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ABSTRACT
Traditionally, formal semantic models of Java-like languages use an
explicit model of the store which mimics pointers and ram. These
low level models hamper understanding of the semantics, and devel-
opment of proofs about ownerships and other encapsulation proper-
ties, since the real (graph) structure of the data is obscured by the
encoding. Such models are also inadequate for didactic purposes
since they rely on run-time structures that do not exist in the source
program — in order to understand the meaning of an expression in
the middle of the execution one is required to visualize the memory
structure which is hard to relate to the abstract program state.

We present a semantic model for Java-like languages where data
is encoded as part of the program rather than as a separate resource.
This means that execution can be modelled more simply by just
rewriting source code terms, as in semantic models for functional
programs. The major challenges that need to be addressed are alias-
ing, circular object graphs, exceptions and multiple return methods.
In this initial proposal we use local variable declarations in order to
tackle aliasing and circular object graphs.

Categories and Subject Descriptors
D3.3 [Software]: Programming languages—Language Constructs
and Features

Keywords
Object oriented, Small-step reduction, Imperative languages

1. INTRODUCTION
The semantic model of functional programming languages is

conventionally defined as a small-step reduction arrow: an applica-
tion of category theory over language terms [18]. Since all steps
use the same language as the original program, it is easy to fol-
low and understand small-step semantics for simple mathematical
languages [6]. For example the minimal program 12-45*67-89

reduces in the following self explanatory steps: (12-45*67-89)
→ (12-3015-89) → (-3003-89) → (-3092). The sequence
of reductions contains more information than the end result, and
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provides a useful example to illustrate the semantics of the program-
ming language itself. Indeed, in this case it shows us that the correct
operator precedence and associativity treats the expression as equiv-
alent to (12-(45*67))-89. A student can look at the sequence of
reductions and understand the semantics of the initial expression.
Moreover, a mathematician can use induction over the steps to verify
that certain properties hold.

The semantic model of imperative programming languages
(including memory, aliasing and side effects) is usually defined in
terms of pointers to an external store [2, 13, 4, 5].1 This models
the hardware the programs are expected to run on: a global mem-
ory where pointers refer to records containing primitive data or
other pointers. Indeed, such a formal model is a guide for an effi-
cient implementation of such languages. Unfortunately this creates
an artificial distinction between source code and the execution
model.2 Understanding the meaning of a reduction sequence over
expressions and stores is difficult for most students, since it is as hard
as understanding a memory dump: most of the relevant information
is either lost or obfuscated by the encoding.

We believe that the functional model captures the semantics of
computation in a more natural way, and we aim to extend this kind
of model in order to handle the features of an imperative language.
We aim to obtain a model where mathematical properties of object
graph topologies can be formally verified significantly easier with
respect to the conventional model with the store.

Our goal is not to define a new semantics, but to retain con-
ventional Java-like semantics. We thus consider the language FJ ,̂
defined in our companion article [19] in the conventional setting
with memory and references, and we define an alternative, equiv-
alent semantics, where a source code term is rewritten as another
source code term, without using any store or other external resources,
recovering the simplicity of the functional language models.

2. MAIN IDEA
The main idea is to use local variable declarations — as in the

let construct — in order to model aliasing, state modification and
(circular) references. For example under the following program
class D{int f; D(int f){this.f=f;}}
class C{D f; C(D f){this.f=f;}}

we can write the following expression:
C x=new C(new D(80));C y=x;x.f=new D(y.f.f+8);y.f

1An interesting exception is [16], see Section 6.
2That is, the execution model of most languages rely on concepts
that are absent from the source code itself, often called run-time
expressions. Formally, they define two languages, the source code
language and the run-time language, and a transparent embedding
function that maps the first into the second one. Often, going back
to the source code after execution is started is not possible.



The reduction can keep the local variable x in place. On the other
hand (since in FJ ,̂ all variables are final) y can be simplified away.
C x=new C(new D(80)); x.f=new D(x.f.f+8); x.f

Then the field can be accessed and the sum can be computed
C x=new C(new D(80)); x.f=new D(88); x.f

Then the field can be updated, directly in the declaration.
C x=new C(new D(88)); x.f

The field can then be accessed, and the (now unused) local variable
x can be simplified away, producing the final result:
new D(88)

Circular object graphs are managed in a similar way, but require
the use of placeholders, introduced in FJ^ [19] and summarized in
the following.

