
The Checker Framework Manual:
Custom pluggable types for Java

https://checkerframework.org/

Version 2.5.1 (1 May 2018)

For the impatient: Section 1.3 (page 13) describes how to install and use pluggable type-checkers.

https://checkerframework.org/

Contents

1 Introduction 12
1.1 How to read this manual . 13
1.2 How it works: Pluggable types . 13
1.3 Installation . 13
1.4 Example use: detecting a null pointer bug . 13

2 Using a checker 15
2.1 Writing annotations . 15
2.2 Running a checker . 16

2.2.1 Using annotated libraries . 16
2.2.2 Distributing your annotated project . 17
2.2.3 Summary of command-line options . 17
2.2.4 Checker auto-discovery . 19
2.2.5 Shorthand for built-in checkers . 19

2.3 What the checker guarantees . 19
2.4 Tips about writing annotations . 20

2.4.1 Write annotations before you run a checker . 20
2.4.2 How to get started annotating legacy code . 20
2.4.3 Annotations indicate normal behavior . 21
2.4.4 Subclasses must respect superclass annotations . 22
2.4.5 Annotations on constructor invocations . 23
2.4.6 What to do if a checker issues a warning about your code . 23

3 Nullness Checker 25
3.1 What the Nullness Checker checks . 25
3.2 Nullness annotations . 26

3.2.1 Nullness qualifiers . 26
3.2.2 Nullness method annotations . 27
3.2.3 Initialization qualifiers . 27
3.2.4 Map key qualifiers . 27

3.3 Writing nullness annotations . 28
3.3.1 Implicit qualifiers . 28
3.3.2 Default annotation . 28
3.3.3 Conditional nullness . 28
3.3.4 Nullness and arrays . 29
3.3.5 Run-time checks for nullness . 29
3.3.6 Additional details . 29
3.3.7 Inference of @NonNull and @Nullable annotations . 30

3.4 Suppressing nullness warnings . 30
3.4.1 Suppressing warnings with assertions and method calls . 30

2

3.5 Examples . 31
3.5.1 Tiny examples . 31
3.5.2 Example annotated source code . 31

3.6 Tips for getting started . 31
3.7 Other tools for nullness checking . 32

3.7.1 Which tool is right for you? . 33
3.7.2 Incompatibility note about FindBugs @Nullable . 34
3.7.3 Relationship to Optional<T> . 34

3.8 Initialization Checker . 35
3.8.1 Initialization qualifiers . 37
3.8.2 How an object becomes initialized . 38
3.8.3 Partial initialization . 38
3.8.4 Method calls from the constructor . 39
3.8.5 Initialization of circular data structures . 40
3.8.6 How to handle warnings . 42
3.8.7 More details about initialization checking . 43
3.8.8 Rawness Initialization Checker . 44

4 Map Key Checker 49
4.1 Map key annotations . 49
4.2 Examples . 50
4.3 Inference of @KeyFor annotations . 50

5 Optional Checker for possibly-present data 52
5.1 How to run the Optional Checker . 52
5.2 Optional annotations . 52

6 Interning Checker 54
6.1 Interning annotations . 55
6.2 Annotating your code with @Interned . 55

6.2.1 Implicit qualifiers . 55
6.2.2 InternedDistinct: values not equals() to any other value . 55

6.3 What the Interning Checker checks . 56
6.3.1 Limitations of the Interning Checker . 57

6.4 Examples . 57
6.5 Other interning annotations . 57

7 Lock Checker 58
7.1 What the Lock Checker guarantees . 58
7.2 Lock annotations . 58

7.2.1 Type qualifiers . 58
7.2.2 Declaration annotations . 60

7.3 Type-checking rules . 60
7.3.1 Polymorphic qualifiers . 60
7.3.2 Dereferences . 61
7.3.3 Primitive types, boxed primitive types, and Strings . 61
7.3.4 Overriding . 61
7.3.5 Side effects . 61

7.4 Examples . 61
7.4.1 Examples of @GuardedBy . 62
7.4.2 @GuardedBy({“a”, “b”}) is not a subtype of @GuardedBy({“a”}) 63
7.4.3 Examples of @Holding . 63

