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ABSTRACT
In previous work we have presented COFJ, an extension to Feather-
weight Java that promotes coinductive programming, a sub-paradigm
expressly devised to ease high-level programming and reasoning
with cyclic data structures.

The COFJ language supports cyclic objects and regularly core-
cursive methods, that is, methods whose invocation terminates not
only when the corresponding call trace is finite (as happens with or-
dinary recursion), but also when such a trace is infinite but cyclic,
that is, can be specified by a regular term, or, equivalently, by a
finite set of recursive syntactic equations.

In COFJ it is not easy to ensure that the invocation of a core-
cursive method will return a well-defined value, since the recursive
equations corresponding to the regular trace of the recursive calls
may not admit a (unique) solution; in such cases we say that the
value returned by the method call is undetermined.

In this paper we propose two new contributions. First, we de-
sign a simpler construct for defining corecursive methods and, cor-
respondingly, provide a more intuitive operational semantics. For
this COFJ variant, we are able to define a type system that allows
the user to specify that certain corecursive methods cannot return
an undetermined value; in this way, it is possible to prevent unsafe
use of such a value.

The operational semantics and the type system of COFJ are fully
formalized, and the soundness of the type system is proved.

Categories and Subject Descriptors
D.3.1 [Programming languages]: Formal Definitions and The-
ory—Semantics; F.3.2 [Logics and meanings of programs]: Se-
mantics of Programming Languages—Operational semantics; F.3.3
[Logics and meanings of programs]: Studies of Program Con-
structs —Type structure
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1. INTRODUCTION
In previous work we have presented COFJ [6], an extension to

Featherweight Java (FJ) that promotes coinductive programming,
a sub-paradigm expressly devised to ease high-level programming
and reasoning with cyclic data structures.

In COFJ objects are purely functional like in FJ, but differently
from FJ, it is possible to define cyclic objects and methods are reg-
ularly corecursive: a method invocation terminates not only when
the corresponding call trace is finite (as happens with ordinary re-
cursion), but also when such a trace is infinite but cyclic, that is,
can be specified by a regular term, or, equivalently, by a finite set
of recursive syntactic equations; similarly, the returned value of a
method invocation may correspond to a solution of a finite set of
recursive syntactic equations, therefore it may be a cyclic object.

Let us considerthe following COFJ classes.

RepDec zero() {
// returns the repeating decimal 0

new RepDec(0,zero()) with res
}

}
class RepDec extends Object {

int digit;
RepDec next;
RepDec comp() { // returns 1 - this

new RepDec(9-this.digit,this.next.comp())
with res

}
bool isZero() { // checks if this is zero

(digit==0 && this.next.isZero()) with true
}

}

Class RepDec implements the closed interval [0, 1] of rational
numbers with cyclic sequences of digits (that is, repeating deci-
mals); for instance, 7

45
= 1

10
+ 1

18
is represented by the cyclic

sequence 15555 . . ..
In COFJ each class is equipped with a unique implicitly declared

constructor which takes as arguments initialization values for all
inherited and declared fields, in the order they are inherited and de-
clared; for instance, the constructor for RepDec has two parameters
of type int and RepDec, respectively.

While in FJ it would not be possible to create an instance of
RepDec, since field next has type RepDec, method zero() in fac-
tory class RepDecFact returns the cyclic sequence of 0, thanks



to regular corecursion. Indeed, if o=new RepDecFact(), then
the evaluation of the expression o.zero() yields the cyclic trace
of invocations o.zero()o.zero(). . ., hence it terminates; fur-
thermore, the sub-expression with res specifies that the value
returned by the method is the solution of the recursive equation
res=new RepDec(0,res) generated by the cyclic trace. More pre-
cisely, as specified by the operational semantics presented in Sec-
tion 2, res is a special variable (like this) which denotes a well-
defined value only in case the generated recursive equations ad-
mits a unique solution; otherwise, res denotes an undetermined
value on which field selection and method invocation are undefined
(hence, the evaluation gets stuck).