Placeholders.
A placeholder, as the name suggests, is a proxy or a stand-in for an
uninitialised, as yet nonexistent object. Placeholders are introduced
in FJ v̂ariable declarations. A single variable declaration can declare
and initialise an entire circular object graph:
class A{A f; A(A^ f){this.f=f;}}
...
A a1=new A(a2), //here a2 is a placeholder
A a2=new A(a1); //here a1 is a placeholder
... //here a1.f is a2 and a2.f is a1

In FJ v̂ariable declarations differ from Java-style declarations in
two ways. Syntactically, a series of individual variable declarations
are separated with commas (,). When such newly declared variables
are used in the right-hand side of those variable declarations they
act as placeholders.

In the conventional semantics defined in [19], placeholders are
replaced with actual values when the execution reaches the semi-
colon (;) sign. In this new semantics, no action is needed, since the
variable name is already a value.

The purpose of placeholders is similar to recursive bindings in
OCaml [17], where for example, the following code initializes a
recursive data-structure:

O
C

am
l type t = A of t

let rec a1 = A( a2 )
and a2 = A( a1 )

While placeholders allow arbitrary expressions to be placed on
the right hand side, OCaml imposes heavy restrictions [9]: “the
right-hand side of recursive value definitions to be constructors or
tuples, and all occurrences of the defined names must appear only
as constructor or tuple arguments.”

The FJ^ type system uses placeholder types (such as A^ in the
example) to ensure placeholders are used in a safe way, however,
they can be considered equivalent to the normal object type (A in
this case) for the purposes of the current article. Indeed, here we
do not consider typing issues at all, since both the conventional
and newly proposed semantics of FJ^ are independent of the type
system, and are designed to get stuck in error conditions, such as
message-not-understood. The only reason we keep the symbol (^)
in the syntax is for consistency with [19].3

Placeholder declarations can appear in the original program, or
can be the result of a field assignment; as the following code shows:

interface I{}
class A implements I{I f;A(I^ f){this.f=f;}}
class B implements I{B(){}}

3Well, just note that in [19] we use the symbol (’) instead of (^).
The symbol (’) has proved itself typographically confounding.

The expression
(step-0) A a1=new A(new B());A a2=new A(a1);

A a3=(a1.f=a2);a2.f.f
is reduced in one step into
(step-1) A a1=new A(a2),A a2=new A(a1);

A a3=a2;a2.f.f
where the semicolon (;) is replaced with a comma (,), since the
field update operation has merged two variable declarations into a
single placeholder declaration. This step reduces the subexpression
inside the declaration of a3, which updates the field f of a1 with
the value a2. Thus, the term new B() is now replaced by a2.

The unused variable a3 can now be simplified away and then the
expression reduces to
(step-2) A a1=new A(a2), A a2=new A(a1); a1.f

and finally to
(step-3) A a1=new A(a2), A a2=new A(a1); a2

which is a value, and is equivalent to A a2=new A(new A(a2));a2.

The emergence of different, but equivalent, terms is a pervasive
phenomenon in our semantics.
For example C x1=new C();C x2=x1;C x3=x2;x2.m(x3) is
clearly identical to C x1=new C();x1.m(x1).4

In order to capture this informal idea of equivalence, we we define
a concept of normalization: 5 if a variable is used only once then the
variable declaration can be removed and the single variable occur-
rence can be replaced by the corresponding initialization expression.
In a normalized term, if a value is a variable, then we are dealing
with an aliased object.

3. SYNTAX AND SEMANTICS OF FJ^

We now define the syntax of FJ ,̂ and show how its semantics can
be defined in terms of simple small-step reductions.

3.1 Syntax
The syntax of FJ^ is shown in Figure 1. The language is essen-

tially a simple subset of Java, similar to FJ [15], with the addition of
field assignments and local definition blocks.