3

7.4.4 Examples of @EnsuresLockHeld and @EnsuresLockHeldIf 64
7.4.5 Example of @LockingFree, @ReleasesNoLocks, and @MayReleaseLocks 64
7.4.6 Polymorphism and method formal parameters with unknown guards 65

7.5 More locking details . 66
7.5.1 Two types of locking: monitor locks and explicit locks . 66
7.5.2 Held locks and held expressions; aliasing . 66
7.5.3 Run-time checks for locking . 66
7.5.4 Discussion of default qualifier . 67
7.5.5 Discussion of @Holding . 67

7.6 Other lock annotations . 68
7.6.1 Relationship to annotations in Java Concurrency in Practice 68

7.7 Possible extensions . 68

8 Index Checker for sequence bounds (arrays and strings) 69
8.1 Index Checker structure and annotations . 69
8.2 Lower bounds . 70
8.3 Upper bounds . 71
8.4 Sequence minimum lengths . 72
8.5 Sequences of the same length . 73
8.6 Binary search indices . 74
8.7 Substring indices . 75

8.7.1 The need for the @SubstringIndexFor annotation . 75
8.8 Inequalities . 76
8.9 Annotating fixed-size data structures . 76

9 Fake Enum Checker for fake enumerations 78
9.1 Fake enum annotations . 78
9.2 What the Fenum Checker checks . 79
9.3 Running the Fenum Checker . 79
9.4 Suppressing warnings . 80
9.5 Example . 80
9.6 The fake enumeration pattern . 81
9.7 References . 81

10 Tainting Checker 82
10.1 Tainting annotations . 82
10.2 Tips on writing @Untainted annotations . 82
10.3 @Tainted and @Untainted can be used for many purposes . 83

11 Regex Checker for regular expression syntax 84
11.1 Regex annotations . 84
11.2 Annotating your code with @Regex . 84

11.2.1 Implicit qualifiers . 84
11.2.2 Capturing groups . 85
11.2.3 Concatenation of partial regular expressions . 85
11.2.4 Testing whether a string is a regular expression . 86
11.2.5 Suppressing warnings . 86

4

12 Format String Checker 87
12.1 Formatting terminology . 87
12.2 Format String Checker annotations . 87

12.2.1 Conversion Categories . 88
12.2.2 Subtyping rules for @Format . 90

12.3 What the Format String Checker checks . 90
12.3.1 Possible false alarms . 91
12.3.2 Possible missed alarms . 91

12.4 Implicit qualifiers . 92
12.5 @FormatMethod . 92
12.6 Testing whether a format string is valid . 92

13 Internationalization Format String Checker (I18n Format String Checker) 94
13.1 Internationalization Format String Checker annotations . 94
13.2 Conversion categories . 95
13.3 Subtyping rules for @I18nFormat . 95
13.4 What the Internationalization Format String Checker checks . 96
13.5 Resource files . 97
13.6 Running the Internationalization Format Checker . 98
13.7 Testing whether a string has an i18n format type . 98
13.8 Examples of using the Internationalization Format Checker . 98

14 Property File Checker 100
14.1 General Property File Checker . 100
14.2 Internationalization Checker (I18n Checker) . 101

14.2.1 Internationalization annotations . 101
14.2.2 Running the Internationalization Checker . 101

14.3 Compiler Message Key Checker . 101

15 Signature String Checker for string representations of types 103
15.1 Signature annotations . 103
15.2 What the Signature Checker checks . 105

16 GUI Effect Checker 106
16.1 GUI effect annotations . 107
16.2 What the GUI Effect Checker checks . 107
16.3 Running the GUI Effect Checker . 107
16.4 Annotation defaults . 107
16.5 Polymorphic effects . 108

16.5.1 Defining an effect-polymorphic type . 108
16.5.2 Using an effect-polymorphic type . 108
16.5.3 Subclassing a specific instantiation of an effect-polymorphic type 108
16.5.4 Subtyping with polymorphic effects . 109

16.6 References . 110

17 Units Checker 111
17.1 Units annotations . 111
17.2 Extending the Units Checker . 112
17.3 What the Units Checker checks . 113
17.4 Running the Units Checker . 113
17.5 Suppressing warnings . 113
17.6 References . 114

5

18 Signedness Checker 115
18.1 Annotations . 115

18.1.1 Default qualifiers . 116
18.2 Prohibited operations . 116
18.3 Rationale . 116
18.4 Utility routines for manipulating unsigned values . 117

