CHECKER

framework

The Checker Framework Manual:
Custom pluggable types for Java

https://checkerframework.org/

Version 3.16.0 (13 Jul 2021)

For the impatient: Section[I.3](page[I5) describes how to install and use pluggable type-checkers.

https://checkerframework.org/

Contents

I TInfroducfion| 14
... 15

1.2 How it works: Pluggable types| 15
L3 T0sallalion] . - -« « ¢ v oot e e e e e 15
1.4 Example use: detecting a null pointerbug| oo o oo 16

[2° Using a checker| 17
2.1~ Where to write type annotations| o .o i et e e e e e e e e e e e e 17
22 Runningachecker| 18
..................................... 18

|ZZZ Summarz of commang-!lne 0§t10ns| 19
223 Checker auto-disCOVEry|. oo oo 22

224 Shorthand forbuilt-in checKersl. 22

2.3 What the checker guarantees| 22
[2.4 Tips about writing annotations| 23
........................... 23

4. oet started annotating legacy code 23

P43 Annotations indicate non-exceptional BERaVION« « « « o o oo 25
[2.4.4 Subclasses must respect superclass annotations|o 26

[2.4.5 What to do 1f a checker issues a warning about your code]. 27
[2-4.6 Calls to unannotated code (Iegacy LIbraries)] oo v v v v ie e 29

(3__Nullness Checker| 30
3.1 What the Nullness Checkerchecks| 30
3.1.1 Nullness Checker optional warnings| 31

B2 Nullness annofafions] o vttt e e e e e 31
[3.2.1 Nullness qualifiers| e 31
3.2.2 Nullness method annotations| Lo 32

3.2.3 Initialization qualifiers| L 33

24 Mapkeyqualifiers| L 33
....................................... 33
B3T TmplOIEQUATGTS . . . « « o o o o e e e e 33
3.3.2 Defaultannotationl L. e e e e 33
B33 Condiionalnullnessl o e e 34
[3.3.4 Nullness and array initialization| L 34
----------------------- 35
336 Run-timechecks fornullnessl. v v oo e e 35
[3.3.7 Inference of GNonNull and Nullable annotations| 35

3.4 Suppressing nullness warnings| L L L 35
[3.4.1 Suppressing warnings with assertions and method calls| 36

13.4.2 Null arguments to collectionclasses| 0000,
. xamples|o
3.5.1 Tinyexamples| e

EEEZ Examﬁle anno ate§ source co§e|

3.6 Tips for getting started| L e e e e
3.7 Other tools for nullness checking| o o
3.7.1 Whichtoolisrightforyou? e

[3:7.2 Tncompatibility note about FindBugs and SpotBugs @Nullable]
[B773 Relationship 10 Optional<Ts] . . o v v v v v v et e e e e e e e e e

13.8.1 Imtialization qualifiers| oo
13.8.2 How an object becomes mitialized| 0 0oL
3.8.3 @UnderInitializationexamples|

13.8.7 Howto handle warnings|
3.8.8 Suppressing warnings| i e e e e e e e e e e e e e e

[3:8.0 More details about initialization checking]

Map Key Checker]

4.1 Invoking the Map Key Checker]

EZ &] aE Eei annotat10ns| ...

4.3.2 Diagnosing the need for explicit @KeyFor on lower bounds|

B4 Examples|
5 Tnference of @ KeyFor annotat10ns|

Optional Checker for possibly-present datal

5.1 How torun the Optional Checker|.

. Optional annotations| L L e e e e e e e
|’5.3 What the Uptlonal Checker guarantees|

Interning Checker|

[6.1 Interming annotations|
[6IT Tnferning qualifiers|
6.1.2 Interning method and class annotations]

6.2 Annotating your code with @Interned|. oL L L

6.3.1 Theintern() methods|
6.3.2 Detault qualifiers and qualifiers for literals],
3. nternedDistinct: values not equals() to any other value|
6.4 What the Interning Checkerchecks|. o o oo
[6.4.1 Imprecision (false positive warnings) of the Interning Checker|

[65 Examples]
[6.6 Other nterning annotat10ns| ..

52
52
52
53
53
54
54
55

57
57
57
58

{7 Called Methods Checker for the builder pattern and more|

[Z.1__How to run the Called Methods Checker
[Z2 _ForLombokusersl. e
[/.3_Specifying yourcode|
. efault handling for Lombok an utovalue|o o
. sing the Calle ethods Checker for properties unrelated to builders|

|8 Resource Leak Checker for must-call obligations|

|8.3 Example of how safe resource usage 1s verified| L oo,

[8.4 Alased references and ownership transfer] Lo L

4T Owningfields|.
B3 Resourceallasing]
[8.6 Creating obligations (how to re-assign a non-final owning field)|.

[8.6.1 Requirements at a call site of a @CreatesMustCallFormethod|
18.6.2 Requirements at a declaration of a €CreatesMustCallFormethod|

9.3 Running the Fenum Checker) L 0

0 4 SUDD o 0

P35 Example].
[0.6 The Take enumeration pattern] o v i e
0.7 References|. e

(10 Tainting Checker|
[10.1 Tainting annotations|. L L e e e e e e e e e e e

[10.2 Tips on writing @Untainted annotations|.

.3 @Tainted and @Untainted can be used for many purposes|

||U.4T A caution about polymorpﬁlsrn and side eHects|

12,2 Declaration annotations| e e e e e e

[11.3 Type-checkingrules|.
......................................

[11.3.3 Primitive types, boxed primitive types, and Strings|

[[T34 Overriding] e

A4 XAMPICS| . . o o L o o e

|| IEI Examgles of @GuardedBy| o
|| .42 @GuardedBy({"a”, “b"}) is not a subtype of @GuardedBy({"a”"})|.

MT43 Examples of @HOIANG. - - - - - - -~ - oo
|I11.4.4 Examples of @EnsuresLockHeld and @EnsuresLockHeldlf|
[11.4.5 Example of @Lockingkree, @ReleasesNoLocks, and @MayReleaseLocks|
[IT:4:6_Polymorphism and method formal parameters with unknown guards|

T3 More Tocking Get@ls] . . . - - -+« .+« o o o

I11.5.1 "Two types of locking: monitor locks and explicitlocks|
|I11.5.2 Held locks and held expressions; aliasing|

[11.5.3 Run-time checks forlocking| 0 0L

! | §§ !ilscusswn of gefau!t §ua!1ﬁe§|
[TT.5.5 Discussion Of GHOLAING] - - « « o o v v e e e e e e e s s s

11.7 Possible eXtensions| e e e e e e e e

122 1. r ndsl . .o e e e

[12.3 Upperbounds|
..
[T25 Sequences of the same length] e

112.6 Binary searchindices| L.

2.7 Substringindices|

[T2.77.T The need for the @SubstringIindexFor annotation] « v v v v v v v e e e e e e

|| ZS |nequa|1t1es| ..

[12.9 Annotating fixed-s1z€ data SIUCTUTES]+ « v o v v v e e e e e e e e e e e

[13 Regex Checker for regular expression syntax|

[I3.1 Regexannotations|. e
|| 32 Ennotatmg yourcode with @Regex|. Lo
BT TmplOTt QUATTAGTS] . - .« o o o o e e e e e e e
113.2.2 Capturing groups| v v v vt i e e e e e e e e e e e e e e e e
[13.2.3 Concatenation of partial regular expressions|. L.
[3.24 Testing whether a StANg 15 a regulal eXpression]« o« o oo
[T3.25 Suppressing Warnings| oot v i e

{14 Format String Checker]
[14.1 Formatting terminology|.

4. ormat String ecker annotations|o L L L L Lo e e e e e e e e e e e e e

IIZZ I Conversion Categorlesl

114.2.2 Subtyping rules for @Format|. L L

[14.3 What the Format String Checkerchecks|, ..

(15 Internationalization Format String Checker (118n Format String Checker)|
|15.1 Internationalization Format String Checker annotations|
[15.2 Conversion Categories]|.t
....................................
[T5.4"What the Internationalization Format String Checker checks|

|15.6 Running the Internationalization Format Checker| o000,

[15.7 Testing whether a string has an 118n formattype|
||3.§ Examples of using the Tnternationalization Format fﬁecEeﬂ

94
95
95
96
98
99
100
100
101
102
102

104
104
105
105
105
105
106
106

107
107
107
108
109
110
111
111
112
112
112

{16 Property File Checker|
116.1 General Property File Checker] o
|116.2 Internationalization Checker (I18n Checker)

[16.2.2 Running the Internationalization Checkery
[T6.3 Compiler Message Key Checker] ittt

{17 Signature String Checker for string representations of types|

[I7.1 Signature annotations|
[T7.2 What the Signature Checkerchecks|

[I8.5 Polymorphiceffects|.
|| §§ | !zeﬁmng an effect-polymorphic typefo oo oo oo
[18.5.2 Using an effect-polymorphic type] i i e

|118.5.3 Subclassing a specific instantiation of an effect-polymorphic typel
[18.5.4 Subtyping with polymorphiceffects|

19.1 Units annotations| L e e e

119.4 Running the Units Checker]
119.5 Suppressing warnings|o e e e e e e e e e e e e e e e e

...

[20_Signedness Checker

[20.1.1 Default qualifiers|

0.1.2 Widening conversions| i i i i e e e e e e e e
0.2 Prohibited operations|
20.2.1 Rationalel e

[20.3 Uulity routines for manipulating unsigned values|
0.4 Local typerefinement] L e e e e
|QU.5 Other s1gneaness annotat10ns|

[21 Purity Checker]
[21.1 Purity annotations|.
.2 Purity annotations are trusted| L

[2T.3 Overriding methods must respect specifications in SUPErClasses| v o v v v v v v o v o .
21.4 Suppressing Warnings|o i e e e e e e e e e e e e e e e e e

120
120
121
121
121
121

123
123
125

126
127
127
127
127
128
128
128
129
129
130

131
131
132
133
133
134
134

135
135
136
136
136
137
137
138
138
138

22 Constant Value Checker 141

R2.1 Annotations] e e e e e e 141
[22.1.1 "Type Annotations|. 141

2.2 Other constant value annofations] « « « o v oo e e e e 142
[22.2.1 Compile-time execution Of Xpressions| 143

2222 @StaticallyExecutable methods and the classpath|. 143

W oSl L e e e e e 144

[22.4 Unsoundly ignoring overflow| 144
P25 Strings can be null i CONGAIGRATONS] . . . - + -« . .+« « o oo oo 145
23 Returns Receiver Checker 146
P31 Annotations] e 146
[23.2 AutoValue and Lombok Support] L 146
24 Reflection resolufion] 148
148

149

149

150

151

153

153

153

154

154

155

[26 Aliasing Checker| 156
[26.1 Alasing annotations| 156
P62 Leakig COMIERTS) . - - - - -« o o oo oo e e 157
[26.3 Restrictions on where GUnique may B WIITED] o v v v v v v e e e e e e 158
26.4 Aliasing type refinement] e e e 158
160
R7.1 Must Call annotationsl o e e e e e e e 160
[27.2 Writing @MustCall/@InheritableMustCallonaclass| 161
[27.3 Assumptions aboutreflection| 161
[27.4 Type parameter bounds often need to be annotated|. 161

[28 Subtyping Checker| 163
8.1 Using the Subtyping Checker] 163

1. ompiling your qualifiers and your project| L. 164

D812 Suppressing warnings from the Subtyping CREcKen]o 164

P82 Subtyping Checker example] 164
28.3 Type aliases and typedefs| 166

[29 Third-party checkers| 168
29.1 Determinism checkerd L 168

0.2 NullAway| e e e 168

29.3 AWS crypto policy compliance checker| o 168

0.4 AWS KMS compliance checker] 169

29.5 Ul Thread Checker for ReactiveX|

29.6 Glacier: Class immutability|. 169

29.7 SQL checker that supports multiple dialects| 169

[29.12SPARTA information flow type-checker for Android| 170
29.13Checkl.T taint checken o e e 170
RO9d4EnerT checker 170
29.15Relm immutability] 171
9.16Generic Universe Typeschecker] o o o 171
D0 175afety-CIiical Java CRECKET] - » .+« « o o o e e e e e e 171
[29.18Thread locality checker] 171
29.19Units and dimensions checker] oL L L L 171
[29.20Typestate checkers| 171
[29.20.T Comparison to flow-sensitive type refinement] v v v v i it 172

