranging from 1843 LOC to 127
KLOC. All sinks from Livshits et. al. [13] were annotated as
public, but no sources were annotated as secret (including the
sources would have lead to type errors, as these web applica-
tions contain true unsafe information flow, and therefore no
valid typing can be obtained, not even with SFlow⇥ReIm).

Table 1 presents results of running SFlow and SFlow⇥ReIm
on all benchmarks. We show the number of public (i.e., neg)
variables. Less public variables means better precision. This
notion of precision is motivated not only by the notion of
“best” typing we discussed in Section 6, but also by practical
consideration — the further the sink annotations propagate,
the more likely it is they will clash with source annotations.

The Valid column in Table 1 contains the number of public
variables in the inferred valid typing, and the Set-based



column contains the numbers of {public} sets in the set-based
solution. The latter is the lower bound (i.e. any valid typing
by SFlow or SFlow⇥ReIm will get at least as many public
variables as the respective Set-based column shows). Evi-
dently, there is a significant precision improvement due to the
composition with ReIm. Even when comparing SFlow⇥ReIm
Valid with SFlow Set-based (the lower bound for SFlow),
SFlow⇥ReIm still gets 20% improvement on average.
The improvement is also reflected by one benchmark,

jugjobs, which is accepted by SFlow⇥ReIm but rejected by
SFlow, resulting in 10 (false positive) type errors when en-
abling all sources as in [13].
The improvement is due to the fact that ReIm enables

subtyping, which limits the propagation of neg qualifiers.

8. RELATED WORK
The closest related work is the work by Shankar et al. [17],

which presents a type system for detecting string format vul-
nerabilities for C programs, and more generally, the work on
type qualifiers [6, 8]. In this work, the polymorphic function
is provided as an extension, while in our case, polymorphism
is built into the type system. While CQual and JQual rely
on a pointer analysis to build the dependence graph and
propagate type qualifiers, our system encodes polymorphism
in the typing rules, which translates naturally to the type
inference. To the best of our knowledge, none of the previous
systems attempts to use reference immutability to mitigate
the e↵ect of equality constraints.
There is a large body of work on taint analysis for web

applications [13, 21, 19, 26, 22]. More recently, there is work
on taint analysis for Android apps [7]. These approaches
are di↵erent from ours, in the sense that they use dataflow
analysis, and typically require context-sensitive points-to
analysis [13, 21]. Of these works, only FlowDroid [7] is
publicly available for comparison (since late April’13). We
are interested in comparison with these approaches, both
theoretical and empirical.
Due to space constraints, we cannot enumerate all work

on type systems for information flow control. Classical work
in this space includes the type systems by Volpano et al. [25],
Myers [14], and Banerjee and Naumann [3]. Our type system,
SFlow, is substantially simpler, in the hope that it will permit
inference on very large codes such as the Android SDK.

9. CONCLUSIONS AND FUTURE WORK
We presented a system that combines information flow

with reference immutability and demonstrated precision im-
provement. There are two directions of future research. First,
we will formalize the large family of systems fitting in the
above framework. There are two novel aspects of the for-
malization we envision. One is a new, “heapless” operational
semantics, which to the best of our knowledge, has not been
studied in the literature. Another is the interpretation from
a Program Dependence Graph (PDG) point of view and the
connection with dataflow analysis. We plan to use ideas from
Snelting et al. [18, 9] in this direction. Second, we plan to
develop type-based information flow analysis for both Java
web applications and Android.
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