19 Constant Value Checker 118
19.1 Annotations . 118

19.1.1 Type Annotations . 118
19.1.2 Compile-time execution of expressions . 120
19.1.3 @StaticallyExecutable methods and the classpath . 120

19.2 Warnings . 120
19.3 Unsoundly ignoring overflow . 121

20 Aliasing Checker 122
20.1 Aliasing annotations . 122
20.2 Leaking contexts . 123
20.3 Restrictions on where @Unique may be written . 124
20.4 Aliasing type refinement . 124

21 Reflection resolution 126
21.1 MethodVal and ClassVal Checkers . 126

21.1.1 ClassVal Checker . 126
21.1.2 MethodVal Checker . 127
21.1.3 MethodVal and ClassVal inference . 128

21.2 Reflection resolution example . 129

22 Subtyping Checker 131
22.1 Using the Subtyping Checker . 131
22.2 Subtyping Checker example . 132
22.3 Type aliases and typedefs . 134

23 Third-party checkers 136
23.1 Typestate checkers . 136

23.1.1 Comparison to flow-sensitive type refinement . 136
23.2 Units and dimensions checker . 137
23.3 Thread locality checker . 137
23.4 Safety-Critical Java checker . 137
23.5 Generic Universe Types checker . 137
23.6 EnerJ checker . 137
23.7 CheckLT taint checker . 137
23.8 SPARTA information flow type-checker for Android . 137
23.9 Immutability checkers: IGJ, OIGJ, and Javari . 138
23.10Read Checker for CERT FIO08-J . 138
23.11SQL checker that supports multiple dialects . 138
23.12Glacier: Class immutability . 138

6

24 Generics and polymorphism 139
24.1 Generics (parametric polymorphism or type polymorphism) . 139

24.1.1 Raw types . 139
24.1.2 Restricting instantiation of a generic class . 139
24.1.3 Type annotations on a use of a generic type variable . 141
24.1.4 Annotations on wildcards . 141
24.1.5 Examples of qualifiers on a type parameter . 142
24.1.6 Covariant type parameters . 142
24.1.7 Method type argument inference and type qualifiers . 143
24.1.8 The Bottom type . 143

24.2 Qualifier polymorphism . 143
24.2.1 Examples of using polymorphic qualifiers . 144
24.2.2 Relationship to subtyping and generics . 144
24.2.3 The @PolyAll qualifier applies to every type system . 145
24.2.4 Using multiple polymorphic qualifiers in a method signature 145
24.2.5 Using a single polymorphic qualifier in a method signature 146

25 Advanced type system features 148
25.1 Invariant array types . 148
25.2 Context-sensitive type inference for array constructors . 148
25.3 The effective qualifier on a type (defaults and inference) . 149

25.3.1 Default qualifier for unannotated types . 150
25.3.2 Defaulting rules and CLIMB-to-top . 151
25.3.3 Inherited defaults . 152
25.3.4 Inherited wildcard annotations . 152
25.3.5 Default qualifiers for .class files (conservative library defaults) 153

25.4 Automatic type refinement (flow-sensitive type qualifier inference) 153
25.4.1 Type refinement examples . 154
25.4.2 Types that are not refined . 155
25.4.3 Run-time tests and type refinement . 155
25.4.4 Fields and flow-sensitive analysis . 156
25.4.5 Side effects, determinism, purity, and flow-sensitive analysis 157
25.4.6 Assertions . 158

25.5 Writing Java expressions as annotation arguments . 159
25.6 Field invariants . 160
25.7 Unused fields . 161

25.7.1 @Unused annotation . 161

26 Suppressing warnings 162
26.1 @SuppressWarnings annotation . 162

26.1.1 @SuppressWarnings syntax . 163
26.1.2 Where @SuppressWarnings can be written . 163
26.1.3 Good practices when suppressing warnings . 163

26.2 @AssumeAssertion string in an assert message . 164
26.2.1 Suppressing warnings and defensive programming . 165

26.3 -AsuppressWarnings command-line option . 165
26.4 -AskipUses and -AonlyUses command-line options . 166
26.5 -AskipDefs and -AonlyDefs command-line options . 166
26.6 -Alint command-line option . 166
26.7 Don’t run the processor . 167
26.8 Checker-specific mechanisms . 167