30 Generics and polymorphism| 173
130.1 Generics (parametric polymorphism or type polymorphism){ 173
BOTT Rawtypes|. 173
[30.T.2 Restricting instantiation Of @ GENEriC Class| o v v v v it et e 173
130.1.3 "lype annotations on a use of a generic type variable| 175
B0.14 Annotationsonwildcardsl 175
30.1.5 Examples of qualifiers on a type parameter] 176

0.1.6 Covariant type parameters| v v i e e e e e e e e e e e e e e e e 177
B0.1.7 Method type arsument inference and type qUaliiers]. . . . « « o o o oo e e e 177
[30.1.8 The Bottom type| 178

qualifiers 1n a method

ET)ZZ Ee!atlonsﬁlﬁ to suEtzEmg ang generlcs|

[30.2.3 Using multiple polymorphic qualifiers in a method signature] 179
130.2.4 Using a single polymorphic qualifier in a method signature| 179
[30.2.5 Defining a polymorphic qualifier|. 0 00 L 181

[B0.3 Class qualifler parameters]. o v v vt i e e e e e e e e 181
3. esolving polymorphism when the receiver type has a polymorphic qualifief 181

0.3.2 Using class qualifier parameters in the typeofafield 182
B0.3.3 TLocal variable defaults for types with qUaliier pATameters] « v o oo e e 182
[30.3.4 Qualifier parameters by default|. o 183
130.3.5 Types with qualifier parameters as type arguments| 183

{31 Advanced type system features| 184
BI.T Invariant array types| o . e e e e e 184
31.2 Context-sensitive type inference for array constructors| 184
B3 Upper bound of qualificrs on uses of a given type (annotations on a class declarafion)] 185
. e effective qualifier on a type (defaults and inference)] 186
BT.5 Default qualifier or UnANNOt@ed YOS - - - » -« « e e oo e e e 186
[31.5.1 Defaultforuseofatypel e 187
[31.5.2 Controlling defaults in source code] 187
B153 Defaulting rules and CLIMB-I0T0P] . - . . - . - -« o o oo oo 188
BI34 Inherteddefaults] 189
31.5.5 Inberited wildcard annotations| L 190
[31.5.6 Default qualifiers for .class files (library defaults)| 190

[31.6.1 Annotations on constructor declarations| Lo oo 191

1.6.2 Annotations on constructor in IONS| & v v e e e e e e e e e e e e e 191
[31.7 Type refinement (flow-sensitive type qualifier inference)] 192
BI7T Type rehmement examples] - . . - . - - . - - oo 192
BT72 Type toRmement BORAVION . - - « « « « « o e e e e e e e 192
31.7.3 Which typesarerefined| 193
31.7.4 Run-time tests and type refinement]. Lo 193
[31.7.5Side effects, determinism, purity, and type refinement]. 194
BIT6 ASSErtions. o o o v e e 196

[31.8 Writing Java expressions as annotation arguments| 196
.. 198

1.10Un fieldsl e 198
1.10.1 @Un NNOLAtION| e e e e e e e e 198
[32_Suppressing warnings| 200
132.1 Q@SuppressWarnings annotation| e e e e e e e e e e e 200
[32.1.1 @SuppressWarnings Symtax|. 201
[B2.1.2 Where €SuppressWarnings canbe WIITEN] o o v v v v v e e 201
32.1.3 Good practices when suppressing warnings|o i e 202

B77 CAs5umchssert lon SN IN AN ASSGLL MESSABE .« « « « « « « « o o e e e e 203
[32.2.1 Suppressing warnings and defensive programming| 203

[32.3 -AsuppressWarnings command-lineoption| L. 205

EZE —AskiEUses an§ —AonliUses commang—!lne oﬁtlons: 205
[32.5 -AskipDefs and —AonlyDefs command-lineoptions| 205

B2.6 —ATint command-lINE OPLON|. v v v et e e e 206
[32.7 Change the specificationof amethod|. o . 206
[32.8 Don’trunthe processor| 206
[B29 Checker-specific mechanisms]. ottt t e 207
{33 Type inference] 208
[33.1 Typeinferencetools|. 208

|§§Z w Eo!e-ﬁrogram INTEIenCe|. o e 209
|§§§ Eunnmg WElole-Erogram mference on asingle project|f oL 209

[B3.3.T Requirements for whole-program INfErence SCrpts] v v v v v v v e e et 210

[33.4 Running whole-program inference on many projects| 210
[33.5 Whole-program inference that inserts annotations into source code| 211
---------------------- 212
.......................... 213
[33.6.2 Manually checking whole-program inference results| 213

[33.7 How whole-program inference works| 213
[33.8 Type inference compared to whole-program analyses| 214
[34 Annotating libraries| 215
[34.1 Tips for annotating a library| L 216
[34.1.1 Don’tchangethecode| 216
[34.12 Library annotations should reflect the specification, not the implementation] 216

EE | 3 Eegort bugsupstream| 216
[34.1:4 Fully annotate the Tibrary, or indicate which parts youdidnof] 216

B4T35 Verify your annotations]. v v v it e e 217
[34.2 Creating an annotated library| 217
34.3 Creating an annotated JDK| 218

[34.4 Compiling partially-annotated libraries|. 218

134.4.1 'The -AuseConservativeDefaultsForUncheckedCode=source, bytecode command-line |

[argument] L. 218

45 Usingstubclasses|. e e e e 219

BA5T USgastbhleo 219

5. ultiple specifications foramethod| L Lo oo 219

[34.5.3 Stub methods in subclasses of the declaringclass| 220

B454 Stbfileformatl 221

[34.5.5 Creatingastubfile] 221

. istributing stub files| L Lo 222

B435.7 Troubleshooting SWb TBTATES] . . « « » « o o o oo oo 222

[34.6 Ajavafiles|. e 223

34.6.1 Usingan Ajavafile| 223

[34.6.2 Corresponding source filesand ajavafiles|00 0. 224

4.7 Troubleshooling/debugging anmo@ed IOMAMES] . . -« .« « « o oo oo e 224

(35 _How to create a new checkerl 225

[35.1 How checkers build on the Checker Framework] 226

[35.2 Thepartsofachecker|. 226

.................................. 207

B354 Tips for creating @ ChECKen - - - » » « o o o e o oo e e 227

[35.5 Annotations: Type qualifiers and hierarchy|. 229

35.5.1 Defining the type qualifiers|. 229

.5.2 Declaratively defining the qualifier hierarchy| 230

.5.3 Procedurally defining the qualifier hierarchy|., 230

B354 Deofining the dofault aimo@lion] . - - » -+« « o o o oo oo 231

[35.5.5 RelevantJavatypes|. e 231

35.5.6 Donotre-use type qualifiers| 231

............................... 232

558 Annotations whose argument is a Java expression (dependent fype annofations)] 232

B350 Repeatable anmotalions] - - - - - - -+« + o 233

[35.6 The checker class: Compiler interface| 233

[35.6.1 Indicating supported annotations|. L L L 234

.6.2 Bundling multiple checkers| oo 234

[35.6.3 Providing command-ie OpHORY| . . . - . . - 235

JJ Vasttor: Typerules| e e 235

BSZTASTHaversall . . - - o o o oo o et e 236

[35.7.2 Avoid hardcoding|. 236

35.8 'Type factory: Type introductionrules|. 236

.8. rocedurally specifying type introductionrules| oL, 237

. ataflow: enhancing flow-sensitive type re nement: 237

B5.9.1 Delermine cxpressions o reine the yPes of] - « « « « « v o oo e 238

35.9.2 Createrequiredclass| L 238

rride meth hat handl finterest| 239

[35.9.4 Implement the refinement| Lo 239

................................ 240
35.10Annotated JDK and other annotated libraries

B5.1TTesting framework| e 241

[35.12Debugging options| L e e e e 242

[35.12.1 Amount of detail in messages| L 242

... 242

B5123Stub and IDKTBAmEs] - « « « « o v o e e oo e e e e e e e e 242

[35.12.4 Progress tracing|. o e e e e e e e e e 242

[35.12.5 Saving the command-line argumentstoafile] 243

8 ples| . . . 244

B5.12.0 Using an extemal eBUBEEH. - . . « « « + o oo e e e 244
[35.13Documenting the checker| L 245
[35.14javac implementation survival guide| 245
............................. 246
----------------- 247
B5.T5Tntcgrating a chocker with the CRecker FIamework] - - - - - - -~ oo oo oo 247
|36 Building an accumulation checker| 248
[37 Integration with external tools| 250
.. 250

[37.2 Android Studio and the Android Gradle Plugin| 0. 250
... 251
.. 252
BZ3ADLGASK . - - o o o o e 252
[37.3.1 Explanation|. 253
BTABUCK o o ot 253
[37.5 _Command line, via Checker Framework javac wrappery 254
. ommand line, via avacl ... 255
... 255
BZOZIDKTTH -« o o o tooot et e e e e e e e e 256

E 7 Z.l Usingan Anttask|. 257
[B7.772 Troubleshooting Eclipse] 257

BZEGradlel o o ot 258
... 258
[37.9.1 Running a checker on every Intellil compilation|. 258
379.2 Running a checker on every Intelll change or Save « . - . .« .« oo o oottt 258
[37.10javac diagnostics WIAPPET] v . o v v vt e e e e e 258
BZIILomboK o ot 259
[37.11.1 Annotations on generated code|. 259
[37.11.2 Type-checking code with Lombok annotations| 259
BZI2Mavenl e e 259
[37.12.1 Maven, with a locally-built version of the Checker Framework| 262
BTIBNEBEANS . . - .« « o v oot ot et e e e e 263
[37.13.1 Adding a checker via the Project Properties window| 263
[37.13.2 Adding a checker viaananttarget 263
BTIASDI o 264
... 264
137.14.2 JDK 11, for non-modularized code|. 265
B7143 Formodularized codel 265
.. 265
[37.16Type inference tools|. L e e 265

11

[38 Frequently Asked Questions (FAQs)| 266

[38.1 Motivation for pluggable type-checking] 268
38.1.1 [don’t make type errors, so would pluggable type-checking helpme? 268

1. ould T use pluggable types (type qualifiers), or should T used Java subtypes? 268

B82 Gettingstarted]. 269
[B82.T How do I get started annotating an €Xising programy] « v o v v v v o v o v oo 269
38.2.2 Which checker should I start with?[. o oo 269

using the Checker Framework slow down my program? Will it slow down the compiler? 270

138.3.4 How do I shorten the command line when mvoking a checker? 270

138.3.5 Method pre-condition contracts, including formal parameter annotations, make no sense for |

[publicmethods| 271
B84 How to handle wamnings and GITOTS] - . - . - oo oo 271
[B8.4.T What should T do if a checker issues a warning aboutmy code?] 271

138.4.2° What does a certain Checker Framework warning message mean?| 271

38.4.3 What do square brackets mean in a Checker Framework warning message?| 271

BSZE; How do I make COIIlpllatIOIl succeed even If a checker 1SSUES eITors | 272

138.4.7 Why does the checker always say there are 100 errors or warnings? 272
138.4.8 Why does the Checker Framework report an error regarding a type I have not written 1n my |
| PIOGIAMY| i 273

Eg E 9 Why does the Checker Framework accept code on one line but reject it on the next?. 273
ES.Z. T0 How can I do run-time monitoring of properties that were not statically checked? 273

B85 False pOSITVE WAININGS| o . v v e o et e e e e e e 273
[38.5.1 Whatis a “false positive” warning?| L 273
[38.5.2 How can I improve the Checker Framework to eliminate a false positive warming?. 274

8.5.3 Why doesn’t the Checker Framework infer types for fields and method return types? 274
[38.5.4 Why doesn’t the Checker Framework track relationships between variables?. 275
B8535 Why isn't the Checker Framework path-sensiive?] . . - - -+ - . .« oo 276

[38.6 Syntax of type annotations| oo e e e e e e e e e e e e 277

i S 277

38.6.2 What 1s the meaning of an annotation after a type, such as @NonNull Object @Nullable? . 278
at 1s the meaning of array annotations such as @NonNull Object @Nullable []7 278

[38.6.4 What is the meaning of varargs annotations such as GEnglish string @Nonkmpty ...J . . 278
138.6.5 What 1s the meaning of a type qualifier at a class declaration?} 278
38 6.6 How are type qualifiers written on upper and lower bounds? 278

138.7 Semantlcs of type annotat10ns| 280
38 7.1 How can I handle typestate, or phases of my program with different data properties?| 280

Eg 7 3 Eow sEou@ | annotate coge tEat uses genencsﬂ 281

[3877.4Why are type annotations declared with GRetention (RetentionPolicy.RUNTIME)] 282

12

[38.8.2 What properties can and cannot be handled by type-checking? 283
138.8.3 Why is there no declarative syntax for writing typerules?. 283
38.9 Tool qUESLIONS|. e e e e e e 283

Eggl How does pluggable type-checking work?, .. 283
Eggz Wﬁat c!assﬁatﬁ 1s needed to use an annotated library?[.o o 0oL 283

y do .class files contain more annotations than the source code? 284

138.9.4 Is there a type-checker for managing checked and unchecked exceptions?| 284

[38.9.5 The Checker Framework runs too slowly| 284
38.9.6 What does the Checker Framework version number mean?