A program (p) is a list of class and interface declarations. A class
declaration (cd) has a class name, a list of implemented interfaces,
a list of field declarations, a constructor, and a list of method decla-
rations. An interface declaration (id) has an interface name, a set
of extended interfaces, and a set of method headers. Each field dec-
laration (fds) has a type and a field name. A constructor (k) takes
a parameter for each field of the class, and simply initialises those
fields. Note that the argument types are placeholders. A method
header (mh) has a result type, a method name, and a list of argument
names along with their types. Each method declaration (mds) is a
method header along with a method body, which is an expression.
A type (T ) is a class or interface name, optionally marked with ( ^)
to indicate that it is a placeholder. An expression (e) is either a
variable name, a new expression (constructor call), a field access,
field assignment, method call, or a local declaration block, consist-
ing of a list of local variable declarations and an expression. Each
local variable declaration (es) has a type, a variable name and an
expression providing the value for the variable; the local variable
declarations are separated by commas. A value (v ) is a variable
name, a new expression in which the arguments are all values, or a

4Non-well guarded variable declarations, like C x=x are not al-
lowed [19]. In FJ^ the reduction gets stuck on this kind of declara-
tion; thus the FJ^ type system statically prevents such cases.
5That is, equivalent terms normalize to the same term.



p ::= cd1 ... cdn id1 ... idk program
cd ::=class C implements C1, ...,Cn{ fds k mds} class declaration
id ::=interface C extends C1, ...,Cn{mh1; ...mhk;} interface declaration
fds ::=C1 f1; ... Cn fn; field declaration
k ::=C(C1̂ f1, ...,Cn̂ fn){ this.f1=f1; ... this.fn=fn;} constructor
mh ::=T m(T1 x1, ...,Tn xn) method header
mds ::=mh1 e1; ...mhn en; method declaration
T ::=C | C^ type

e ::= x | new C(e1, ...,en) | e0.f
| e0.f =e1 | e0.m(e1, ...,en) | (es;e) expression

es ::=T0 x0=e0, ...,Tnxn=en local var dec
v ::= x | new C(v1, ...,vn) | (vs;v) values
vs ::=T0 x0=v0, ...,Tn xn=vn local val dec
x , y , z ::= ... variable names
C ::= ... class/interf. names

Figure 1: Expression Syntax

local declaration block in which the local variables are all assigned
values and the expression is a value.

Local value declarations vs can be seen as functions: dom(vs)
is the set of declared variables, vs(x ) is the corresponding value
and vs1 ∪ vs2 = vs holds if dom(vs1) ∩ dom(vs2) = ∅ and vs is
composed by the declarations in vs1 and vs2 in any order. Simi-
larly, programs can be seen as functions from class names to their
declarations, so p(C) returns the declaration of class C.

A program is well formed if all the names used are declared, and
all the names after extends and implements clauses correspond
to interface names. Moreover, all the variable/parameter names
declared within a given method body must be unique.

3.2 Reduction
The semantics of our language is defined in terms of small-step

reductions, which successively transform subexpressions into sim-
pler ones. Because an expression being reduced may occur within
nested local declaration blocks, and because local declarations may
be added or deleted during the reduction process, we abstract from
the program structure to collect the surrounding local definitions
into an environment (σ), which is a list of lists of local value declara-
tions. Reduction is then defined as an arrow over pairs consisting of
an environment and an expression. At the top level, an expression is
reduced starting and ending with an empty environment, so although
we use environments in describing intermediate steps, the result we
obtain is described entirely within our programming language.

The pair σ | e, where σ = vs1 ‖ ... ‖ vsn, describes an ex-
pression e occurring within the scope of n nested local declaration
blocks, whose declarations are vs1, ... , vsn, with vs1 being the
outermost block. A reduction σ|e →p σ′|e ′ means that in the con-
text of program p and environment σ, expression e reduces to e′

with new environment σ′. This is formalised in terms of evalua-
tion contexts (eval-ctx), which are expressions with a hole in any
of the places where subexpression substitution is allowed, namely,
the receiver of a field access, field assignment or method call, the
right hand side of a field assignment where the receiver is a value,
an argument of a new or method call, provided that all previous
arguments (and the receiver in the case of a method call) are values,
or the right hand side of a declaration in a local variable declaration
block where the right hand sides of all preceding declarations are
values.
Reduction rules are shown in Figure 2, and are explained as follows:

• (TOP-LEVEL): e reduces to e′ if e can be reduced to e′ starting
and ending with an empty environment.