7

27 Handling legacy code 168
27.1 Checking partially-annotated programs: handling unannotated code 168

27.1.1 Declaration annotations . 168

28 Type inference 170
28.1 Local type inference during type-checking . 170
28.2 Type inference to annotate a program . 170

28.2.1 Type inference tools . 171
28.3 Whole-program inference . 171

28.3.1 Whole-program inference ignores some code . 172
28.3.2 Manually checking whole-program inference results . 172
28.3.3 How whole-program inference works . 173

29 Annotating libraries 174
29.1 Tips for annotating a library . 174

29.1.1 Don’t change the code . 175
29.1.2 Library annotations should reflect the specification, not the implementation 175
29.1.3 Report bugs upstream . 175
29.1.4 Fully annotate the library, or indicate which parts you did not 175
29.1.5 Verify your annotations . 175

29.2 Creating an annotated library . 176
29.3 Creating an annotated JDK . 177
29.4 Compiling partially-annotated libraries . 177

29.4.1 The -AuseDefaultsForUncheckedCode=source,bytecode command-line argument 178
29.5 Using stub classes . 178

29.5.1 Using a stub file . 178
29.5.2 Stub file format . 179
29.5.3 Creating a stub file . 179
29.5.4 Troubleshooting stub libraries . 180

29.6 Troubleshooting/debugging annotated libraries . 180

30 How to create a new checker 182
30.1 How checkers build on the Checker Framework . 183
30.2 The parts of a checker . 183
30.3 Compiling and using a custom checker . 184

30.3.1 Tips for creating a checker . 184
30.4 Annotations: Type qualifiers and hierarchy . 185

30.4.1 Defining the type qualifiers . 186
30.4.2 Declaratively defining the qualifier hierarchy . 187
30.4.3 Procedurally defining the qualifier hierarchy . 187
30.4.4 Defining a default annotation . 188
30.4.5 Relevant Java types . 188
30.4.6 Do not re-use type qualifiers . 188
30.4.7 Completeness of the type hierarchy . 188
30.4.8 Annotations whose argument is a Java expression (dependent type annotations) 189

30.5 The checker class: Compiler interface . 190
30.5.1 Indicating supported annotations . 190
30.5.2 Bundling multiple checkers . 191
30.5.3 Providing command-line options . 191

30.6 Visitor: Type rules . 192
30.6.1 AST traversal . 193
30.6.2 Avoid hardcoding . 193

8

30.7 Type factory: Implicit annotations (type introduction rules) . 193
30.7.1 Declaratively specifying implicit annotations . 193
30.7.2 Procedurally specifying implicit annotations . 194

30.8 Dataflow: enhancing flow-sensitive type qualifier inference . 194
30.8.1 Determine expressions to refine the types of . 194
30.8.2 Create required class . 195
30.8.3 Override methods that handle Nodes of interest . 195
30.8.4 Implement the refinement . 196
30.8.5 Disabling flow-sensitive inference . 197

30.9 Annotated JDK . 197
30.10Testing framework . 197
30.11Debugging options . 198

30.11.1 Amount of detail in messages . 198
30.11.2 Stub and JDK libraries . 198
30.11.3 Progress tracing . 198
30.11.4 Saving the command-line arguments to a file . 198
30.11.5 Visualizing the dataflow graph . 198
30.11.6 Miscellaneous debugging options . 199
30.11.7 Examples . 199
30.11.8 Using an external debugger . 199

30.12Documenting the checker . 199
30.13javac implementation survival guide . 200

30.13.1 Checker access to compiler information . 200
30.13.2 How a checker fits in the compiler as an annotation processor 201

30.14Integrating a checker with the Checker Framework . 202

31 Integration with external tools 203
31.1 Android Studio 3.0 and the Android Gradle Plugin 3.0 . 203
31.2 Ant task . 204

31.2.1 Explanation . 205
31.3 Eclipse . 205

31.3.1 Using an Ant task . 205
31.3.2 Troubleshooting Eclipse . 206

31.4 Gradle . 206
31.5 IntelliJ IDEA . 206
31.6 Javac compiler . 207
31.7 Maven . 207
31.8 NetBeans . 210

31.8.1 Adding a checker via the Project Properties window . 210
31.8.2 Adding a checker via an ant target . 210

31.9 tIDE . 212
31.10Type inference tools . 212

32 Frequently Asked Questions (FAQs) 213
32.1 Motivation for pluggable type-checking . 214

32.1.1 I don’t make type errors, so would pluggable type-checking help me? 214
32.1.2 Should I use pluggable types (type qualifiers) or Java subtypes? 215