38.10Relationship to other tools| 285

Eg IU I Wl_lz not just use a bug detector (like SpotBugs or Error Prone)? 285

. ow does the Checker Framework compare with Eclipse’s null analysis? 286

8.10.6 Is the Checker Framework an official partof Java? 287

[38°10.7 What is the relationship between the Checker Framework and JSR 3057 287
138.10.8 What 1s the relationship between the Checker Framework and JSR 3087 287

[39 Troubleshooting, getting help, and contributing| 288
[39.1 Common problems and solutions| 288
[39.1.1 Unable to compile the Checker Framework| 288
139.1.2 Unable to run the checker, or checkercrashes| 288
39.1.3 Unexpected warnings not related to type-checking| 290
(914 Unexpecied fype-checking resully] . . - . - - -« - o o oo 290
[39.1.5 Unexpected compilation output when running javac without a pluggable type-checker] 292

[39.2 How to report problems (bug reporting)] 293
2.1 Problems with ann librartes| 294

[39.3 Building from source] 294
0.3.1 Install prerequisites|. e e e e 294

390.32 Obtaimnthesource] 295
[39.3.3 Build the Checker Frameworkl 295
139.3.4 Build the Checker Framework Manual (this document)| 295
[39.3.5 Code style, IDE configuration, pull requests, etc.| 295

|§9§§ Enable continuous integration builds|. 296
9.4 Contributing] 296

[39.4.T Contributing fixes (creating a pull TEQUESD].« v v v v i e e e e 296
[39.5 Credits and changelog|. e 296
.. 297
39.7 Publications| e e e e e e e e 297

13

Chapter 1

Introduction

The Checker Framework enhances Java’s type system to make it more powerful and useful. This lets software developers
detect and prevent errors in their Java programs.

A “checker” is a compile-time tool that warns you about certain errors or gives you a guarantee that those errors do
not occur. The Checker Framework comes with checkers for specific types of errors:

(o N e Y R O R S

— =
W - O 0

14.

15.

16.
17.

18.
19.
20.
21.
22.
23.

24.
25.

. Nullness Checker for null pointer errors (see Chapter 3] page

. Initialization Checker to ensure all ¢NonNull fields are set in the constructor (see Chapter[3.8] page 1))

. Map Key Checker to track which values are keys in a map (see Chapter 4] page[52)

. Optional Checker for errors in using the Optionalltype (see Chapter[5] page

. Interning Checker for errors in equality testing and interning (see Chapter[6} page[59)

. Fake Enum Checker to allow type-safe fake enum patterns and type aliases or typedefs (see Chapter[9] page
. Tainting Checker for trust and security errors (see Chapter[I0] page

. Called Methods Checker for the builder pattern (see Chapter[7} page[65)

. Resource Leak Checker for ensuring that resources are disposed of properly (see Chapter|[8] page

. Lock Checker for concurrency and lock errors (see Chapter[T1] page[82)

. Index Checker for array accesses (see Chapter[I2] page

. Regex Checker to prevent use of syntactically invalid regular expressions (see Chapter|[I3] page[104)

. Format String Checker to ensure that format strings have the right number and type of % directives (see Chapter[I4]

page

Internationalization Format String Checker to ensure that i18n format strings have the right number and type of
{} directives (see Chapter[T3] page[I14)

Property File Checker to ensure that valid keys are used for property files and resource bundles (see Chapter [T6]
page[120)

Internationalization Checker to ensure that code is properly internationalized (see Chapter[16.2] page [121)
Signature String Checker to ensure that the string representation of a type is properly used, for example in
Class.forName (see Chapter[I7] page [I23)

GUI Effect Checker to ensure that non-GUI threads do not access the Ul, which would crash the application (see
Chapter (18] page[126)

Units Checker to ensure operations are performed on correct units of measurement (see Chapter [T9] page[131)
Signedness Checker to ensure unsigned and signed values are not mixed (see Chapter [20] page [I35))

Purity Checker to identify whether methods have side effects (see Chapter [21] page [39)

Constant Value Checker to determine whether an expression’s value can be known at compile time (see Chapter[22]
page([T41)

Reflection Checker to determine whether an expression’s value (of type Method or Class) can be known at
compile time (see Chapter [24] page [T48)

Initialized Fields Checker to ensure all fields are set in the constructor (see Chapter [3.8] page A1)

Aliasing Checker to identify whether expressions have aliases (see Chapter 26} page[T56)

14

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Optional.html

26. Must Call Checker to over-approximate the methods that should be called on an object before it is de-allocated
(see Chapter [27] page [I60)

27. Subtyping Checker for customized checking without writing any code (see Chapter 28] page

28. Third-party checkers that are distributed separately from the Checker Framework (see Chapter[29] page [T68))

These checkers are easy to use and are invoked as arguments to javac.
The Checker Framework also enables you to write new checkers of your own; see Chapters [28]and 35

1.1 How to read this manual

If you wish to get started using some particular type system from the list above, then the most effective way to read this
manual is:

e Read all of the introductory material (Chapters [TH2).

e Read just one of the descriptions of a particular type system and its checker (Chapters [3H29).

e Skim the advanced material that will enable you to make more effective use of a type system (Chapters [30H39),
so that you will know what is available and can find it later. Skip Chapter 35]on creating a new checker.

1.2 How it works: Pluggable types

Java’s built-in type-checker finds and prevents many errors — but it doesn’t find and prevent enough errors. The
Checker Framework lets you define new type systems and run them as a plug-in to the javac compiler. Your code stays
completely backward-compatible: your code compiles with any Java compiler, it runs on any JVM, and your coworkers
don’t have to use the enhanced type system if they don’t want to. You can check part of your program, or the whole
thing. Type inference tools exist to help you annotate your code; see Section [33]

Most programmers will use type systems created by other people, such as those listed at the start of the introduction
(Chapter [I] page[T4). Some people, called “type system designers”, create new type systems (Chapter 35| page [223).
The Checker Framework is useful both to programmers who wish to write error-free code, and to type system designers
who wish to evaluate and deploy their type systems.

This document uses the terms “checker” and “type-checking compiler plugin” as synonyms.

1.3 Installation

This section describes how to install the Checker Framework.

e If you use a build system that automatically downloads dependencies, such as Gradle or Maven, no installation
is necessary; just see Chapter [37] page

e If you wish to try the Checker Framework without installing it, use the Checker Framework Live Demo webpage.

e This section describes how to install the Checker Framework from its distribution. The Checker Framework
release contains everything that you need, both to run checkers and to write your own checkers.

e Alternately, you can build the latest development version from source (Section[39.3] page [294).

Requirement: You must have JDK 8 or JDK 11 installed. The Checker Framework processes code written for
either of those versions.
The installation process has two required steps and one optional step.

1. Download the Checker Framework distribution:
https://checkerframework.org/checker-framework-3.16.0.z1ip

2. Unzip it to create a checker-framework-3.16.0 directory.

3. Configure your IDE, build system, or command shell to include the Checker Framework on the classpath. Choose
the appropriate section of Chapter [37]

15

http://eisop.uwaterloo.ca/live/
https://checkerframework.org/checker-framework-3.16.0.zip

Now you are ready to start using the checkers.

We recommend that you work through the Checker Framework tutorial (https://checkerframework.org/
tutorial/)), which demonstrates the Nullness, Regex, and Tainting Checkers.

Section[I.4] walks you through a simple example. More detailed instructions for using a checker appear in Chapter 2}

The Checker Framework is released on a monthly schedule. The minor version (the middle number in the version
number) is incremented if there are any incompatibilities with the previous version, including in user-visible behavior
or in methods that a checker implementation might call.

1.4 Example use: detecting a null pointer bug

This section gives a very simple example of running the Checker Framework. There is also a tutorial (https:
//checkerframework.org/tutorial/) that you can work along with.

Let’s consider this very simple Java class. The local variable ref’s type is annotated as @NonNull, indicating that
ref must be a reference to a non-null object. Save the file as GetStarted. java.

import org.checkerframework.checker.nullness.qual.*;

public class GetStarted {
void sample() {
@NonNull Object ref = new Object();

If you run the Nullness Checker (Chapter 3)), the compilation completes without any errors.
Now, introduce an error. Modify ref’s assignment to:

@NonNull Object ref = null;
If you run the Nullness Checker again, it emits the following error:

GetStarted.java:5: incompatible types.
found : @Nullable <nulltype>
required: @NonNull Object

@NonNull Object ref = null;

A

1 error

This is a trivially simple example. Even an unsound bug-finding tool like SpotBugs or Error Prone could have
detected this bug. The Checker Framework’s analysis is more powerful than those tools and detects more code defects
than they do.

Type qualifiers such as @NonNull are permitted anywhere that you can write a type, including generics and casts;
see Section 2.1} Here are some examples:

@Interned String intern() { ... } // return value
int compareTo (@NonNull String other) { ... } // parameter
@NonNull List<@Interned String> messages; // non-null list of interned Strings

16

https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Chapter 2

Using a checker

A pluggable type-checker enables you to detect certain bugs in your code, or to prove that they are not present. The
verification happens at compile time.
Finding bugs, or verifying their absence, with a checker is a two-step process, whose steps are described in

Sections 2. 1land 2.2

1. The programmer writes annotations, such as|@NonNull/and @Interned, that specify additional information about
Java types. (Or, the programmer uses an inference tool to automatically infer annotations that are consistent with
their code: see Section[33]) It is possible to annotate only part of your code: see Section[2.4.6

2. The checker reports whether the program contains any erroneous code — that is, code that is inconsistent with
the annotations.

This chapter is structured as follows:

e Section[Z.J} How to write annotations

e Section How to run a checker

e Section What the checker guarantees
e Section[2.4} Tips about writing annotations

Additional topics that apply to all checkers are covered later in the manual:

e Chapter[3T} Advanced type system features
Chapter 32} Suppressing warnings
Chapter[34} Annotating libraries
Chapter[35} How to create a new checker
Chapter 37} Integration with external tools

There is a tutorial (https://checkerframework.org/tutorial/) that walks you through using the Checker
Framework on the command line.

2.1 Where to write type annotations

You may write a type annotation immediately before any use of a type, including in generics and casts. Because array
levels are types and receivers have types, you can also write type annotations on them. Here are a few examples of type
annotations:

@Interned String intern() { ... } // return value

int compareTo (@NonNull String other) { ... } // parameter

String toString(QTainted MyClass this) { ... } // receiver ("this" parameter)

@NonNull List<@Interned String> messages; // generics: non-null list of interned Strings
@Interned String @NonNull [] messages; // arrays: non-null array of interned Strings

myDate = (@Initialized Date) beingConstructed; // cast

17

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/interning/qual/Interned.html
https://checkerframework.org/tutorial/

You only need to write type annotations on method signatures, fields, and some type arguments. Most annotations
within method bodies are inferred for you; for more details, see Section [3_1_77}

The Java Language Specification also defines declaration annotations, such as @Deprecated and @Override, which
apply to a class, method, or field but do not apply to the method’s return type or the field’s type. They should be written
on their own line in the source code, before the method’s signature.