The body of a corecursive method consists of a with expression
where its rhs is evaluated only when a cycle in the call trace is
detected (that is, the method terminates corecursively).

Similarly, the expression e.comp() returns the cyclic sequence
of digits corresponding to the complement of e, that is, 1 − r, if
e denotes the rational r. For instance, let e denotes the sequence
15555 . . .; then the result of e.comp() is the solution (projected to
nxt) of the following equations:

nxt = new RepDec(8,res)
res = new RepDec(4,res)

If we consider method isZero, we notice that the rhs of with is
the literal true, rather then the variable res, because in this case
the system of equations associated with a cyclic call trace may have
more solutions. Indeed, if e=new RepDecFact().zero(), then
e.isZero() yields the cyclic trace e.isZero() e.isZero() . . .,
and the corresponding returned value is the solution of the recur-
sive equation res = (0==0) && res for which res = false and
res = true are both valid solutions, hence the value associated
with res is undetermined. In general, the existence of a unique
solution, and the ability of computing it, is guaranteed only when
the recursive equations are guarded by object constructors. When
equations are not guarded, the programmer has to specify a value
different from res in the rhs of with; for instance, for method
isZero the literal true has to be returned.

In this paper we propose two new contributions. First, we de-
sign a simpler construct for defining corecursive methods and, cor-
respondingly, provide a more intuitive operational semantics. For
this COFJ variant, we are able to define a type system that allows
the user to specify that certain corecursive methods cannot return
an undetermined value; in this way, it is possible to prevent unsafe
use of such a value.

In Section 2 we give the formal definition of COFJ, in Section 3
the type system and the related soundness result. Finally, in Sec-
tion 4 we outline related and further work.

In [7], we have provided a derived semantics of COFJ by trans-
lation into coinductive logic programming.

2. FORMAL DEFINITION
The syntax of COFJ is given in Figure 1. We follow the FJ no-

tations and conventions: we assume infinite sets of class names
C , including the special class name Object, field names f , method
names m, and variables x , including the special variables this and
res, and we write cd as a shorthand for a possibly empty sequence
cd1 . . . cdn, and analogously for other sequences. The length of a
sequence x is written #x , and the domain and image of a map are
written dom and img , respectively.

Every class has an implicit constructor as in FJ, and the FJ well-
formedness conditions on a program p are assumed: names of de-
clared classes are distinct and different from Object, hence p can be
seen as a map from class names into class declarations s.t. Object 6∈

p ::= cd e
cd ::= class C extends C ′ { fd md }
fd ::= C f ;
md ::= C m(C x) {e with e′;}
e ::= x | e.f | e.m(e) | new C (e)

u, v ::= new C (v) | X=v | X
r ::= v | w

C[ ] ::= [ ] | C[ ].f | C[ ].m(e) | e.m(e, C[ ], e′) |
new C (e, C[ ], e′)

Figure 1: COFJ syntax

dom(p). The inheritance relation (transitive closure of the extends
relation) is acyclic. Method names and field names in a class, and
parameter names in a method, are distinct and different from this
and res, and field names declared in a class are distinct from those
declared in its superclasses (no field hiding). Finally, for every class
name C (except Object) occurring in p, we have C ∈ dom(p).

The syntax deviates from FJ in the following aspects: an infinite
set of labels X is used, cast expressions have been omitted, method
bodies consist of a with expression where the special variable res
can be used in the rhs, and the definition of values is more general.

In our previous proposal [6] corecursion was handled at call
rather than at declaration site, thus making the operational seman-
tics more complex, without any apparent gain in expressive power.
More importantly, this simplification in the design of the language
allowed us to define the type system presented in Section 3.