• (R-CTX): If e, within environment σ, reduces to e′ with new
environment σ′, then an occurrence of e within any evaluation
context with environment σ, can be replaced by e′ also with
new environment σ′. Note we do not allow nested declarations
of the same variable, so application of this rule may require α-
conversion to avoid name clashes.

• (R-VD-IN): The above rule does not apply to the expression part
of a local declaration block, since in this case the reduction may
affect the local declarations as well as the environment. To handle
this case, we add the local declaration list to the environment, and
reduce the expression in the context of that environment. The
resulting block is then obtained by combining the new expression
with the new version of the declaration list. Again, α-conversion
may be required. Note that this is effectively using the environ-
ment as a stack.

• (R-VD-GET), (R-VD-SET): A field access or assignment on a re-
ceiver specified by a local declaration block is reduced by moving
the access or assignment into the body of the local declaration
block.

• (R-NEW-GET), (R-NEW-SET): A field access or assignment on
a receiver specified by a new expression is reduced to the field
value or assigned value respectively.

• (R-VAR-GET): A field access on a variable, x.f , is reduced to a
new variable, say z , and a new definition setting z to the value of
x.f is added to the environment. The operator σ[+= z := x.f ] finds
the declaration of x . If x is assigned the result of a constructor call
in which the argument value corresponding to field f is v and has
type T , the constructor call is modified so that this occurrence of
v is replaced by z , and the new assignment T z=v is added. If x
is assigned the value of a local declaration block, T x=(vs0;v0),
the operator is recursively propagated to the value v0. Since the
resulting value v1 has to be moved to the same level as x , the
declarations in vs0 and vs1 declaring variables whose v1 depends
on are also “flattened” to the same level as x . If x is assigned
the value of a variable, it can be simplified using the rule (S-VAR-
EMBED), described below, before being reduced.

• (R-VAR-SET): A field set on a variable, z.f := v, is reduced to
the assigned value (v), and the environment is updated to record
the new value of z.f . The operator σ[z ↖ v ] finds the level in the
environment σ where z is declared, and moves into that level all
declarations in later levels which declare variables that v depends
on. The operator [z.f := v ] then finds the declaration of z. If z is
assigned the result of a constructor call, the constructor call is
modified so that the argument value corresponding to field f is
replaced by v. If z is assigned the value of a local declaration
block, T z=(vsv0), the update is applied directly to v0. If x is
assigned the value of a variable, it can be simplified using the rule
(S-VAR-EMBED), described below, before being reduced.

• (R-METH): A method call where the receiver and arguments are
all values is reduced by introducing a local declaration block with
variables for the receiver and the arguments, and with the method
body as the expression. Note that using this rule may involve
α-conversion (as explained above for rule (R-CTX)), for example,
where a recursive method call is evaluated.

Figure 3 defines the operators used in the reduction relation.



σ ::= vs1 ‖ ... ‖ vsn scope
E r ::= new C(v1, ...,vk,�,e1, ...,en) | �.f | �.f =e | v.f =�
| �.m(e1, ...,en) | v0.m(v1, ...,vk,�,e1, ...,en) | (vs,T x=�,es;e) eval-ctx

e →p e ′, σ|e →p σ′|e ′
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) σ|e →p σ′|e ′
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) σ‖vs|e →p σ′‖vs ′|e ′

σ|(vs;e) →p σ′|(vs ′;e ′)
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E
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)

σ|(vs;v0).f →p σ|(vs;v0.f )
(R

-N
E
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E
T

)
σ| new C(v1, ...,vn).fi →p σ|vi
with

p(C) = class C implements _{C1 f1; ... Cn fn;_} (R
-V

A
R

-G
E

T
)

σ|x.f →p σ[+= z := x .f ]|z
with

z fresh

(R
-V

D
-S

E
T

)

σ|(vs;v0).f =v1 →p σ|(vs;v0.f =v1)

(R
-N

E
W

-S
E

T
)

σ| new C(v1, ...,vn).f =v →p σ|v

(R
-V

A
R

-S
E

T
)

σ|z.f =v →p σ[z ↖ v ][z .f := v ]|v

(R
-M

E
T

H
)

σ|v0.m(v1, ...,vn) →p σ|(C this=v0,T1 x1=v1, ...,Tn xn=vn;e)

with
typeOfσ(v0) = C
p(C) = class C implements _{_ T m(T1 x1, ...,Tn xn) e_ }

Figure 2: Reduction

3.3 Simplification
In addition to the above reduction rules, we have a small set of

simplification/normalization rules which can be used to simplify
an expression in ways that do not depend on the environment (see
Figure 4). As for α-conversion, simplification can be used at any
point during the reduction.