2.2 Running a checker

To run a checker, run the compiler javac as usual, but either pass the -processor plugin_class command-line
option, or use auto-discovery as described in Section 2.2.3] (If your project already uses auto-discovery for some
annotation processor, such as AutoValue, then you should use auto-discovery.) Two concretes example of using
-processor to run the Nullness Checker are

javac -processor nullness MyFile.java
javac -processor org.checkerframework.checker.nullness.NullnessChecker MyFile. java

where javac is as specified in Section [37.5]

You can also run a checker from within your favorite IDE or build system. See Chapter [37] for details about
build tools such as Ant (Section [37.3)), Buck (Section[37.4), Gradle (Section [37.8)), Maven (Section [37.12)), and sbt
(Section[37.14); IDEs such as Eclipse (Section[37.7)), Intelli] IDEA (Section [37.9), NetBeans (Section[37.13), and tIDE
(Section ; and about customizing other IDEs and build tools.

The checker is run on only the Java files that javac compiles. This includes all Java files specified on the command
line and those created by another annotation processor. It may also include other of your Java files, if they are more
recent than the corresponding .class file. Even when the checker does not analyze a class (say, the class was already
compiled, or source code is not available), it does check the uses of those classes in the source code being compiled.
Type-checking works modularly and intraprocedurally: when verifying a method, it examines only the signature
(including annotations) of other methods, not their implementations. When analyzing a variable use, it relies on the
type of the variable, not any dataflow outside the current method that produced the value.

After you compile your code while running a checker, the resulting .class and . jar files can be used for pluggable
type-checking of client code.

If you compile code without the -processor command-line option, no checking of the type annotations is
performed. Furthermore, only explicitly-written annotations are written to the .class file; defaulted annotations are
not, and this will interfere with type-checking of clients that use your code. Therefore, to create .class files that will
be distributed or compiled against, you should run the type-checkers for all the annotations that you have written.

2.2.1 Using annotated libraries

When your code uses a library that is not currently being compiled, the Checker Framework looks up the library’s
annotations in its class files or in a stub file.

Some projects are already distributed with type annotations by their maintainers, so you do not need to do anything
special. An example is all the libraries in|https://github.com/plume-1ib/l Over time, this should become more
common.

For some other libraries, the Checker Framework developers have provided an annotated version of the library,
either as a stub file or as compiled class files. (If some library is not available in either of these forms, you can contribute
by annotating it, which will help you and all other Checker Framework users; see Chapter [34] page[213])

Some stub files are used automatically by a checker, without any action on your part. For others, you must pass the
-Astubs=... command-line argument. As a special case, if an .astub file appears in checker/resources/, then
pass the command-line option use -Astubs=checker. jar/stubfilename.astub. The “checker. jar” should
be literal — don’t provide a path. This special syntax only works for “checker. jar”.

The annotated libraries that are provided as class files appear in the org.checkerframework.annotatedlib group
in the Maven Central Repository. The annotated library has identical behavior to the upstream, unannotated version;

18

https://github.com/plume-lib/

the source code is identical other than added annotations. (Some of the annotated libraries are bcel, commons-csv,
commons-io, guava, and java-getopt.)
To use an annotated library:

o If your project stores . jar files locally, then download the . jar file from the Maven Central Repository.
o If your project manages dependencies using a tool such as Gradle or Maven, then update your buildfile to use the
org.checkerframework.annotatedlib group. For example, in build.gradle, change

api group: ’'org.apache.bcel’, name: ’'bcel’, version: '6.3.1’
api group: ’'commons-io’, name: ’'commans-io’, version: 2.8’

to

api group: ’org.checkerframework.annotatedlib’, name: ’'bcel’, version: '6.3.1’
api group: ’org.checkerframework.annotatedlib’, name: ’commons-io’, version: ’2.8.0.1’

Usually use the same version number. (Sometimes you will use a slightly larger number, if the Checker Framework
developers have improved the type annotations since the last release by the upstream maintainers.) If a newer ver-
sion of the upstream library is available but that version is not available in org.checkerframework.annotatedlib,
then open an issue requesting that the org.checkerframework.annotatedlib version be updated.

There is one special case. If an .astub file is shipped with the Checker Framework in checker/resources/,
then you can use -Astubs=checker. jar/stubfilename.astub. The “checker.jar” should be literal — don’t
provide a path. (This special syntax only works for “checker. jar”.)

2.2.2 Summary of command-line options

You can pass command-line arguments to a checker via javac’s standard -A option (“A” stands for “annotation’).
All of the distributed checkers support the following command-line options. Each checker may support additional
command-line options; see the checker’s documentation.

To pass an option to only a particular checker, prefix the option with the canonical or simple name of a checker,
followed by an underscore “_”. Such an option will apply only to a checker with that name or any subclass of that
checker. For example, you can use

-ANullnessChecker_lint=redundantNullComparison
-Aorg.checkerframework.checker.guieffect.GuiEffectChecker_ lint=debugSpew

to pass different lint options to the Nullness and GUI Effect Checkers. A downside is that, in this example, the Nullness
Checker will issue a “The following options were not recognized by any processor” warning about the second option
and the GUI Effect Checker will issue a “The following options were not recognized by any processor” warning about
the first option.

Unsound checking: ignore some errors

e -AsuppressWarnings Suppress all errors and warnings matching the given key; see Section [32.3]

e -AskipUses, -RonlyUses Suppress all errors and warnings at all uses of a given class — or at all uses except
those of a given class. See Section[32.4]

e -AskipDefs, -AonlyDefs Suppress all errors and warnings within the definition of a given class — or everywhere
except within the definition of a given class. See Section[32.5]

e -RassumeSideEffectFree, -RassumeDeterministic, ~-AassumePure Unsoundly assume that every method
is side-effect-free, deterministic, or both; see Section [31.7.3]

e —-AassumeAssertionsAreEnabled, ~AassumeAssertionsAreDisabled Whether to assume that assertions are
enabled or disabled; see Section[31.7.6]

e -AignoreRangeOverflow Ignore the possibility of overflow for range annotations such as @IntRange; see
Section 2.4

e -Awarns Treat checker errors as warnings. If you use this, you may wish to also supply -Xmaxwarns 10000,
because by default javac prints at most 100 warnings. If you use this, don’t supply -Werror, which is a javac
argument to halt compilation if a warning is issued.

19

-AignoreInvalidAnnotationLocations Ignore annotations in bytecode that have invalid annotation locations.

More sound (strict) checking: enable errors that are disabled by default

—-AcheckPurityAnnotations Check the bodies of methods marked @SideEffectFree, @Deterministic, and
@Pure to ensure the method satisfies the annotation. By default, the Checker Framework unsoundly trusts the
method annotation. See Section

-AinvariantArrays Make array subtyping invariant; that is, two arrays are subtypes of one another only if
they have exactly the same element type. By default, the Checker Framework unsoundly permits covariant array
subtyping, just as Java does. See Section[31.1]

-AcheckCastElementType In a cast, require that parameterized type arguments and array elements are the same.
By default, the Checker Framework unsoundly permits them to differ, just as Java does. See Section[30.1.6|and
Section BT.1}

-RAuseConservativeDefaultsForUncheckedCode Enables conservative defaults, and suppresses all type-
checking warnings, in unchecked code. Takes arguments “source,bytecode”. “-source,-bytecode” is the (unsound)
default setting.

— “bytecode” specifies whether the checker should apply conservative defaults to bytecode (that is, to already-
compiled libraries); see Section [31.5.6]

— Outside the scope of any relevant @AnnotatedFor annotation, “source” specifies whether conservative
default annotations are applied to source code and suppress all type-checking warnings; see Section [34.4]

—-AconcurrentSemantics Whether to assume concurrent semantics (field values may change at any time) or
sequential semantics; see Section [38.4.5]

-AconservativeUninferredTypeArguments Whether an error should be issued if type arguments could not
be inferred and whether method type arguments that could not be inferred should use conservative defaults. By
default, such type arguments are (largely) ignored in later checks. Passing this option uses a conservative value
instead. See |Issue 979.

-AignoreRawTypeArguments=false Do not ignore subtype tests for type arguments that were inferred for a
raw type. Must also use ~AconservativeUninferredTypeArguments. See Section[30.1.1]

-processor org.checkerframework.common.initializedfields.InitializedFieldsChecker, ... En-
sure that all fields are initialized by the constructor. See Chapter 25} page[T53]

Type-checking modes: enable/disable functionality

-Alint Enable or disable optional checks; see Section [32.6]

-AsuggestPureMethods Suggest methods that could be marked @SideEffectFree, @Deterministic, or
@Pure}; see Section[31.7.5]

-AresolveReflection Determine the target of reflective calls, and perform more precise type-checking based
no that information; see Chapter[24] -AresolveReflection=debug causes debugging information to be output.
-Ainfer=output format Output suggested annotations for method signatures and fields. These annotations
may reduce the number of type-checking errors when running type-checking in the future; see Section[33.2] Using
-Ainfer=7jaifs produces . jaif files. Using -Ainfer=stubs produces .astub files. Using -Ainfer=ajava
produces .ajava files. You must also supply -Awarns, or the inference output may be incomplete.
-AshowSuppressWarningsStrings With each warning, show all possible strings to suppress that warning.
-AwarnUnneededSuppressions Issue a warning if a @SuppressWarnings did not suppress a warning issued
by the checker. This only warns about @Suppressiarnings strings that contain a checker name (Section [32.1.1).
The -ArequirePrefixInWarningSuppressions command-line argument ensures that all @SuppressWarnings
strings contain a checker name.

-AwarnUnneededSuppressionsExceptions=regex disables ~-AwarnUnneededSuppressions for @SuppressiWarnings
strings that contain a match for the regular expression. Most users don’t need this.
-ArequirePrefixInWarningSuppressions Require that the string in a warning suppression annotation begin
with a checker name. Otherwise, the suppress warning annotation does not suppress any warnings. For
example, if this command-line option is supplied, then @SuppressWarnings ("assignment™) has no effect, but
@SuppressWarnings ("nullness:assignment") does.

20

../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/framework/qual/AnnotatedFor.html
https://github.com/typetools/checker-framework/issues/979
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html

Partially-annotated libraries

e -Astubs List of stub files or directories; see Section[34.5.1]

e -AstubWarnIfNotFound, -AstubWarnIfNotFoundIgnoresClasses, -AstubWarnIfRedundantWithBytecode,
-AstubWarnNote, Warn about problems with stub files; see Section[34.5.7]

e -AmergeStubsWithSource If both a stub file and a source file for a class are available, trust both and use the
greatest lower bound of their annotations. The default behavior (without this flag) is to ignore types from the stub
file if source is available. See Section[34.3.2]

e —AuseConservativeDefaultsForUncheckedCode=source Outside the scope of any relevant €AnnotatedFor
annotation, use conservative default annotations and suppress all type-checking warnings; see Section [34.4]

Debugging

e —AprintAllQualifiers, -AprintVerboseGenerics, -Anomsgtext, ~AdumpOnErrors Amount of detail in
messages; see Section [35.12.1]

e -Adetailedmsgtext Format of diagnostic messages; see Section[35.12.2]

e -Aignorejdkastub, -ApermitMissingJdk, -AparseAllJdk, -AstubDebug Stub and JDK libraries; see Sec-
tion

e -Afilenames, ~Ashowchecks, -AshowInferenceSteps Progress tracing; see Section[35.12.4]

e -AoutputArgsToFile Output the compiler command-line arguments to a file. Useful when the command line is
generated and executed by a tool, such as a build system. This produces a standalone command line that can be
executed independently of the tool that generated it (such as a build system). That command line makes it easier
to reproduce, report, and debug issues. For example, the command line can be modified to enable attaching a

debugger. See Section[35.12.5]

e -Aflowdotdir, -Averbosecfy, -Acfgviz Draw a visualization of the CFG (control flow graph); see Sec-
tion[35.12.6

e -AresourceStats, -AatfDoNotCache, -AatfCacheSize Miscellaneous debugging options; see Section[35.12.7]

e -Aversion Print the Checker Framework version.

e -AprintGitProperties Print information about the git repository from which the Checker Framework was
compiled.