In FJ values have shape new C (v), that is, are (a concrete repre-
sentation of) inductive terms built by constructor invocations. Here,
values are allowed to be cyclic, that is, they can be annotated with
labels, and a (sub)value can be a (reference to a) label, expected to
annotate an enclosing value. Values which are not labels, that is, of
shape X1= . . . Xn=new C (v), abbreviated X = new C (v) with our
convention, are objects.1

We expect the result of evaluating a top-level expression to be
closed, that is, with all references bound to existing labels. Values
corresponding to cyclic objects as X=new C (X) are not valid ex-
pressions, but can be obtained as results of a method invocation, as
shown in the previous examples. This choice allows us to keep the
language minimal; we leave for further work the investigation of
more compact linguistic mechanisms for denoting cyclic objects.

Closed values are a concrete representation of regular terms built
by constructor invocations, except for the undetermined value which
is denoted by all equations having shape X1= . . . Xn=Xi, with i ∈
1..n. In the semantic rules, all closed values representing the same
regular term, as, for instance, the following:

Y=new C(X=new C(Y))
Z=new C(Z)

are considered equal, and an analogous assumption holds for open
values as well. As a consequence, if the results of two closed ex-
pressions e and e′ are the same modulo this equivalence, then e and
e′ can replace each other in any context.

Open values and the undetermined value cannot be safely used
as receivers in field accesses and method invocations, but can be
passed as arguments and obtained as result.

We formalize COFJ in a big-step style for simplicity. In order
to distinguish stuck execution from non termination, we use the
standard technique of introducing a special wrong result w.

1Values annotated with more than one label, like, e.g.,
X=Y=new C(X), can be obtained by reduction, see Figure 5.



If C = class C extends C ′ { fd md1 . . . mdn } then
fields(C ) = fields(C ′) fd ,

mbody(C , m) =

8><>:
(x , e with e′) if mdi = C m(C x) {e with e′;}

for some i ∈ 1..n

mbody(C ′, m) otherwise
fields(Object) = Λ, mbody(Object, m) undefined for all m.

v[u/X X] = v[u/X][u/X], if X 6= Λ

(new C (v1, . . . , vn))[v/X] = new C (v1[v/X], . . . , vn[v/X])

(X=v)[u/Y] =

(
v if X=Y
v[u/X] otherwise

X[v/Y] =

(
v if X=Y
X otherwise

Figure 4: Auxiliary functions

The big-step semantics e, σ, π ⇓ r returns the result r, if any, of
evaluating an expression e in the context of a (call) trace σ, and of a
frame π defining the values of all local variables (that is, all formal
parameters, and the special variables this and res). The relation
should be indexed over programs, however for brevity we leave
implicit such an index in all judgments defined in the paper. A
call trace is an injective map from expressions of the form v.m(v),
called (call) redexes, to labels X which represent the value returned
by the method invocation; a frame is a map from variables to values.

Rules without and with error handling are given in Figure 2 and
Figure 3, respectively. We write e, σ⇓v as a shorthand for the set of
judgments e1, σ ⇓ v1 . . . en, σ ⇓ vn. We use the standard auxiliary
functions defined in Figure 4.

Rule (FIELD) models field access. Recall that, with the FJ con-
vention, C f ; stands for C1 f1; . . .Cn fn;. The receiver expres-
sion is evaluated, and its result is expected to be an object. The
standard FJ function fields retrieves the sequence of the fields of
its class, starting from those inherited, and, if the selected field is
actually a field of the class, the corresponding value is returned as
result. Note that this value could contain references to the enclosing
receiver object, which must be unfolded.

For instance, given class C extends Object { C f; } if
v = X=new C(Y=new C(X)), then v.f is reduced to

u = Y=new C(X=new C(Y=new C(X)))

since fields(C) = C f; and (Y=new C(X))[v/X] = u.
There are two rules for method invocation. In both, the receiver

and argument expressions are evaluated first to obtain the call redex
v.m(v). Then, the behavior is different depending whether a cycle
is detected in the call trace σ.