32.2 Getting started . 215
32.2.1 How do I get started annotating an existing program? . 215
32.2.2 Which checker should I start with? . 216
32.2.3 How can I join the checker-framework-dev mailing list? . 216

32.3 Usability of pluggable type-checking . 216

9

32.3.1 Are type annotations easy to read and write? . 216
32.3.2 Will my code become cluttered with type annotations? . 217
32.3.3 Will using the Checker Framework slow down my program? Will it slow down the compiler? 217
32.3.4 How do I shorten the command line when invoking a checker? 217
32.3.5 Method pre-condition contracts, including formal parameter annotations, make no sense for

public methods . 217
32.4 How to handle warnings and errors . 218

32.4.1 What should I do if a checker issues a warning about my code? 218
32.4.2 What does a certain Checker Framework warning message mean? 218
32.4.3 Can a pluggable type-checker guarantee that my code is correct? 218
32.4.4 What guarantee does the Checker Framework give for concurrent code? 218
32.4.5 How do I make compilation succeed even if a checker issues errors? 219
32.4.6 Why does the checker always say there are 100 errors or warnings? 219
32.4.7 Why does the Checker Framework report an error regarding a type I have not written in my

program? . 219
32.4.8 How can I do run-time monitoring of properties that were not statically checked? 219

32.5 False positive warnings . 219
32.5.1 What is a “false positive” warning? . 219
32.5.2 How can I improve the Checker Framework to eliminate a false positive warning? 220
32.5.3 Why doesn’t the Checker Framework infer types for fields and method return types? 220
32.5.4 Why doesn’t the Checker Framework track relationships between variables? 221
32.5.5 Why isn’t the Checker Framework path-sensitive? . 223

32.6 Syntax of type annotations . 223
32.6.1 What is a “receiver”? . 223
32.6.2 What is the meaning of an annotation after a type, such as @NonNull Object @Nullable? . 224
32.6.3 What is the meaning of array annotations such as @NonNull Object @Nullable []? 224
32.6.4 What is the meaning of varargs annotations such as @English String @NonEmpty ...? . . 224
32.6.5 What is the meaning of a type qualifier at a class declaration? 225
32.6.6 Why shouldn’t a qualifier apply to both types and declarations? 225
32.6.7 How do I annotate a fully-qualified type name? . 225

32.7 Semantics of type annotations . 226
32.7.1 How can I handle typestate, or phases of my program with different data properties? 226
32.7.2 Why are explicit and implicit bounds defaulted differently? 226
32.7.3 Why are type annotations declared with @Retention(RetentionPolicy.RUNTIME)? 226

32.8 Creating a new checker . 227
32.8.1 How do I create a new checker? . 227
32.8.2 What properties can and cannot be handled by type-checking? 227
32.8.3 Why is there no declarative syntax for writing type rules? . 227

32.9 Tool questions . 227
32.9.1 How does pluggable type-checking work? . 227
32.9.2 What classpath is needed to use an annotated library? . 228
32.9.3 Why do .class files contain more annotations than the source code? 228
32.9.4 Is there a type-checker for managing checked and unchecked exceptions? 228

32.10Relationship to other tools . 228
32.10.1 Why not just use a bug detector (like FindBugs)? . 228
32.10.2 How does the Checker Framework compare with Eclipse’s null analysis? 229
32.10.3 How does the Checker Framework compare with the JDK’s Optional type? 229
32.10.4 How does pluggable type-checking compare with JML? . 230
32.10.5 Is the Checker Framework an official part of Java? . 230
32.10.6 What is the relationship between the Checker Framework and JSR 305? 230
32.10.7 What is the relationship between the Checker Framework and JSR 308? 230

10

33 Troubleshooting, getting help, and contributing 231
33.1 Common problems and solutions . 231

33.1.1 Unable to compile the Checker Framework . 231
33.1.2 Unable to run the checker, or checker crashes . 231
33.1.3 Unexpected type-checking results . 234
33.1.4 Unexpected compilation output when running javac without a pluggable type-checker 236