The rules are formalised in terms of the standard full expression
context, which does not enforce any evaluation order.

• (S-CTX): If expression e0 can be simplified to e1, then any occur-
rence of e0 in the locations identified by the definition of contexts
(i.e. an argument of a constructor or method call, the receiver of a
field access, field assignment or method call, the value in a field
assignment or local variable declaration, or the expression part of
the local variable declaration block) can be replaced by e1.

• (S-VAR-EMBED): A local variable declaration which either: (i)
assigns a value to a variable which is used at most once in the
enclosing local variable declaration block, or (ii) assigns a variable
to another, can be removed by replacing any use of the variable
by the assigned value or variable. The notation e[x := v ] denotes
ordinary variable substitution.

• (S-VS-OUT): A local declaration block with no declarations can
be replaced by its expression part.

4. DIDACTIC APPLICATIONS
A student needs the support of an expert mathematician to ver-

ify his steps while resolving a mathematical expression, while a
programming language simply provides the solution and interme-
diate steps are hidden. For example, Bob wonders what happens
to 12− 45 ∗ 67− 89. He might reduce it with the following steps:
12 − 45 ∗ 67 − 89 = 12 − 3015 − 89 = 12 − 2926 = −2914.
The result is incorrect; but he is unable to spot the error. If he is

also taking a programming course, he might ask the solution of the
language, as in System.out.println(12-45*67-89);, which
prints the correct result: -3092.

Neither of these approaches is satisfactory for Bob. In the former
he sees intermediate steps, but has no confidence in the result. In
the latter he gets a correct result, but does not understand how it was
obtained.

A didactic tool can show all the steps and help Bob finally under-
stand the right precedence of operators.

This issue is not limited to simple mathematical expressions. In-
deed, a student trying to understand the semantics of a programming
language will often write and run several small programs. When
the result is unexpected, he/she has to guess where the computation
process differs from his/her understanding. Running the program
gets a result, but the procedure to obtain such a result is out of reach
for the student: compilation and many other intermediate optimiza-
tion steps hide the original structure and make it hard to follow the
whole process.

Traditionally, the semantic model of Java-like languages mimics
pointers and RAM. This low level model is inappropriate as a didac-
tic instrument to explain the semantics of the language to a student,
since the real (graph) structure of the data is lost in the encoding.6

In our proposed model a source code term is rewritten as another
source code term without using external resources, but encoding the
data as part of the program itself.

With such a formal definition, is easy to write a graphical edu-
cational tool showing the reduction steps one at a time, as in the
Racket Stepper [8], a similar didactic tool working only in a limited,
purely functional setting.

Such a tool would allow students to visualize reduction steps in
order to understand the semantics of Java-like languages; this is

6Of course, the heap still contains all the information, but is not a
suitable representation for didactic purposes.



E ::= new C(e1, ...,�, ...,en) | �.f | �.f =e | e.f =� | �.m(e1, ...,en)
| e0.m(e1, ...,�, ...,en) | (es1,T x=�,es2;e) | (es;�) simpl-ctx

e0 → e1
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X

) e0 → e1

E [e0] → E [e1]
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M

B
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D
)

(vs,T x=v,es;e0) → (vs,es;e0)[x := v ]

with
x used 0 or 1 times in (vs,T x=v,es;e0)
or v is a variable

(S
-V

D
-O

U
T

)

(e) → e

Figure 4: Simplification

Definition for σ[+= z := x .f ]
(vs1‖ ... ‖vsn)[+= z := x .f ] = vs1[+= z := x .f ]‖ ... ‖vsn[+= z := x .f ]
(vs1,Tx=v,vs2)[+= z := x .f ] = vs1,(Tx=v)[+= z := x .f ],vs2
vs[+= z := x .f ] = vs with x /∈ dom(vs)
T x=(vs0;v0)[+= z := x .f ] = vs2,T x=(vs3;v1),T z=v2
iff T x=v0[+= z := x .f ] = vs1,T x=v1,T z=v2
and vs0,vs1 = vs2 ∪ vs3 and dom(vs2) = dep(vs0,vs1, v1)
T x= new C(v1, ...,vi, ...,vn)[+= z := x .fi] =