If this is not the case, then the method invocation is handled as
usual (rule (INVK)): the result of the receiver expression is ex-
pected to be an object, and method look-up is performed, starting
from its class, by the standard function mbody , getting the cor-
responding method parameters and body. Then, the result of the
invocation is obtained by evaluating the lhs expression e′ of with
where the receiver object replaces this and the arguments replace
the parameters. Evaluation of e′ is performed in the call trace σ
updated with the redex corresponding to the current invocation, as-
sociated with a fresh label X. Finally, when the evaluation of the
method body is completed, references to the label X in the result-
ing value (due to termination by coinduction of the method, see
(COREC)) are bound. In this way a cyclic object can be obtained as
the result of a method invocation.

Rule (COREC) is applied when the method terminates corecur-
sively, that is, a cycle in σ is detected; the rhs expression e′ of with
in the body of the method is evaluated in the new frame where this
is associated with the receiver object, res is associated with the label

X found in the call trace, and the formal parameters are associated
with the arguments.

For instance, given the classes

class A extends Object {
C m1() {this.m2()) with res;}
C m2() {new C(this.m1()) with res;}

}

new A().m1() is reduced to the cyclic object X=Y=new C(X) (equiv-
alent to X=new C(X) ) as shown in Figure 5.

If method m1 were C m1() {this.m2()) with new A();}

then the proof

(VAR)
res, σ2, π[res:X]⇓X

would be replaced by the proof

(NEW)
new A(), σ2, π[res:X]⇓new A()

and new A().m1() would be reduced to the non cyclic object
X=Y=new C(new A()) (equivalent to new C(new A())).

Finally, (NEW) is the standard rule for constructor invocation.
The side condition ensures that the constructor is invoked with the
appropriate number of arguments.

Rules (W-FIELD), (W-INVK) and (W-NEW) model the cases in
which field access, method invocation, and constructor invocation,
respectively, cannot be performed. The predicate guarded(v) holds
whenever v is an object, that is, of shape X = new C (v).

Field access fails if the receiver is not an object (first alternative
in the side condition) or it is an instance of a class which does not
provide a field with the required name (second alternative). Anal-
ogously, method invocation fails if the receiver is not an object, or
it is an instance of a class which either does not provide a method
with the required name, or it provides a method with a wrong num-
ber of parameters. Constructor invocation fails if the constructor
has a wrong number of parameters.

Rules (PROP) and (W-INVK2) model propagation of the w re-
sult. The former handles standard contextual propagation, whereas
the latter handles the case when a method invocation fails since
the execution of the corresponding method body fails; while rule
(COREC) in Figure 2 includes also error propagation (by simply us-
ing the meta-variable r), for rule (INVK) the extra rule (W-INVK2)
is needed, since X=w is not a syntactically valid value.

We show the consistency of the calculus by the following two
theorems. The former states that the evaluation of an expression re-
turns, if any, a value whose free labels are defined in the call trace
(hence, in particular, if the call trace is empty, then the returned
value is closed). The latter states that COFJ semantics conserva-
tively extends the FJ semantics, that is, if we get a result by FJ
semantics, then we get the same result by the COFJ semantics. Of
course the converse does not hold, since corecursive semantics can
return a value in cases where recursive semantics does not termi-
nate.

Let us denote by FL(v) the set of free labels in value v.

THEOREM 2.1. If e, σ, π⇓v, then FL(v) ⊆ img(σ).

For space limitation, the standard syntax and semantics e ⇓FJ r of
FJ in big-step style have been omitted.

THEOREM 2.2. For e expression and r result in FJ, if e ⇓FJ r,
then e, σ, ∅⇓r for all σ.