33.2 How to report problems (bug reporting) . 237
33.2.1 Problems with annotated libraries . 237

33.3 Building from source . 238
33.3.1 Install prerequisites . 238
33.3.2 Obtain the source . 238
33.3.3 Build the Checker Framework . 239
33.3.4 Build the Checker Framework Manual (this document) . 239
33.3.5 Configure Eclipse to edit the Checker Framework . 239
33.3.6 Enable Travis continuous integration builds . 240
33.3.7 Code style . 240

33.4 Contributing fixes (creating a pull request) . 241
33.5 Publications . 241
33.6 Comparison to other tools . 242
33.7 Credits and changelog . 243
33.8 License . 243

11

Chapter 1

Introduction

The Checker Framework enhances Java’s type system to make it more powerful and useful. This lets software developers
detect and prevent errors in their Java programs.

A “checker” is a tool that warns you about certain errors or gives you a guarantee that those errors do not occur.
The Checker Framework comes with checkers for specific types of errors:

1. Nullness Checker for null pointer errors (see Chapter 3, page 25)
2. Initialization Checker to ensure all fields are set in the constructor (see Chapter 3.8, page 35)
3. Map Key Checker to track which values are keys in a map (see Chapter 4, page 49)
4. Optional Checker for errors in using the Optional type (see Chapter 5, page 52)
5. Interning Checker for errors in equality testing and interning (see Chapter 6, page 54)
6. Lock Checker for concurrency and lock errors (see Chapter 7, page 58)
7. Index Checker for array accesses (see Chapter 8, page 69)
8. Fake Enum Checker to allow type-safe fake enum patterns and type aliases or typedefs (see Chapter 9, page 78)
9. Tainting Checker for trust and security errors (see Chapter 10, page 82)

10. Regex Checker to prevent use of syntactically invalid regular expressions (see Chapter 11, page 84)
11. Format String Checker to ensure that format strings have the right number and type of % directives (see Chapter 12,

page 87)
12. Internationalization Format String Checker to ensure that i18n format strings have the right number and type of

{} directives (see Chapter 13, page 94)
13. Property File Checker to ensure that valid keys are used for property files and resource bundles (see Chapter 14,

page 100)
14. Internationalization Checker to ensure that code is properly internationalized (see Chapter 14.2, page 101)
15. Signature String Checker to ensure that the string representation of a type is properly used, for example in

Class.forName (see Chapter 15, page 103)
16. GUI Effect Checker to ensure that non-GUI threads do not access the UI, which would crash the application (see

Chapter 16, page 106)
17. Units Checker to ensure operations are performed on correct units of measurement (see Chapter 17, page 111)
18. Signedness Checker to ensure unsigned and signed values are not mixed (see Chapter 18, page 115)
19. Constant Value Checker to determine whether an expression’s value can be known at compile time (see Chapter 19,

page 118)
20. Aliasing Checker to identify whether expressions have aliases (see Chapter 20, page 122)
21. Subtyping Checker for customized checking without writing any code (see Chapter 22, page 131)
22. Third-party checkers that are distributed separately from the Checker Framework (see Chapter 23, page 136)

These checkers are easy to use and are invoked as arguments to javac.
The Checker Framework also enables you to write new checkers of your own; see Chapters 22 and 30.

12

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

1.1 How to read this manual
If you wish to get started using some particular type system from the list above, then the most effective way to read this
manual is:

• Read all of the introductory material (Chapters 1–2).
• Read just one of the descriptions of a particular type system and its checker (Chapters 3–23).
• Skim the advanced material that will enable you to make more effective use of a type system (Chapters 24–33),

so that you will know what is available and can find it later. Skip Chapter 30 on creating a new checker.

1.2 How it works: Pluggable types
The Checker Framework supports adding pluggable type systems to the Java language in a backward-compatible way.
Java’s built-in type-checker finds and prevents many errors — but it doesn’t find and prevent enough errors. The Checker
Framework lets you run an additional type-checker as a plug-in to the javac compiler. Your code stays completely
backward-compatible: your code compiles with any Java compiler, it runs on any JVM, and your coworkers don’t have
to use the enhanced type system if they don’t want to. You can check only part of your program. Type inference tools
exist to help you annotate your code; see Chapter 28.2, page 170.