Some checkers support additional options, which are described in that checker’s manual section. For example, -Aquals
tells the Subtyping Checker (see Chapter 28) and the Fenum Checker (see Chapter [0)) which annotations to check.

Here are some standard javac command-line options that you may find useful. Many of them contain the word
“processor”, because in javac jargon, a checker is an “annotation processor”.

e -processor Names the checker to be run; see Sections[2.2]and[2.2.4] May be a comma-separated list of multiple
checkers. Note that javac stops processing an indeterminate time after detecting an error. When providing
multiple checkers, if one checker detects any error, subsequent checkers may not run.

e -processorpath Indicates where to search for the checker. This should also contain any classes used by
type-checkers, such as qualifiers used by the Subtyping Checker (see Section [28.2) and classes that define
statically-executable methods used by the Constant Value Checker (see Section[22.2.2)).

e -proc:{none,only} Controls whether checking happens; -proc:none means to skip checking; -proc:only
means to do only checking, without any subsequent compilation; see Section[2.2.3]

e -implicit:class Suppresses warnings about implicitly compiled files (not named on the command line); see
Section 373

e -J Supply an argument to the JVM that is running javac; for example, -J-Xmx2500m to increase its maximum
heap size

e —doe To “dump on error”, that is, output a stack trace whenever a compiler warning/error is produced. Useful
when debugging the compiler or a checker.

The Checker Framework does not support -~source 1.7 or earlier. You must supply -source 1.8 or later, or no
-source command-line argument, when running javac.

21

../api/org/checkerframework/framework/qual/AnnotatedFor.html

2.2.3 Checker auto-discovery

“Auto-discovery” makes the javac compiler always run an annotation processor, such as a checker plugin without
explicitly passing the -processor command-line option. This can make your command line shorter, and it ensures that
your code is checked even if you forget the command-line option.
If the javac command line specifies any -processor command-line option, then auto-discovery is disabled. This
means that if your project currently uses auto-discovery, you should use auto-discovery for the Checker Framework too.
To enable auto-discovery, place a configuration file named META-INF/services/javax.annotation.processing.Processor
in your classpath. The file contains the names of the checkers to be used, listed one per line. For instance, to run the
Nullness Checker and the Interning Checker automatically, the configuration file should contain:

org.checkerframework.checker.nullness.NullnessChecker
org.checkerframework.checker.interning.InterningChecker

You can disable this auto-discovery mechanism by passing the -proc:none command-line option to javac, which
disables all annotation processing including all pluggable type-checking.

2.2.4 Shorthand for built-in checkers

Ordinarily, javac’s -processor flag requires fully-qualified class names. When using the Checker Framework javac
wrapper (Section [37.5)), you may omit the package name and the Checker suffix. The following three commands are
equivalent:

javac -processor org.checkerframework.checker.nullness.NullnessChecker MyFile. java
javac —processor NullnessChecker MyFile. java
javac -processor nullness MyFile.java

This feature also works when multiple checkers are specified. Their names are separated by commas, with no
surrounding space. For example:

javac -processor NullnessChecker,RegexChecker MyFile. java
javac -processor nullness,regex MyFile.java

This feature does not apply to javac | @argfiles.

2.3 What the checker guarantees

A checker guarantees two things: type annotations reflect facts about run-time values, and illegal operations are not
performed.

For example, the Nullness Checker (Chapter[3) guarantees lack of null pointer exceptions (Java NullPointerException).
More precisely, it guarantees that expressions whose type is annotated with |@NonNull never evaluate to null, and it
forbids other expressions from being dereferenced.

As another example, the Interning Checker (Chapter[6) guarantees that correct equality tests are performed. More
precisely, it guarantees that every expression whose type is an @ Interned type evaluates to an interned value, and it
forbids == on other expressions.

The guarantee holds only if you run the checker on every part of your program and the checker issues no warnings
anywhere in the code. You can also verify just part of your program.

There are some limitations to the guarantee.

e A compiler plugin can check only those parts of your program that you run it on. If you compile some parts of
your program without running the checker, then there is no guarantee that the entire program satisfies the property
being checked. Some examples of un-checked code are:

— Code compiled without the -processor switch. This includes external libraries supplied as a .class file
and native methods (because the implementation is not Java code, it cannot be checked).

22

https://docs.oracle.com/javase/7/docs/technotes/tools/windows/javac.html#commandlineargfile
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/interning/qual/Interned.html

— Code compiled with the ~AskipUses, -AonlyUses, -AskipDefs or -AonlyDefs command-line arguments
(see Chapter [32).

— Dynamically generated code, such as generated by Spring or MyBatis. Its bytecode is directly generated
and run, not compiled by javac and not visible to the Checker Framework.

In each of these cases, any use of the code is checked — for example, a call to a native method must be compatible
with any annotations on the native method’s signature. However, the annotations on the un-checked code are
trusted; there is no verification that the implementation of the native method satisfies the annotations.

e You can suppress warnings, such as via the @Suppressiarnings annotation (Chapter 32} page [200). If you do
so incorrectly, the checker’s guarantee no longer holds.

e The Checker Framework is, by default, unsound in a few places where a conservative analysis would issue too
many false positive warnings. These are listed in Section [2.2.2] You can supply a command-line argument to
make the Checker Framework sound for each of these cases.

e Specific checkers may have other limitations; see their documentation for details.

In order to avoid a flood of unhelpful warnings, many of the checkers avoid issuing the same warning multiple
times. For example, consider this code:

@Nullable Object x = ...;
x.toString(); // warning
x.toString(); // no warning

The second call to toString cannot possibly throw a null pointer warning — x is non-null if control flows to the second
statement. In other cases, a checker avoids issuing later warnings with the same cause even when later code in a method
might also fail. This does not affect the soundness guarantee, but a user may need to examine more warnings after
fixing the first ones identified. (Often, a single fix corrects all the warnings.)

If you find that a checker fails to issue a warning that it should, then please report a bug (see Section [39.2).

2.4 Tips about writing annotations

Section [34.1] gives additional tips that are specific to annotating a third-party library.

2.4.1 Write annotations before you run a checker

Before you run a checker, annotate the code, based on its documentation. Then, run the checker to uncover bugs in the
code or the documentation.

Don’t do the opposite, which is to run the checker and then add annotations according to the warnings issued. This
approach is less systematic, so you may overlook some annotations. It often leads to confusion and poor results. It leads
users to make changes not for any principled reason, but to “make the type-checker happy”, even when the changes are
in conflict with the documentation or the code. Also see “Annotations are a specification”, below.

2.4.2 How to get started annotating legacy code
Annotating an entire existing program may seem like a daunting task. But, if you approach it systematically and do a
little bit at a time, you will find that it is manageable.

Start small

Start small. Focus on one specific property that matters to you; in other words, run just one checker rather than multiple
ones. You may choose a different checker for different programs. Focus on the most mission-critical or error-prone part
of your code; don’t try to annotate your whole program at first.

23

It is easiest to add annotations if you know the code or the code contains documentation. While adding annotations,
you will spend most of your time understanding the code, and less time actually writing annotations or running the
checker.

Don’t annotate the whole program, but work module by module. Start annotating classes at the leaves of the call
tree — that is, start with classes/packages that have few dependencies on other code. Annotate supertypes before you
annotate classes that extend or implement them. The reason for this rule is that it is easiest to annotate a class if the code
it depends on has already been annotated. Sections [32.4]and [32.5] give ways to skip checking of some files, directories,
or packages. Section gives advice about handling calls from annotated code into unannotated code.

When annotating, be systematic; we recommend annotating an entire class or module at a time (not just some of the
methods) so that you don’t lose track of your work or redo work. For example, working class-by-class avoids confusion
about whether an unannotated type use means you determined that the default is desirable, or it means you didn’t yet
examine that type use.

Don’t overuse pluggable type-checking. If the regular Java type system can verify a property using Java subclasses,
then that is a better choice than pluggable type-checking (see Section [38.1.2).

Annotations are a specification

When you write annotations, you are writing a specification, and you should think about them that way. Start out by
understanding the program so that you can write an accurate specification. Sections [2.4.3|and [2.4.4] give more tips about
writing specifications.

For each class, read its Javadoc. For instance, if you are adding annotations for the Nullness Checker (Section [3),
then you can search the documentation for “null” and then add @Nullable anywhere appropriate. Start by annotating
signatures and fields, but not method bodies. The only reason to even read the method bodies yet is to determine
signature annotations for undocumented methods — for example, if the method returns null, you know its return type
should be annotated @Nullable, and a parameter that is compared against null may need to be annotated @Nullable.

The specification should state all facts that are relevant to callees. When checking a method, the checker uses
only the specification, not the implementation, of other methods. (Equivalently, type-checking is “modular” or
“intraprocedural”.) When analyzing a variable use, the checker relies on the type of the variable, not any dataflow
outside the current method that produced the value.

After you have annotated all the signatures, run the checker. Then, fix bugs in code and add/modify annotations
as necessary. Don’t get discouraged if you see many type-checker warnings at first. Often, adding just a few missing
annotations will eliminate many warnings, and you’ll be surprised how fast the process goes overall (assuming that you
understand the code, of course).

It is usually not a good idea to experiment with adding and removing annotations in order to understand their
effect. It is better to reason about the desired design. However, to avoid having to manually examine all callees, a more
automated approach is to save the checker output before changing an annotation, then compare it to the checker output
after changing the annotation.

Chapter [34]tells you how to annotate libraries that your code uses. Section[2.4.5]and Chapter [32]tell you what to do
when you are unable to eliminate checker warnings by adding annotations.

Write good code

Avoid complex code, which is more error-prone. If you write your code to be simple and clear enough for the type-
checker to verify, then it will also be easier for programmers to understand. When you verify your code, a side benefit
is improving your code’s structure.

Your code should compile cleanly under the regular Java compiler. As a specific example, your code should not
use raw types like List; use parameterized types like List<String> instead (Section[30.1.1)). If you suppress Java
compiler warnings, then the Checker Framework will issue more warnings, and its messages will be more confusing.
(Also, if you are not willing to write code that type-checks in Java, then you might not be willing to use an even more
powerful type system.)

Do not write unnecessary annotations.

24

e Do not annotate local variables unless necessary. The checker infers annotations for local variables (see
Section [31.7). Usually, you only need to annotate fields and method signatures. You should add annotations
inside method bodies only if the checker is unable to infer the correct annotation (usually on type arguments or
array element types, rather than on top-level types).

e Do not write annotations that are redundant with defaults. For example, when checking nullness (Chapter 3]
page[30), the default annotation is @NonNull, in most locations other than some type bounds (Section[31.5.3).
When you are starting out, it might seem helpful to write redundant annotations as a reminder, but that’s like
when beginning programmers write a comment about every simple piece of code:

// The below code increments variable i by adding 1 to it.

i++;

As you become comfortable with pluggable type-checking, you will find redundant annotations to be distracting
clutter, so avoid putting them in your code in the first place.

e Avoid writing @SuppressWarnings annotations unless there is no alternative. It is tempting to think that your
code is right and the checker’s warnings are false positives. Sometimes they are, but slow down and convince
yourself of that before you dismiss them. Section [2.4.5]discusses what to do when a checker issues a warning
about your code.

2.4.3 Annotations indicate non-exceptional behavior

You should use annotations to specify normal behavior. The annotations indicate all the values that you want to flow to
a reference — not every value that might possibly flow there if your program has a bug.

Methods that crash when passed certain values

Nullness example As an example, consider the Nullness Checker. Its goal is to guarantee that your program does not
crash due to a null value.
This method crashes if null is passed to it:

/** Qthrows NullPointerException if arg is null */
void ml (Object arg) {
arg.toString();

}

Therefore, the type of arg should be @NonNull Object (which you can write as just Object, because @NonNull is the
default). The Nullness Checker (Chapter [3] page prevents null pointer exceptions by warning you whenever a client
passes a value that might cause m1 to crash.