3. TYPE SYSTEM



(PROG)
e, ∅, ∅⇓v

cd e⇓v
(VAR)

x , σ, π⇓v
π(x) = v (FIELD)

e, σ, π⇓v

e.f , σ, π⇓vi[v/X]

v = X = new C (v)
fields(C ) = C f ;
f = fi, i ∈ 1..n

(INVK)
e, σ, π⇓v e, σ, π⇓v e′, σ[v.m(v):X], [this:v, x :v]⇓u

e.m(e), σ, π⇓X=u

v = X = new C (_)
mbody(C ,m) = (x , e′ with _)
v.m(v) 6∈ dom(σ)
X fresh

(COREC)
e, σ, π⇓v e, σ, π⇓v e′, σ, [this:v, res:X, x :v]⇓r

e.m(e), σ, π⇓r

v = X = new C (_)
mbody(C ,m) = (x , _ with e′)
σ(v.m(v)) = X

(NEW)
e, σ, π⇓v

new C (e), σ, π⇓new C (v)
#fields(C ) = #e

Figure 2: COFJ big-step rules (without error handling)

(W-FIELD)
e, σ, π⇓v

e.f , σ, π⇓w

¬guarded(v) or
v = X = new C (_) and
fields(C ) = C f ; and f 6= fi for all i ∈ 1..n

(W-INVK)
e, σ, π⇓v

e.m(e), σ, π⇓w

¬guarded(v) or
v = X = new C (_) and
(mbody(C ,m) undefined or

mbody(C ,m) = (x , e) and #x 6= #e)

(W-INVK2)
e, σ, π⇓v e, σ, π⇓v e′, σ[v.m(v):X], [this:v, x :v]⇓w

e.m(e), σ, π⇓w

v = X = new C (_)
mbody(C ,m) = (x , e′ with _)
v.m(v) 6∈ dom(σ)
X fresh

(W-NEW)
new C (e), σ, π⇓w

#fields(C ) 6= #e (PROP)
e, σ, π⇓w
C[e], σ, π⇓w

C[ ] 6= [ ]

Figure 3: COFJ big-step rules for error handling

(INVK)

(NEW)
new A(), ∅, ∅⇓new A()

(INVK)

(VAR)
this, σ1, π⇓new A()

(NEW)

(COREC)

(VAR)
this, σ2, π⇓new A()

(VAR)
res, σ2, π[res:X]⇓X

this.m1(), σ2, π⇓X
new C(this.m1()), σ2, π⇓new C (X)

this.m2(), σ1, π⇓Y=new C(X)

new A().m1(), ∅, ∅⇓X=Y=new C(X)

σ1 = [new A().m1():X], σ2 = σ1[new A().m2():Y],π = [this:new A()]

Figure 5: Example of reduction



T ::= C g

g ::= + | −
fd ::= T f ;
md ::= U1 with U2 m(T x ) {e with e′;}
U ::= T | T?
Γ ::= x :U

Figure 6: COFJ types and type environments

We present a compositional type system which is an extension
of the standard nominal type system of FJ, able to statically dis-
tinguish expressions whose values are guaranteed to be closed and
different from the undetermined value, from those that may evalu-
ate to the undetermined value or to an open value.

Types and type environments for COFJ are defined in Figure 6.
In COFJ a closed type T is a standard FJ nominal type C tagged

by either ‘+’, or ‘−’: C + specifies all closed values of typeC (and
its subclasses) other than the undetermined value, whereas C− is a
proper supertype of C + that includes also the undetermined value
(but not the open values).

An open type T? is associated with those expressions whose
values are possibly open, but will eventually evolve to closed values
of type T ; such values originate from the evaluation of the special
variable res in the rhs of with. The type associated with res is
always of shapeC−?; this is a conservative assumption, since if the
open value associated with res is not guarded by a constructor in the
lhs e of with, then the closed value that will be eventually returned
after evaluating e will be undetermined, hence the correct type of
the returned value is C−; however, if the open value associated
with res is always guarded by a constructor, then the type of the
closed value that will be finally returned is allowed to be C+.