A type system designer uses the Checker Framework to define type qualifiers and their semantics, and a compiler
plug-in (a “checker”) enforces the semantics. Programmers can write the type qualifiers in their programs and use the
plug-in to detect or prevent errors. The Checker Framework is useful both to programmers who wish to write error-free
code, and to type system designers who wish to evaluate and deploy their type systems.

This document uses the terms “checker”, “checker plugin”, “type-checking compiler plugin”, and “annotation
processor” as synonyms.

1.3 Installation
This section describes how to install the Checker Framework. (If you wish to try the Checker Framework without
installing it, use the Checker Framework Live Demo webpage.)

The Checker Framework release contains everything that you need, both to run checkers and to write your own
checkers. As an alternative, you can build the latest development version from source (Section 33.3, page 238).

Requirement: You must have JDK 8 installed. You can get the JDK from Oracle or elsewhere.
The installation process is simple! It has two required steps and one optional step.

1. Download the Checker Framework distribution:
https://checkerframework.org/checker-framework-2.5.1.zip

2. Unzip it to create a checker-framework directory.
3. Configure your IDE, build system, or command shell to include the Checker Framework on the classpath. Choose

the appropriate section of Chapter 31.

That’s all there is to it! Now you are ready to start using the checkers.
We recommend that you work through the Checker Framework tutorial (https://checkerframework.org/

tutorial/), which walks you through how to use the Checker Framework on the command line. There is also a
Nullness Checker tutorial (https://github.com/glts/safer-spring-petclinic/wiki) by David Bürgin.

Section 1.4 walks you through a simple example. More detailed instructions for using a checker appear in Chapter 2.

1.4 Example use: detecting a null pointer bug
This section gives a very simple example of running the Checker Framework. There is also a tutorial (https:
//checkerframework.org/tutorial/) that gives more extensive instructions for using the Checker Framework on

13

http://eisop.uwaterloo.ca/live/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://checkerframework.org/checker-framework-2.5.1.zip
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/
https://github.com/glts/safer-spring-petclinic/wiki
https://checkerframework.org/tutorial/
https://checkerframework.org/tutorial/

the command line, and a Nullness Checker tutorial (https://github.com/glts/safer-spring-petclinic/wiki)
by David Bürgin.

1. Let’s consider this very simple Java class. The local variable ref’s type is annotated as @NonNull, indicating that
ref must be a reference to a non-null object. Save the file as GetStarted.java.

import org.checkerframework.checker.nullness.qual.*;

public class GetStarted {
void sample() {

@NonNull Object ref = new Object();
}

}

2. Run the Nullness Checker on the class. You can do that from the command line or from an IDE:

(a) From the command line, run this command:
javac -processor org.checkerframework.checker.nullness.NullnessChecker GetStarted.java

where javac is set as in Section 31.6.
(b) To compile within your IDE, you must have customized it to use the Checker Framework compiler and to

pass the extra arguments (see Chapter 31).

The compilation should complete without any errors.
3. Let’s introduce an error now. Modify ref’s assignment to:

@NonNull Object ref = null;
4. Run the Nullness Checker again, just as before. This run should emit the following error:

GetStarted.java:5: incompatible types.
found : @Nullable <nulltype>
required: @NonNull Object

@NonNull Object ref = null;
^

1 error

The type qualifiers (e.g., @NonNull) are permitted anywhere that you can write a type, including generics and casts;
see Section 2.1. Here are some examples:

@Interned String intern() { ... } // return value
int compareTo(@NonNull String other) { ... } // parameter
@NonNull List<@Interned String> messages; // non-null list of interned Strings

14

https://github.com/glts/safer-spring-petclinic/wiki
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Chapter 2

Using a checker

A pluggable type-checker enables you to detect certain bugs in your code, or to prove that they are not present. The
verification happens at compile time.

Finding bugs, or verifying their absence, with a checker plugin is a two-step process, whose steps are described in
Sections 2.1 and 2.2.

1. The programmer writes annotations, such as @NonNull and @Interned, that specify additional information
about Java types. (Or, the programmer uses an inference tool to automatically insert annotations in his code: see
Section 3.3.7.) It is possible to annotate only part of your code: see Section 27.1.