Here is another method:

/** @throws NullPointerException if arg is null */
void m2 (Object arg) {
Objects.requireNonNull (arg);

Method m2 behaves just like m1 in that it throws Nul1lPointerException if a client passes null. Therefore, their
specifications should be identical (the argument is @NonNull), so the checker will issue the same warning if a client
might pass null.

The same argument applies to any method that is guaranteed to throw an exception if it receives null as an argument.
Examples include:

25

com.google.common.base.Preconditions.checkNotNull (Object)
java.lang.Double.valueOf (String)
java.lang.Objects.requireNonNull (Object)
java.lang.String.contains (CharSequence)
org.junit.Assert.assertNotNull (Object)

Their formal parameter type is annotated as @NonNull, because otherwise the program might crash. Adding a call
to a method like requireNonNull never prevents a crash: your code still crashes, but with a slightly different stack
trace. In order to prevent all exceptions in your program caused by null pointers, you need to prevent those thrown by
methods including requireNonNull.

(One might argue that the formal parameter should be annotated as @Nullable because passing null has a well-
defined semantics (throw an exception) and such an execution may be possible if your program has a bug. However, it
is never the programmer’s intent for null to flow there. Preventing such bugs is the purpose of the Nullness Checker.)

A method like requireNonNull is useless for making your code correct, but it does have a benefit: its stack trace
may help developers to track down the bug. (For users, the stack trace is scary, confusing, and usually non-actionable.)
But if you are using the Checker Framework, you can prevent errors rather than needing extra help in debugging the
ones that occur at run time.

Optional example Another example is the Optional Checker (Chapter [5] page and the orElseThrow|/ method.
The goal of the Optional Checker is to ensure that the program does not crash due to use of a non-present Optional
value. Therefore, the receiver of orElseThrow is annotated as @Present, and the Optional Checker issues a warning if
the client calls orElseThrow on a|@MaybePresent|value.

Permitting crashes in called methods You can make a checker ignore crashes in library code (such as assertNotNull ())
that occur as a result of misuse by your code. This invalidates the checker’s guarantee that your program will not crash.
(Programmers and users typically care about all crashes, no matter which method is at the top of the call stack when the
exception is thrown.) The checker will still warn you about crashes in your own code.

e The -AskipUses command-line argument (Section [32.4) skips checking all method calls to one or more classes.

o A stub file (Section@]) can override the library’s annotations, for one or more methods.

e Don’t type-check clients of the method. For example, JUnit’s assertNotNull () is typically called only in test
code; its clients are the tests. If you type-check only your main program, then the annotation on assertNotNull ()
is irrelevant.

Methods that sometimes crash when passed certain values

If a method can possibly throw an exception because its parameter is null, then that parameter’s type should be
@NonNull, which guarantees that the type-checker will issue a warning for every client use that has the potential to
cause an exception. Don’t write @Nullable on the parameter just because there exist some executions that don’t
necessarily throw an exception.

2.4.4 Subclasses must respect superclass annotations

An annotation indicates a guarantee that a client can depend upon. A subclass is not permitted to weaken the contract;
for example, if a method accepts null as an argument, then every overriding definition must also accept null. A
subclass is permitted to strengthen the contract; for example, if a method does not accept null as an argument, then an
overriding definition is permitted to accept null.

As a bad example, consider an erroneous @Nullable annotation in
com/google/common/collect/Multiset. java:

101 public interface Multiset<E> extends Collection<E> {

26

../api/org/checkerframework/checker/nullness/qual/Nullable.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Optional.html#orElseThrow()
../api/org/checkerframework/checker/optional/qual/Present.html
../api/org/checkerframework/checker/optional/qual/MaybePresent.html
https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/Multiset.java#L129

122 /**

123 * Adds a number of occurrences of an element to this multiset.

129 * @param element the element to add occurrences of; may be {@code null} only
130 * if explicitly allowed by the implementation

137 * @throws NullPointerException if {@code element} is null and this

138 * implementation does not permit null elements. Note that if {@code

139 * occurrences} is zero, the implementation may opt to return normally.
140 */

141 int add(@Nullable E element, int occurrences);

There exist implementations of Multiset that permit null elements, and implementations of Multiset that do not
permit null elements. A client with a variable Multiset ms does not know which variety of Multiset ms refers to.
However, the @Nullable annotation promises that ms.add (null, 1) is permissible. (Recall from Section@]that
annotations should indicate normal behavior.)

If parameter element on line 141 were to be annotated, the correct annotation would be @NonNull. Suppose a
client has a reference to same Multiset ms. The only way the client can be sure not to throw an exception is to pass only
non-null elements to ms.add (). A particular class that implements Multiset could declare add to take a @Nullable
parameter. That still satisfies the original contract. It strengthens the contract by promising even more: a client with
such a reference can pass any non-null value to add (), and may also pass null.

However, the best annotation for line 141 is no annotation at all. The reason is that each implementation of the
Multiset interface should specify its own nullness properties when it specifies the type parameter for Multiset. For
example, two clients could be written as

class MyNullPermittingMultiset implements Multiset<@Nullable Object> { ... }
class MyNullProhibitingMultiset implements Multiset<@NonNull Object> { ... }

or, more generally, as

class MyNullPermittingMultiset<E extends @Nullable Object> implements Multiset<E> { ... }
class MyNullProhibitingMultiset<E extends @NonNull Object> implements Multiset<E> { ... }

Then, the specification is more informative, and the Checker Framework is able to do more precise checking, than if
line 141 has an annotation.

It is a pleasant feature of the Checker Framework that in many cases, no annotations at all are needed on type
parameters such as E in MultiSet.

2.4.5 What to do if a checker issues a warning about your code

When you run a type-checker on your code, it is likely to issue warnings or errors. Don’t panic! If you have trouble
understanding a Checker Framework warning message, you can search for its text in this manual. There are three
general causes for the warnings:

You found a bug There is a bug in your code, such as a possible null dereference. Fix your code to prevent that crash.
Wrong annotations The annotations are too strong (they are incorrect) or too weak (they are imprecise). Improve
the annotations, usually by writing more annotations in order to better express the specification. Only write
annotations that accurately describe the intended behavior of the software — don’t write inaccurate annotations
just for the purpose of eliminating type-checker warnings.
Usually you need to improve the annotations in your source code. Sometimes you need to improve annotations in
a library that your program uses (see Chapter [34] page[213).

27

Type-checker weakness There is a weakness in the type-checker. Your code is safe — it never suffers the error at run
time — but the checker cannot prove this fact. (The checker is not omniscient, and it works modularly: when
type-checking a method m, it relies on the types, but not the code, of variables and methods used by m.)

If possible, rewrite your code to be simpler for the checker to analyze; this is likely to make it easier for people to
understand, too. If that is not possible, suppress the warning (see Chapter[32] page[200); be sure to include a code
comment explaining how you know the code is correct even though the type-checker cannot deduce that fact.
(Do not add an if test that can never fail, just to suppress a warning. Adding a gratuitous if clutters the code
and confuses readers. A reader should assume that every if condition can evaluate to true or false. There is one
exception to this rule: an 1f test may have a condition that you think will never evaluate to true, if its body just
throws a descriptive error message.)

For each warning issued by the checker, you need to determine which of the above categories it falls into. Here is an
effective methodology to do so. It relies mostly on manual code examination, but you may also find it useful to write
test cases for your code or do other kinds of analysis, to verify your reasoning. (Also see Section[39.1.4]and Chapter [39]
Troubleshooting. In particular, Section [39.1.4]explains this same methodology in different words.)

Step 1: Explain correctness: write a proof Write an explanation of why your code is correct and it never suffers
the error at run time. In other words, this is an informal proof that the type-checker’s warning is incorrect. Write it in
natural language (e.g., English).

Don’t skip any steps in your proof. (For example, don’t write an unsubstantiated claim such as “x is non-null here”;
instead, give a justification.) Don’t let your reasoning rely on facts that you do not write down explicitly. For example,
remember that calling a method might change the values of object fields; your proof might need to state that certain
methods have no side effects.

If you cannot write a proof, then there is a bug in your code (you should fix the bug) or your code is too complex for
you to understand (you should improve its documentation and/or design).

Step 2: Translate the proof into annotations. Here are some examples of the translation.

o If your proof includes “variable x is never null at run time”, then annotate x’s type with @NonNull.

o If your proof includes “method foo always returns a legal regular expression”, then annotate foo’s return type
with |@Regex.

e If your proof includes “if method join’s first argument is non-null, then join returns a non-null result”, then
annotate join’s first parameter and return type with|@PolyNull,

o If your proof includes “method processOptions has already been called and it set field tz1”, then annotate
processOptions’s declaration with|@EnsuresNonNull ("tz1").

e If your proof includes “method isEmpty returned false, so its argument must have been non-null”, then annotate
isEmpty’s declaration with @EnsuresNonNullIf|(expression="#1", result=false).

e If your proof includes “method m has no side effects”, then annotate m’s declaration with @SideEffectFree,

e If your proof includes “each call to method m returns the same value”, then annotate m’s declaration with
@Deterministicl

All of these are examples of correcting weaknesses in the annotations you wrote. The Checker Framework provides
many other powerful annotations; you may be surprised how many proofs you can express in annotations. If you need
to annotate a method that is defined in a library that your code uses, see Chapter[34} page

Don’t omit any parts of your proof. When the Checker Framework analyzes a method, it examines only the
specifications (not the implementations) of other methods.

If there are complex facts in your proof that cannot be expressed as annotations, then that is a weakness in the
type-checker. For example, the Nullness Checker cannot express “in list 1st, elements stored at even indices are always
non-null, but elements stored at odd elements might be null.” In this case, you have two choices. First, you can
suppress the warning (Chapter [32] page 200); be sure to write a comment explaining your reasoning for suppressing the
warning. You may wish to submit a feature request (Section [39.2) asking for annotations that handle your use case.
Second, you can rewrite the code to make the proof simpler; in the above example, it might be better to use a list of
pairs rather than a heterogeneous list.

28

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/regex/qual/Regex.html
../api/org/checkerframework/checker/nullness/qual/PolyNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html

Step 3: Re-run the checker At this point, all the steps in your proof have been formalized as annotations. Re-run
the checker and repeat the process for any new or remaining warnings.

If every step of your proof can be expressed in annotations, but the checker cannot make one of the deductions (it
cannot follow one of the steps), then that is a weakness in the type-checker. First, double-check your reasoning. Then,
suppress the warning, along with a comment explaining your reasoning (Chapter 32} page[200). The comment is an
excerpt from your informal proof, and the proof guides you to the best place to suppress the warning. Please submit a
bug report so that the checker can be improved in the future (Section [39.2)).

2.4.6 Calls to unannotated code (legacy libraries)

Sometimes, you wish to type-check only part of your program. You might focus on the most mission-critical or
error-prone part of your code. When you start to use a checker, you may not wish to annotate your entire program right
away. You may not have enough knowledge to annotate poorly-documented libraries that your program uses. Or, the
code you are annotating may call into unannotated libraries.

If annotated code uses unannotated code, then the checker may issue warnings. For example, the Nullness Checker
(Chapter 3) will warn whenever an unannotated method result is used in a non-null context:

@NonNull myvar = unannotated_method(); // WARNING: unannotated_method may return null

If the call can return null, you should fix the bug in your program by removing the |@NonNull|annotation in your
own program.
If the call never returns null, you have two choices: annotate the library or suppress warnings.

1. To annotate the library:

o If the unannotated code is in your program, you can write annotations but not type-check them yet. Two
ways to prevent the type-checking are via a @SuppressWarnings annotation (Section [32.1)) or by not
running the checker on that file, for example via the ~AskipDefs command-line option (Section [32.5).

e To annotate a library whose source code you do not have or cannot change, see Chapter [34]

2. To suppress all warnings related to uses of unannotated_method, use the ~AskipUses command-line option
(see Section [32.4). Beware: a carelessly-written regular expression may suppress more warnings than you intend.

29

../api/org/checkerframework/checker/nullness/qual/NonNull.html

Chapter 3

Nullness Checker

If the Nullness Checker issues no warnings for a given program, then running that program will never throw a null
pointer exception. In other words, the Nullness Checker prevents all Nul1PointerExceptions. See Section [3.1]for
more details about the guarantee and what is checked.