The meta-variable U denotes either a closed or an open type.
The syntax of the typed language is specified in Figure 6): field

and method declarations are annotated with types. In particular, for
ensuring the soundness of the system, fields and formal parameters
can only be annotated with closed types. The type of a value re-
turned by a method is specified by the pair U1 with U2, where U1

and U2 are derived from the lhs and rhs part, respectively, of the
with expression. The subtyping relation U1 ≤ U2 must be always
satisfied to guarantee soundness; the two return types are used in
different contexts: U1 is only used for top-level method invoca-
tions contained in the main expression e of the program; in this
case the returned value is always closed, because all invocations
necessarily originate from e. In all other cases the less specific type
U2 is used, corresponding to the conservative assumption that the
returned value may be open. This approach is too conservative in
some cases; however, with a more accurate static analysis strata of
mutually recursive methods could be identified. This would allow
a more permissive typing rule for method invocation in case the
invoked method belongs to a different stratum.

Finally, a type environment Γ is a finite map from variables (in-
cluding the special variables this and res) to types U .

The subtyping rules are defined in Figure 7; we have omitted
the standard definition of nominal subtyping between class names.
The following chain of subtyping relation holds for any class C :
C + ≤ C +? ≤ C−? ≤ C−. All pairs are intuitive except for
the last C−? ≤ C− that can be explained by the fact that the
closed value which an open value will eventually evolve to, may be
undetermined or not, depending on the context. For instance, the
open value X can evolve either toX = X (undetermined, type C−)
or to X = new C(X) (determined, type C +). The undetermined

(SUB-TAGGED)
C1 ≤ C2 g1 ≤ g2

C g1
1 ≤ C g2

2

(SUB-TAG)
g1 = + ∨ g2 = −

g1 ≤ g2

(OPEN+)
C + ≤ T

C + ≤ T?
(OPEN−)

T ≤ C−

T? ≤ C−

(SUB-OPEN)
T1 ≤ T2

T1? ≤ T2?

Figure 7: COFJ subtyping rules

value is a closed value that cannot evolve, and, therefore, it will
always be undetermined (see rules (T-NEW1) and (T-NEW2)).

The following properties hold for the subtyping relation. Lem-
mas 3.1, and 3.2 are instrumental to lemma 3.3.

LEMMA 3.1. The subtyping relation is transitive.

LEMMA 3.2. The type operators ⇓ and ⇓+ preserve subtyping.

LEMMA 3.3. If U ′ ≤ U , and g ; x :U ` e : U , then g ; x :U ′ `
e : U ′, with U ′ ≤ U .

Typing rules significantly deviates from FJ and are defined in
Figure 8. For brevity we leave implicit the dependency of all judg-
ments on the enclosing program.

The typing judgment for expressions has shape g ; Γ ` e : T ,
where g indicates the context where a method is invoked: + corre-
sponds to the main expression of the program, whereas − specifies
any method body; Γ is the type environment, e is the expression to
be typed, and T is its corresponding type.

Typechecking a program corresponds to typecheck all its class
declarations, and its main expression. This is the only case where
an expressions is typechecked with tag + because at top-level the
value returned by a method invocation is always closed.

Typechecking for class declarations is standard, and is defined on
top of the typing judgment for method declarations which depends
on the class where the method is declared.

A method declaration is well-typed if the type annotations of the
method are respected. Both the lsh and rhs of the with expression
are typechecked with tag −, since there is no guarantee that the
returned value is closed. The type environment for both e and e′

assigns the type C+ to this, where C is the class containing the
method to be checked; indeed, method invocations are type safe
only if the expression denoting the target object has type C+ (see
rule T-INVK); furthermore, the Γ contains all formal parameters
with their corresponding declared types. Finally, for expression e′

only, Γ contains also the special variable res; its type is conserva-
tively assumed to be C ′

−
?, where C ′ is the underlying class name

of the type U1 of the expression e. The lhs return type U ′1 must be
a supertype of the type U1⇓ obtained by removing (if present) the
? constructor from U1 (see the definition of the _⇓ operator at the
bottom); recall that the lhs return type can be used only under the
assumption that the value returned by the method is closed.