T x= new C(v1, ...,z, ...,vn),Ci z=vi
if p(C) = class C implements _{C1 f1; ... Cn fn;_}

Definition for σ[x .f := v ]
(vs1‖ ... ‖vsn)[x .f := v ] = vs1[x .f := v ]‖ ... ‖vsn[x .f := v ]
(vs1,T x=v,vs2)[x .f := v ] = vs1,(T x=v)[x .f := v ],vs2
vs[x .f := v ] = vs with x /∈ dom(vs)
T x=(vs;v0)[x .f := v ] = T x=(vs;v1)
with T x=v0[x .f := v ] = T x=v1
T x= new C(v1, ...,vi, ...,vn)[x .fi := v ] =

T x= new C(v1, ...,v, ...,vn)
if p(C) = class C implements _{C1 f1; ... Cn fn;_}

Definition for σ[x ↖ v ]
(σ‖vs)[x ↖ v ] = σ‖vs if x ∈ dom(vs)
(σ‖vs0‖vs)[x ↖ v ] = (σ‖vs0,vs1)[x ↖ v ]‖vs2
if x /∈ dom(vs), vs = vs1 ∪ vs2 and dom(vs1) = dep(vs, v)

Definition for dep(vs, v)
dep(vs, v) is the smallest set S such that
(i) freeVar(v) ∩ dom(vs) ⊆ S
(ii) ∀x ∈ S, dep(vs, vs(x )) ⊆ S

where freeVar(e) denotes the free variables in e
Definition for typeOfσ(v)

typeOfσ( new C(_)) = C
typeOfσ((vs;v)) = typeOfσ‖vs(v)
typeOfσ(x ) = typeOfσ(v) iff T x=v ∈ σ

Figure 3: Definitions

profoundly different from what other tools (e.g. [14]) do. While
showing intermediate steps in the computation they rely on some
sort of graphic representation of the memory, which takes the focus
of the programmer away from the source code.

In particular, our approach can illustrate dynamic dispatch in a
very direct way. For example, given the following program:
interface I{int m(I i);}
class A implements I{ int m(I i){return 8;}
class B implements I{ int m(I i){return 2;}
class Factory{I make(){return new A();}}

we can show the following reductions:
(step-0) I x=new Factory().make();x.m(x)
(step-1) I x=new A();x.m(x)
(step-2) I x=new A();8
(step-3) 8

where a factory method and a local variable declaration hide the
concrete type of our object.

Another important context where our approach can support learn-
ing is recursion. Consider the following definition of pow, written
in a extension of FJ^with boolean, int, if and static methods.
We model if as an expression in order to more easily integrate it
with our core calculus.
class M{...

static int pow(int n,int e){
//if(e<0)error();let us ignore errors here
if(e==0) then 1 else M.pow(n,e-1)*n
}}

This straightforward code contains recursion, and our reduction can
show how recursion works in a very clear way. One of the main
points of this example is to show how method invocation is man-
aged.7

(step-0) M.pow(8,2)
(step-1) int n=8,int e=2;

if(e==0)then 1;else M.pow(n,e-1)*n
(step-2) int n=8, int e=2;

if(false)then 1;else M.pow(n,e-1)*n
(step-3) int n=8, int e=2;M.pow(n,e-1)*n
(step-4) int n=8, int e=2;M.pow(n,1)*n
(step-5) int n=8;M.pow(n,1)*n
(step-6) int n=8;int n1=n,int e=1;

(if(e==0)then 1;else M.pow(n1,e-1)*n1)*n
(step-7) int n=8;int e=1;

(if(e==0)then 1;else M.pow(n,e-1)*n)*n
(step-8) int n=8;int e=1;

(if(false)then 1;else M.pow(n,e-1)*n)*n
(step-9) int n=8;int e=1;M.pow(n,e-1)*n*n
(step-10) int n=8;int e=1;M.pow(n,0)*n*n
(step-11) int n=8;M.pow(n,0)*n*n
(step-12) int n=8;int n1=n,int e=0;