The most important annotations supported by the Nullness Checker are @NonNull and|@Nullable, |@NonNull|is
rarely written, because it is the default. All of the annotations are explained in Section [3.2]

To run the Nullness Checker, supply the -processor org.checkerframework.checker.nullness.NullnessChecker
command-line option to javac. For examples, see Section[3.5]

The NullnessChecker is actually an ensemble of three pluggable type-checkers that work together: the Nullness
Checker proper (which is the main focus of this chapter), the Initialization Checker (Section [3.8)), and the Map Key
Checker (Chapter[d] page[52). Their type hierarchies are completely independent, but they work together to provide
precise nullness checking.

3.1 What the Nullness Checker checks

The checker issues a warning in these cases:

1. When an expression of non-@NonNull|type is dereferenced, because it might cause a null pointer exception.
Dereferences occur not only when a field is accessed, but when an array is indexed, an exception is thrown, a lock
is taken in a synchronized block, and more. For a complete description of all checks performed by the Nullness
Checker, see the Javadoc for NullnessVisitor.

2. When an expression of @NonNull|type might become null, because it is a misuse of the type: the null value could
flow to a dereference that the checker does not warn about.

As a special case of an of |@NonNull|type becoming null, the checker also warns whenever a field of @NonNull
type is not initialized in a constructor.

This example illustrates the programming errors that the checker detects:

@Nullable Object obj; // might be null
@NonNull Object nnobj; // never null

obj.toString() // checker warning: dereference might cause null pointer exception

nnobj = obj; // checker warning: nnobj may become null
if (nnobj == null) // checker warning: redundant test

Parameter passing and return values are checked analogously to assignments.
The Nullness Checker also checks the correctness, and correct use, of initialization (see Section [3.8) and of map key
annotations (see Chapter [page[52).

30

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/NullnessVisitor.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

The checker performs additional checks if certain ~Alint command-line options are provided. (See Section[32.6]
for more details about the -A1int command-line option.)
Section [2.3|notes some limitations to guarantees made by the Checker Framework.

3.1.1 Nullness Checker optional warnings

1. Options that control soundness:

e If you supply the -Alint=soundArrayCreationNullness command-line option, then the checker warns
if it encounters an array creation with a non-null component type. See Section [3.3.4]for a discussion.

e If you supply the -Astubs=collection-object-parameters-may-be-null.astub command-line op-
tion, then in JDK collection classes, the checker unsoundly permits null as an argument for any key or value
formal parameter whose type is Object (instead of the element type). See Section[3.4.2]

e If you supply the -Alint=trustArrayLenZero command-line option, then the checker will trust @ArrayLen|(
0) annotations. See Section [3.3.3]for a discussion.

o If you supply the -AassumeKeyFor command-line option, then the checker will unsoundly assume that the
argument to Map.get is a key for the receiver map. It will not do any checking of |@KeyFor|and related
qualifiers.

2. Options that warn about poor code style:

e If you supply the -Alint=redundantNullComparison command-line option, then the checker warns
when a null check is performed against a value that is guaranteed to be non-null, as in ("m" == null).
Such a check is unnecessary and might indicate a programmer error or misunderstanding. The lint option is
disabled by default because sometimes such checks are part of ordinary defensive programming.

3. Options that enable checking modes:

o If you supply the -Alint=permitClearProperty command-line option, then the checker permits calls

to System.setProperties ()|and calls to System.clearProperty|that might clear one of the built-in
properties.
By default, the checker forbids calls to those methods, and also special-cases type-checking of calls to
System.getProperty () and|System.setProperties (). A call to one of these methods can return null
in general, but by default the Nullness Checker treats it as returning non-null if the argument is one of the
literal strings listed in the documentation of System.getProperties (). To make this behavior sound, the
Nullness Checker forbids calls that might clear any built-in property, as described above.

3.2 Nullness annotations

The Nullness Checker uses three separate type hierarchies: one for nullness, one for initialization (Section[3.8), and one
for map keys (Chapter 4] page[52) The Nullness Checker has four varieties of annotations: nullness type qualifiers,
nullness method annotations, initialization type qualifiers, and map key type qualifiers.

3.2.1 Nullness qualifiers

The nullness hierarchy contains these qualifiers:

@Nullable| indicates a type that includes the null value. For example, the Java type Boolean is nullable: a variable of
type Boolean always has one of the values TRUE, FALSE, or null. (Since @NonNull is the default type annotation,
you would actually write this type as @Nullable Boolean.)

@NonNull indicates a type that does not include the null value. The type boolean is non-null; a variable of type
boolean always has one of the values true or false. The type @NonNull Boolean is also non-null: a variable
of type @NonNull Boolean always has one of the values TRUE or FALSE — never null. Dereferencing an
expression of non-null type can never cause a null pointer exception.

The @NonNull annotation is rarely written in a program, because it is the default (see Section [3.3.2).

31

../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/System.html#getProperties()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/System.html#clearProperty(java.lang.String)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/System.html#getProperty(java.lang.String,java.lang.String)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/System.html#setProperties(java.util.Properties)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/System.html#getProperties()
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

@Nullable Object

/\

@NonNull Object @Nullable Date

— —r

@NonNull Date

Figure 3.1: Partial type hierarchy for the Nullness type system. Java’s Object is expressed as @Nullable Object.
Programmers can omit most type qualifiers, because the default annotation (Section [3.3.2) is usually correct. The
Nullness Checker verifies three type hierarchies: this one for nullness, one for initialization (Section[3.8)), and one for

map keys (Chapter[d] page[52).

@PolyNull| indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section[30.2]
@MonotonicNonNull indicates a reference that may be null, but if it ever becomes non-null, then it never
becomes null again. This is appropriate for lazily-initialized fields, for field initialization that occurs in a
lifecycle method other than the constructor (e.g., an override of android.app.Activity.onCreate), and other
uses. @MonotonicNonNull is typically written on field types, but not elsewhere.
The benefit of @MonotonicNonNull over @Nullable is that after a check of a @MonotonicNonNull field, all
subsequent accesses within that method can be assumed to be @NonNull, even after arbitrary external method
calls that have access to the given field. By contrast, for a @Nullable field, the Nullness Checker assumes that
most method calls might set it to null. (Exceptions are calls to methods that are €SideEffectFree or that have
an|@EnsuresNonNull or @EnsuresNonNullIf annotation.)
A @MonotonicNonNull field may be initialized to null, but the field may not be assigned to null anywhere else in
the program. If you supply the noInitForMonotonicNonNull lint flag (for example, supply ~Alint=noInitForMonotonicNonNu.
on the command line), then @MonotonicNonNull fields are not allowed to have initializers at their declarations.
Use of @MonotonicNonNull on a static field is a code smell: it may indicate poor design. You should consider
whether it is possible to make the field a member field that is set in the constructor.
In the type system, @MonotonicNonNull is a supertype of @NonNull and a subtype of @Nullable.

Figure [3.1] shows part of the type hierarchy for the Nullness type system. (The annotations exist only at compile
time; at run time, Java has no multiple inheritance.)

3.2.2 Nullness method annotations

The Nullness Checker supports several annotations that specify method behavior. These are declaration annotations, not
type annotations: they apply to the method itself rather than to some particular type.

Q@RequiresNonNull| indicates a method precondition: The annotated method expects the specified variables to be
non-null when the method is invoked. Don’t use this for formal parameters (just annotate their type as @NonNull).
@RequiresNonNull is appropriate for a field that is @Nullable in general, but some method requires the field to
be non-null.

@EnsuresNonNull

@EnsuresNonNullIf indicates a method postcondition. With @EnsuresNonNull, the given expressions are
non-null after the method returns; this is useful for a method that initializes a field, for example. With
@EnsuresNonNullIf, if the annotated method returns the given boolean value (true or false), then the given
expressions are non-null. See Section and the Javadoc for examples of their use.

32

../api/org/checkerframework/checker/nullness/qual/PolyNull.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

3.2.3 Initialization qualifiers

The Nullness Checker invokes an Initialization Checker, whose annotations indicate whether an object is fully initialized
— that is, whether all of its fields have been assigned.

@Initialized
@UnknownInitialization
@UnderInitialization

Use of these annotations can help you to type-check more code. Figure[3.3]shows its type hierarchy. For details, see
Section[3.8]

3.2.4 Map key qualifiers

dKeyFor

indicates that a value is a key for a given map — that is, indicates whether map.containsKey (value) would evaluate
to true.

This annotation is checked by a Map Key Checker (Chapter [d] page[52)) that the Nullness Checker invokes. The
@KeyFor|annotation enables the Nullness Checker to treat calls to Map. get| precisely rather than assuming it may
always return null. In particular, a call mymap.get (mykey) returns a non-null value if two conditions are satisfied:

1. mymap’s values are all non-null; that is, mymap was declared as Map<KeyType, @NonNull ValueType>.
Note that @NonNull is the default type, so it need not be written explicitly.

2. mykey is a key in mymap; that is, mymap.containsKey (mykey) returns true. You express this fact to the
Nullness Checker by declaring mykey as @KeyFor ("mymap") KeyType mykey. For a local variable, you
generally do not need to write the @KeyFor ("mymap") type qualifier, because it can be inferred.

If either of these two conditions is violated, then mymap.get (mykey) has the possibility of returning null.

The command-line argument -AassumeKeyFor makes the Nullness Checker not run the Map Key Checker. The
Nullness Checker will unsoundly assume that the argument to Map.get is a key for the receiver map. That is, the
second condition above is always considered to be true.

3.3 Writing nullness annotations

3.3.1 Implicit qualifiers

The Nullness Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code (see
Section [31.4). For example, enum types are implicitly non-null, so you never need to write @NonNull MyEnumType.
If you want details about implicitly-added nullness qualifiers, see the implementation of NullnessAnnotatedTypeFactoryl

3.3.2 Default annotation

Unannotated references are treated as if they had a default annotation. All types default to @NonNull, except that
@Nullable is used for casts, locals, instanceof, and implicit bounds (see Section @]) A user can choose a different
defaulting rule by writing a @DefaultQualifier annotation on a package, class, or method. In the example below,
fields are defaulted to @Nullable instead of @NonNull.

@DefaultQualifier (value = Nullable.class, locations = TypeUseLocation.FIELD)
class MyClass {

Object nullableField = null;

@NonNull Object nonNullField = new Object();

33

../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Map.html#get(java.lang.Object)
../api/org/checkerframework/checker/nullness/NullnessAnnotatedTypeFactory.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html

3.3.3 Conditional nullness

The Nullness Checker supports a form of conditional nullness types, via the @EnsuresNonNullIf method annotations.
The annotation on a method declares that some expressions are non-null, if the method returns true (false, respectively).

Consider|java.lang.Class. Method Class.getComponentType () may return null, but it is specified to return a
non-null value if Class.isArray ()|is true. You could declare this relationship in the following way (this particular
example is already done for you in the annotated JDK that comes with the Checker Framework):

class Class<T> {
@EnsuresNonNullIf (expression="getComponentType ()", result=true)
public native boolean isArray();

public native @Nullable Class<?> getComponentType () ;

A client that checks that a Class reference is indeed that of an array, can then de-reference the result of
Class.getComponentType safely without any nullness check. The Checker Framework source code itself uses
such a pattern:

if (clazz.isArray()) {
// no possible null dereference on the following line
TypeMirror componentType = typeFromClass(clazz.getComponentType());

}

Another example is Queue . peek and |Queue.poll, which return non-null if |1 sEmpty returns false.

The argument to @EnsuresNonNullIf is a Java expression, including method calls (as shown above), method
formal parameters, fields, etc.; for details, see Section[31.8] More examples of the use of these annotations appear in the
Javadoc for @EnsuresNonNullIfl

3.3.4 Nullness and array initialization

Suppose that you declare an array to contain non-null elements:
Object [] oa = new Object[10];

(recall that Object means the same thing as @NonNull Object). By default, the Nullness Checker unsoundly permits
this code.

To make the Nullness Checker conservatively reject code that may leave a non-null value in an array, use the
command-line option -Alint=soundArrayCreationNullness. The option is currently disabled because it makes the
checker issue many false positive errors.