The side condition ok_override(C ,m) is the standard check on
method overriding as defined in FJ (the definition has been omit-
ted for brevity), while the condition U ′1 ≤ U ′2 ensures that the rhs
return type is always a conservative approximation of the corre-
sponding lhs type.

Rule (T-VAR) for variables is standard; rule (T-FIELD) states that
field selection is type safe only if e has type C +, that is, e can-



(T-PROG)
` cd1 . . . ` cdn +; ∅ ` e : U

` cd e
(T-CDEC)

C ` md1 . . .C ` mdn

` class C extends C ′ { fd md }

(T-MDEC)

−; this:C +, x :T ` e : U1

−; this:C +, res:class(U1)−?, x :T ` e′ : U2

C ` U ′1 with U ′2 m(T x ) {e with e′;}
U1⇓ ≤ U ′1,U2 ≤ U ′2,U

′
1 ≤ U ′2

ok_override(C ,m)

(T-VAR)
g ; Γ ` x : U

Γ(x) = U (T-FIELD)
g ; Γ ` e : C +

g ; Γ ` e.f : Ti

fields(C ) = T f ;
f = fi, i ∈ 1..n

(T-INVK)
g ; Γ ` e0 : C + g ; Γ ` e : U ′

g ; Γ ` e0.m(e) : U ′

mtype(C ,m) = T → U1 with U2

U ′ ≤ T

U ′ =


U1 if g = +
U2 if g = −

(T-NEW1)
g ; Γ ` e : U ′

g ; Γ ` new C (e) : C +

fields(C ) = T f ;
U ′ ≤ T

(T-NEW2)
g ; Γ ` e : U

g ; Γ ` new C (e) : C +?

fields(C ) = T f ;
U⇓+ ≤ T

T⇓ = T T?⇓ = T T⇓+ = T C g?⇓+ = C + class(C g) = C

Figure 8: COFJ typing rules

not evaluate to the undetermined value, neither to an open value.
Except for this, the rule is the same as the corresponding FJ rule.

As happens for rule (T-FIELD), rule (T-INVK) requires the ex-
pression e0 denoting the target object of a method invocation to
have type C +, to avoid that e could evaluate to the undetermined
value or to an open value. The returned type depends on the con-
text, specified by the tag g , where the expression is typechecked: if
g = +, then the lhs return type is considered, otherwise the rhs is
taken. All other checks are standard, as well as the auxiliary func-
tion mtype (defined analogously to mbody) returning the type of
method m of class C .

For object creation two different typing rules are provided. Rule
(T-NEW1) is applicable when no argument has an open type; in this
case the resulting type of the expression is C+. However, if some
argument has an open type, then rule (T-NEW2) can be applied in
place of (T-NEW1), in this case the types of all arguments can be
narrowed by means of the operator _⇓+ (defined after the typing
rules); narrowing has effect only on open types, and converts them
to closed types tagged with +. This is sound because in COFJ con-
structors it is not possible to access the field or to invoke the method
of an object passed as an argument. The returned type of the whole
expression is the open type C +? because there is no guarantee that
the corresponding value is closed, since there could be some pend-
ing method invocation2 that still needs to be completed; however,
at the top-level all method invocations will be completed and the
value will be closed, hence its type will be C + (recall the side con-
dition U1⇓ ≤ U ′1 in rule (T-MDEC)). In this way, the type system
prevents field selection, method invocation and argument passing
(to methods, but not to constructors) of open values.

To better explain how the type system works, we show a few
examples of typings. We start with the following simple class dec-
laration (assuming that class C is defined in the same program):

2X1 = new C (X2) (with X1 6= X2) is an example of value of type
C +?.

class H extends Object {

C− with C− m() { this.m() with res; }
}

According to rule (T-MDEC) we have−; this:H+ ` this.m() : C−

and −; this:H+, res:C−? ` res : C−?; because C−? ≤ C−, the
only return type derivable for the method is C− with C− (by the
side condition U ′1 ≤ U ′2 of rule (T-MDEC)) for any class C defined
in the program.