(if(e==0)then 1;else M.pow(n1,e-1)*n1)*n*n
(step-13) (int n=8;int e=0;

(if(e==0)then 1;else M.pow(n,e-1)*n)*n*n
(step-14) int n=8;int e=0;

(if(true)then 1;else n*M.pow(n,e-1)*n)*n*n
(step-15) int n=8;int e=0;1*n*n
(step-16) (int n=8;1*n*n)
(step-17) (int n=8;8*n)
(step-18) (int n=8;64)
(step-19) 64

After the student has understood this reduction sequence, it is
possible to notice how step 5 (where the recursive call is ready to be
called) is the same as step 17 (where the recursive call is completely
executed) but the call of the recursive function is replaced with the
7To be consistent with our formalism integers are treated in the
same way as other objects.



result. In this way, the inductive understanding of the pow definition
can be consolidated. This particular example could be encoded also
in FJ, however, a suitably modified example could show how side
effects do not fit naturally in the inductive reasoning, since they can
be externally visible, that is, the environment around the recursive
call can be influenced by the execution itself.

5. RELATIONSHIP WITH OWNERSHIP
Object oriented programming allow complex object graphs to be

hidden behind behavioural interfaces. For each object that “the user
can perceive and observe” there can be a whole set of intercom-
municating objects, cooperating to provide a complex behaviour.
Ownership [7] keeps such “private representation objects” private.

By using nested variable declarations to represent values, we can
induce a hierarchical structure. This is one of the main advantages
with respect to the conventional model of memory and pointers.
Assuming appropriate classes C and D, in the following code
C x=(
D y= new D(y,z),
C z= new C(y,12);
z)

the local variable x denotes a value composed of two objects defined
in a mutually recursive fashion. Thanks to the usual well-known
scoping rules, it is clear that the value y is just part of the internal
representation of x, and is not visible at other points of the program.

Even though our reduction does not enforce any kind of owner-
ship, hierarchies of variable declarations naturally show the own-
ership tree present at a given point in the execution. Moreover,
our reduction carefully represents the only two cases where there
is a violation in the ownership tree: field access can force a local
variable to be exported (operator σ[+= z := x .f ]), pushing it nearer
to the current execution point; and field update can require a local
variable to be pushed back in the stack (operator σ[x ↖ v ]), in
order to allow the updated object to refer to it. In the following, two
examples clarify the difference between these two cases.

Field access ownership violation.
class D{} class C{ D f; C(D f){this.f=f;}}
...
c1=new C(new D());c1.f

becomes
D d1=new D(),C c1=new C(d1);d1

That is, the value new D() that was originally owned by c1, is
now an independent value d1. A version of FJ^ with ownership
annotation could get stuck at this reduction step, allowing the cor-
rectness proof of the type system to fall more naturally into the
normal progress + subject reduction mechanism.

Field update ownership violation.
class D{} class C{ D f; C(D f){this.f=f;}}
...
C c1=new C(new D());
new C(C c2=new C(d1),D d1=new D();c1.f=d1)

becomes
C c1=new C(d1),D d1=new D();
new C(C c2=new C(d1);d1)

where the local variable d1, which was originally a part of the data
used in the expression of the C constructor parameter, is now visible
at top level. Again, it would be possible to add some annotations to
FJ^ to ensure that a value does not escape a specific scope.

Ownership and inductive definitions.
To the best of our knowledge, in ownership systems either the owner
object must be created before the owned ones or ownership transfer

(when allowed) is required to create the owned objects before their
owners. Both solutions hamper the developing of intuitive functional
patterns where a composite structure is inductively generated.

A well defined inductive generation of a data-structure produces
a well encapsulated hierarchical value; that is, for any terminating
method call, in the absence of field update operations over the
method parameters, the method invocation reduces into a value of
the form new C(_) or (_;_) and all the objects created during the
invocation are dominated by this value. For example:
class C{ D m(){...}}
...
... new C().m() ...

No matter what the body of C.m is, the method call will not modi-
fy/add any external local variable (potentially present in the dots),
and will produce a self contained object graph. Thus the resulting D

object could safely own all of its fields, no matter how/when they
are created. Note that, since our system does not modify in any way
the well known Java semantics, this property holds already in any
Java program (without static fields). Our approach simply makes
this property self evident.