With the option enabled, you can write your code to create a nullable or lazy-nonnull array, initialize each component,
and then assign the result to a non-null array:

@MonotonicNonNull Object [] temp = new @MonotonicNonNull Object[10];
for (int 1 = 0; 1 < temp.length; ++1i) {

temp[i] = new Object();
}
@SuppressWarnings ("nullness") // temp array is now fully initialized
@NonNull Object [] oa = temp;

Note that the checker is currently not powerful enough to ensure that each array component was initialized.

Therefore, the last assignment needs to be trusted: that is, a programmer must verify that it is safe, then write a
@SuppressWarnings annotation.

34

../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Class.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Class.html#getComponentType()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Class.html#isArray()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Queue.html#peek()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Queue.html#poll()
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html#isEmpty()
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

3.3.5 Nullness and conversions from collections to arrays

The semantics of |Collection.toArray (T[])|cannot be captured by the nullness type system syntax. The nullness
type of the returned array depends on the size of the passed parameter. In particular, the returned array component is of
type @NonNull if the following conditions hold:

e The receiver collection’s type argument (that is, the element type) is @NonNull, and
o The passed array size is less than or equal to the collection size. The Nullness Checker uses these heuristics to
handle the most common cases:

— the argument has length O:

* an empty array initializer, e.g. c.toArray (new String[] {}),or
* array creation tree of size 0, e.g. c.toArray (new String[0]).

— array creation tree with a collection size () method invocation as argument c.toArray (new String[c.size()]).

Additionally, when you supply the ~Alint=trustArrayLenZero command-line option, acall to Collection.toArray
will be estimated to return an array with a non-null component type if the argument is a field access where the field
declaration has a|@ArrayLen (0) annotation. This trusts the @ArrayLen (0) annotation, but does not verify it. Run the
Constant Value Checker (see Chapter 22] page [I41)) to verify that annotation.

Note: The nullness of the returned array doesn’t depend on the passed array nullness. This is a fact about
Collection.toArray (T[]), not a limitation of this heuristic.

3.3.6 Run-time checks for nullness

When you perform a run-time check for nullness, such as if (x != null) ..., then the Nullness Checker refines the
type of x to @NonNull. The refinement lasts until the end of the scope of the test or until x may be side-effected. For
more details, see Section[31.7}

3.3.7 Inference of @NonNull and @Nullable annotations

It can be tedious to write annotations in your code. Tools exist that can automatically infer annotations and insert them
in your source code. (This is different than type qualifier refinement for local variables (Section [31.7), which infers a
more specific type for local variables and uses them during type-checking but does not insert them in your source code.
Type qualifier refinement is always enabled, no matter how annotations on signatures got inserted in your source code.)

Your choice of tool depends on what default annotation (see Section [3.3.2)) your code uses. You only need one of
these tools.

e Inference of @Nullable: If your code uses the standard CLIMB-to-top default (Section[31.5.3)) or the NonNull
default, then use the AnnotateNullable tool of the Daikon invariant detector.
e Inference of |@NonNull: If your code uses the Nullable default (this is unusual), use one of these tools:

— Nit: Nullability Inference Tool,
— Non-null checker and inferencer of the JastAdd Extensible Compiler.

3.4 Suppressing nullness warnings

When the Nullness Checker reports a warning, it’s best to change the code or its annotations, to eliminate the warning.
Alternately, you can suppress the warning, which does not change the code but prevents the Nullness Checker from
reporting this particular warning to you.

The Checker Framework supplies several ways to suppress warnings, most notably the
@SuppressWarnings ("nullness") annotation (see Chapter[32). An example use is

35

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html#toArray(T[])
../api/org/checkerframework/common/value/qual/ArrayLen.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html#toArray(T[])
../api/org/checkerframework/checker/nullness/qual/Nullable.html
http://plse.cs.washington.edu/daikon/download/doc/daikon.html#AnnotateNullable
http://plse.cs.washington.edu/daikon/
../api/org/checkerframework/checker/nullness/qual/NonNull.html
http://nit.gforge.inria.fr
https://jastadd.cs.lth.se/jastadd-tutorial-examples/non-null-types-for-java/
https://jastadd.cs.lth.se/

// might return null
@Nullable Object getObject(...) { ... }

void myMethod () {
@SuppressWarnings ("nullness") // with argument x, getObject always returns a non-null value
@NonNull Object 02 = getObject (x);

The Nullness Checker supports an additional warning suppression string, nullness:generic.argument. Use of
@SuppressWarnings ("nullness:generic.argument™) causes the Nullness Checker to suppress warnings related
to misuse of generic type arguments. One use for this key is when a class is declared to take only @NonNull type
arguments, but you want to instantiate the class with a @Nullable type argument, as in List<@Nullable Object>.

The Nullness Checker also permits you to use assertions or method calls to suppress warnings; see below.

3.4.1 Suppressing warnings with assertions and method calls

Occasionally, it is inconvenient or verbose to use the @SuppressWarnings annotation. For example, Java does
not permit annotations such as @SuppressWarnings to appear on statements. In such cases, you can use the
@AssumeAssertion string in an assert message (see Section[32.2)).

If you need to suppress a warning within an expression, then sometimes writing an assertion is not convenient. In
such a case, you can suppress warnings by writing a call to the NullnessUtil.castNonNull method. The rest of this
section discusses the castNonNull method.

The Nullness Checker considers both the return value, and also the argument, to be non-null after the castNonNull
method call. The Nullness Checker issues no warnings in any of the following code:

// One way to use castNonNull as a cast:
@NonNull String s = castNonNull (possiblyNulll);

// Another way to use castNonNull as a cast:
castNonNull (possiblyNull2) .toString();

// It is possible, but not recommmended, to use castNonNull as a statement:
// (It would be better to write an assert statement with @AssumeAssertion
// in its message, instead.)

castNonNull (possiblyNull3);

possiblyNull3.toString();

The castNonNull method throws AssertionError if Java assertions are enabled and the argument is null.
However, it is not intended for general defensive programming; see Section [32.2.1]
To use the castNonNull method, the checker-util. jar file must be on the classpath at run time.

The Nullness Checker introduces a new method, rather than re-using
an existing method such as org.junit.Assert.assertNotNull (Object) or
com.google.common.base.Preconditions.checkNotNull (Object). Those methods are commonly used

for defensive programming, so it is impossible to know the programmer’s intent when writing them. Therefore, it is
important to have a method call that is used only for warning suppression. See Section [32.2.1]for a discussion of the
distinction between warning suppression and defensive programming.

3.4.2 Null arguments to collection classes

For collection methods with Object formal parameter type, such as|contains) indexOf} and remove, the annotated
JDK forbids null as an argument.

The reason is that some implementations (like ConcurrentHashMap) throw NullPointerException if null is
passed. It would be unsound to permit null, because it could lead to a false negative: the Checker Framework issuing
no warning even though a NullPointerException can occur at run time.

36

../api/org/checkerframework/checker/nullness/util/NullnessUtil.html#castNonNull-T-
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html#contains(java.lang.Object)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/AbstractList.html#indexOf(java.lang.Object)
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/Collection.html#remove(java.lang.Object)

However, many other common implementations permit such calls, so some users may wish to sacrifice soundness for
a reduced number of false positive warnings. To permit null as an argument to these methods, pass the command-line
argument —Astubs=collection-object-parameters-may-be-null.astub.

3.5 Examples

3.5.1 Tiny examples

To try the Nullness Checker on a source file that uses the @NonNul1|qualifier, use the following command (where javac
is the Checker Framework compiler that is distributed with the Checker Framework, see Section [37.3]for details):

javac -processor org.checkerframework.checker.nullness.NullnessChecker docs/examples/NullnessExample. java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations (and therefore the possibility of a null pointer exception
at run time), use the following command:

javac -processor org.checkerframework.checker.nullness.NullnessChecker docs/examples/NullnessExampleWithWarnings. java

The compiler will issue two warnings regarding violation of the semantics of @NonNulll

3.5.2 Example annotated source code

Some libraries that are annotated with nullness qualifiers are:

e The Nullness Checker itself.
e The Java projects in the plume-lib GitHub organization. Type-checking occurs on each build.
e The Daikon invariant detector. Run the command make check-nullness.

3.5.3 Publications

The papers “Practical pluggable types for Java” [PACT08] (ISSTA 2008, https://homes.cs.washington.edu/
~mernst/pubs/pluggable-checkers-issta2008.pdf) and “Building and using pluggable type-checkers” [DDE™ 11]]
(ICSE 2011, https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf) describe
case studies in which the Nullness Checker found previously-unknown errors in real software.

3.6 Tips for getting started

Here are some tips about getting started using the Nullness Checker on a legacy codebase. For more generic advice
(not specific to the Nullness Checker), see Section 2.4.2] Also see the Checker Framework tutorial (https://
checkerframework.org/tutorial/), which includes an example of using the Nullness Checker.

Your goal is to add @Nullable annotations to the types of any variables that can be null. (The default is to assume
that a variable is non-null unless it has a @Nullable annotation.) Then, you will run the Nullness Checker. Each of
its errors indicates either a possible null pointer exception, or a wrong/missing annotation. When there are no more
warnings from the checker, you are done!

We recommend that you start by searching the code for occurrences of null in the following locations; when you
find one, write the corresponding annotation:

e in Javadoc: add @Nullable annotations to method signatures (parameters and return types).

e return null: add a @Nullable annotation to the return type of the given method.

e param == null: when a formal parameter is compared to null, then in most cases you can add a @Nullable
annotation to the formal parameter’s type

37

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://github.com/plume-lib/
http://plse.cs.washington.edu/daikon/
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
https://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
../api/org/checkerframework/checker/nullness/qual/Nullable.html

e TypeName field = null;: when a field is initialized to null in its declaration, then it needs either a
@Nullable|or a/@MonotonicNonNull annotation. If the field is always set to a non-null value in the constructor,
then you can just change the declaration to Type field;, without an initializer, and write no type annotation
(because the default is @NonNull).

e declarations of contains, containsKey, containsValue, equals, get, indexOf, last IndexOf, and remove
(with Object as the argument type): change the argument type to @Nullable Object; for remove, also change
the return type to @Nullable Object.

You should ignore all other occurrences of null within a method body. In particular, you rarely need to annotate local
variables (except their type arguments or array element types).

Only after this step should you run the Nullness Checker. The reason is that it is quicker to search for places to
change than to repeatedly run the checker and fix the errors it tells you about, one at a time.

Here are some other tips:

e In any file where you write an annotation such as @Nullable, don’t forget to add import
org.checkerframework.checker.nullness.qual.*;.

e To indicate an array that can be null, write, for example: int @Nullable [].
By contrast, @Nullable Object [] means a non-null array that contains possibly-null objects.

o If you know that a particular variable is definitely not null, but the Nullness Checker estimates that the variable
might be null, then you can make the Nullness Checker trust your judgment by writing an assertion (see

Section[32.2)):
assert var != null : "@AssumeAssertion(nullness)";

e To indicate that a routine returns the same value every time it is called, use|@Pure| (see Section [31.7.3).
e To indicate a method precondition (a contract stating the conditions under which a client is allowed to call it),
you can use annotations such as¢RequiresNonNull|(see Section[3.2.2).

3.7 Other tools for nullness checking

The Checker Framework’s nullness annotations are similar to annotations used in other tools. You might prefer to use
the Checker Framework because it has a more powerful analysis that can warn you about more null pointer errors in
your code. Most of the other tools are bug-finding tools rather than verification tools, since they give up precision,
soundness, or both in favor of being fast and easy to use. Also see Section [38.10.1] for a comparison to other tools.

If your code is already annotated with a different nullness annotation, the Checker Framework can type-check your
code. It treats annotations from other tools as if you had written the corresponding annotation from the Nullness Checker,
as described in Figure If the other annotation is a declaration annotation, it may be moved; see Section [38.6.9]

The Checker Framework may issue more or fewer errors than another tool. This is expected, since each tool uses a
different analysis. Remember that the Checker Framework aims at soundness: it aims to never miss a possible null
dereference, while at the same time limiting false reports. Also, note SpotBugs’s non-standard meaning for @Nullable
(Section[3.7.2).

Java permits you to import at