Let us consider the following variation of class H in a program
where class C has just one field, and its type is C +:

class H extends Object {

C+ with C−? m() { new C(this.m()) with res; }
}

The class is well-typed thanks to rule (T-NEW2); indeed, we have
−; this:H+ ` new C(this.m()) : C+?, therefore we can derive the
return type C+ with C− (by the side condition U1⇓ ≤ U ′1 of rule
(T-MDEC)).

Let us now consider a class that cannot be typed.

class C extends Object {
U f;

U with C−? m() { new C(this.m().f) with res; }
}

Independently from the type U , we have−; this:H+ ` this.m() :
C−?, hence this.m().f cannot be correctly typed according to
rule (T-FIELD).

Assuming to replace primitive types int and bool with classes
implementing the standard encoding of these types with objects,
the example in Section 1 can be typed with the following type an-
notations:

class RepDecFact extends Object {

RepDec+ with RepDec−? zero() {
new RepDec(0,zero()) with res

}
}
class RepDec extends Object {



Int+ digit;

RepDec+ next;

RepDec+ with RepDec−? compl() {
new RepDec(9-this.digit,this.next.compl())
with res

}

Bool+ with Bool+ isZero() {
digit==0 && this.next.isZero() with true

}
}

We conclude this section by stating the soundness claim.

THEOREM 3.1. If ∅ ` e : T , and e, ∅, ∅⇓r, then r 6= w.

4. RELATED WORK AND CONCLUSION
This paper represents a further step towards the integration of the

object-oriented paradigm with coinductive programming, a promis-
ing sub-paradigm originating from logic programming, and expressly
devised to ease high-level programming and reasoning with cyclic
data structures. More precisely, we have enhanced our previous
proposal by defining a simpler construct for dealing with regular
corecursion, and, consequently, a cleaner operational semantics.
More importantly, such a simplification has allowed us to define
a type system able to conservatively prevent unsafe use of spurious
values (that is, open values and the undetermined value) that may
be returned by corecursive methods.

This paper is inspired by recent work on coinductive logic pro-
gramming and regular recursion in Prolog. Simon et al. [16, 18, 17]
have proposed coinductive SLD resolution (abbreviated by coSLD)
as an operational semantics for logic programs interpreted coinduc-
tively: the coinductive Herbrand model is the greatest fixed-point
of the one-step inference operator. This can be proved equivalent to
the set of all ground atoms for which there exists either a finite or an
infinite SLD derivation [18]. Coinductive logic programming has
proved to be useful for formal verification [13, 15], static analysis
and symbolic evaluation of programs [4, 3, 5].

Regular corecursion in Prolog has been investigated by one of the
authors of this paper as a useful abstraction for programming with
cyclic data structures. To our knowledge, no similar approaches
have been considered for functional programming; although the
problem has been already considered [20, 10], the proposed so-
lutions are based on the use of specific and complex datatypes, but
no new programming abstraction is proposed.

A related stream of work is that on initialization of circular data
structures [19, 9, 14].

In comparison with the more foundational studies [1, 2] on the
use of coinductive big-step operational semantics of Java-like lan-
guages for proving type soundness properties, this paper is more
focused on the challenge of extending object-oriented languages to
support coinductive programming.

There exist several interesting directions for further research on
the integration of coinductive programming with the object-oriented
paradigm. On the foundational side, techniques to prove the cor-
rectness of corecursive methods could be explored, possibly inte-
grated with proof assistants, as Coq [8], that provide built-in sup-
port for coinductive definitions and proofs by coinduction.

On the more practical side, although the proposed type anno-
tations are not particularly heavy, an inference algorithm able to
derive part of them would be useful; furthermore, as already men-
tioned in Section 3, a more accurate analysis on mutual dependen-
cies between methods would allow a more permissive type system.
Another important issue is the extension of the semantics of core-
cursive methods to the imperative setting, and the study of a corre-
sponding effective implementation.
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