6. RELATED WORK
To the best of our knowledge only Java Jr. [16] defines a semantics

for a Java-like language with state that, at the same time, does not
introduce run-time expressions and does not rely on a separate store.
All other small-step semantics for Java-like languages with field
update use some sort of memory/store and some concept of run-time
expression (e.g. object references) that can not be expressed in the
original program. Still, many works in the literature have arguably
similar objectives:

• FJ [15] is a Java-like language whose semantics is defined without
memory/run-time expressions; but it has no field update.

• Classic Java [13] models a more complete subset of Java, includ-
ing state as a store.

• Many works have extended FJ with field update, but always rein-
troducing stores and run-time expressions as in Classic Java.

• Andersen [3] defined a symbolic execution for C programs, but
his proposal keeps memory allocation functions in place, since he
wisely does not assume a fixed behaviour for any library code or
operative system primitive.

• Felleisen’s syntactic theory of state [11, 12] mangles the store in
the expressions, but it relies on labelled values; a kind of run-time
expression modelling the value and the location address at the
same time.

• A different strategy is used for “abstract object creation” [1] by
the Key theorem prover. A run-time expression, called parallel
update, is added to the language and is used to represent the store
state inside the code: all the object creations and field updates are
preserved and consulted by field accesses.

PLT Redex [10] is a domain specific language (and a suite of
software tools) to define language semantics using reduction. One
of the features offered by PLT Redex is a visualization tool that could
be used to implement a visualizer for our small-step semantics.

Racket Stepper [8] was developed before PLT Redex, and, relying
on some run-time expressions, extracts a small-step semantics from
Racket. The stepper accurately models the functional setting of
Racket. In the Stepper, bindings are lifted to top-level; while it does
not currently step through mutable bindings the author argues it can
be easy extended in such a way.



7. DISCUSSION
While our simple formalism does not model object identity, the

== operation can still be supported: in a normalized term, every
aliased object is referenced with a specific, unique variable name,
while non-variable values represent non-aliased objects. Thus, x==x
reduces to true and every other case of v1==v2 reduces to false.
The idea that object identity can be represented by a variable name
is also present in Java Jr [16].

The Racket community seems to support small-step reduction
as an effective way to learn the semantics of a language [10, 8].
Throughout this paper we argue that a language designed to be
understandable should support a readable small-step reduction in
the language itself, without any additional machinery; that is, a true
small-step reduction.

We choose to model a true small-step reduction for FJ ,̂ that
is, an extension to Java with placeholders. It is indeed possible to
provide a true small-step reduction without using placeholders and
extending the notion of values to include explicit field setting when
their execution would introduce circular references. That is, in our
first example with
interface I{}
class A implements I{I f;A(I^ f){this.f=f;}}
class B implements I{B(){}}

the term
A a1=new A(new B());
A a2=new A(a1);
a1.f=a2;

would be a value. Another approach could be to rely on nulls
and use as values normalized initialization where all the fields are
initialized with null and manually set to the right value afterwards.8

In this setting the code in our example would be normalized to the
following:
A a1=new A(null);
A a2=new A(null);
a1.f=a2;
a2.f=a1;

Thus, true small-step reduction of Java is possible without place-
holders. However, we believe the placeholder version to be much
more readable.

8. FUTURE WORK AND CONCLUSION
In this work we provide an alternative semantics for Java-like

languages, showing how aliasing and circular object graphs can
be supported without resorting to stores or run-time expressions.
In the future we would like to prove the equivalence between our
alternative semantics and the conventional one.

Other important future work is to extend our approach to ex-
ceptions and multiple return methods. Defining the semantics of
exceptions should be reasonably easy, but since the exception object
itself could refer to local variables, we need to deal carefully with
stack unwinding.

We plan to explore a language design where return and other
statements could all be expressed as syntactic sugar over an ex-
tension of FJ^ with exceptions. In the future we aim to produce
an invertible sugaring and de-sugaring process, so that a term in
the rich language (with return, if and so on) could be translated
(de-sugared) in the minimal FJ^ language, evaluated for some step
and then sugared back in the more high level language.

8Sightly different variations of this solution were independently syn-
thesized by the authors of this paper, one reviewer and the designer
of the Key theorem prover [1].
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