2. The checker reports whether the program contains any erroneous code — that is, code that is inconsistent with
the annotations.

This chapter is structured as follows:

• Section 2.1: How to write annotations
• Section 2.2: How to run a checker
• Section 2.3: What the checker guarantees
• Section 2.4: Tips about writing annotations

Additional topics that apply to all checkers are covered later in the manual:

• Chapter 25: Advanced type system features
• Chapter 26: Suppressing warnings
• Chapter 27: Handling legacy code
• Chapter 29: Annotating libraries
• Chapter 30: How to create a new checker
• Chapter 31: Integration with external tools

Finally, there is a tutorial (https://checkerframework.org/tutorial/) that walks you through using the
Checker Framework on the command line, and a separate Nullness Checker tutorial (https://github.com/glts/
safer-spring-petclinic/wiki) by David Bürgin.

2.1 Writing annotations
The syntax of type annotations in Java is specified by the Java Language Specification (Java SE 8 edition).

Java 5 defines declaration annotations such as @Deprecated, which apply to a class, method, or field, but do not
apply to the method’s return type or the field’s type. They are typically written on their own line in the source code.

Java 8 defines type annotations, which you write immediately before any use of a type, including in generics and
casts. Because array levels are types and receivers have types, you can also write type annotations on them. Here are a
few examples of type annotations:

15

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/interning/qual/Interned.html
https://checkerframework.org/tutorial/
https://github.com/glts/safer-spring-petclinic/wiki
https://github.com/glts/safer-spring-petclinic/wiki

@Interned String intern() { ... } // return value
int compareTo(@NonNull String other) { ... } // parameter
String toString(@Tainted MyClass this) { ... } // receiver ("this" parameter)
@NonNull List<@Interned String> messages; // generics: non-null list of interned Strings
@Interned String @NonNull [] messages; // arrays: non-null array of interned Strings
myDate = (@Initialized Date) beingConstructed; // cast

You only need to write annotations on method signatures and fields. Annotations within method bodies are inferred
for you; for more details, see Section 25.4.

2.2 Running a checker
To run a checker plugin, run the compiler javac as usual, but pass the -processor plugin_class command-line
option. A concrete example (using the Nullness Checker) is:

javac -processor nullness MyFile.java

where javac is as specified in Section 31.6.
You can also run a checker from within your favorite IDE or build system. See Chapter 31 for details about Ant

(Section 31.2), Maven (Section 31.7), Gradle (Section 31.4), IntelliJ IDEA (Section 31.5), Eclipse (Section 31.3), and
tIDE (Section 31.9), and about customizing other IDEs and build tools.

The checker is run on only the Java files that javac compiles. This includes all Java files specified on the command
line (or created by another annotation processor). It may also include other of your Java files (but not if a more recent
.class file exists). Even when the checker does not analyze a class (say, the class was already compiled, or source
code is not available), it does check the uses of those classes in the source code being compiled.

You can always compile the code without the -processor command-line option, but in that case no checking of the
type annotations is performed. Furthermore, only explicitly-written annotations are written to the .class file; defaulted
annotations are not, and this will interfere with type-checking of clients that use your code. Therefore, it is strongly
recommended that whenever you are creating .class files that will be distributed or compiled against, you run the
type-checkers for all the annotations that your have written.

2.2.1 Using annotated libraries
When your code uses a library that is not currently being compiled, the Checker Framework looks up the library’s
annotations in its class files.

Some projects are already distributed with type annotations by their maintainers, so you do not need to do anything
special. Over time, this should become more common.

For some other libraries, the Checker Framework developers have provided an annotated version of the library.
During type-checking, you should use the annotated version of the library to improve type-checking results (to issue
fewer false positive warnings). When doing ordinary compilation or while running your code, you can use either the
annotated library or the regular distributed version of the library — they behave identically.

The annotated libraries appear in the org.checkerframework.annotatedlib group in the Central Repository.

• If your project stores .jar files locally, then download the .jar file from the Central Repository.
• If your project manages dependencies using a tool such as Gradle or Maven, then update your buildfile to use the
org.checkerframework.annotatedlib group. For example, in build.gradle, change

api group: ’org.apache.bcel’, name: ’bcel’, version: ’6.2’

to

api group: ’org.checkerframework.annotatedlib’, name: ’bcel’, version: ’6.2’

Use the same version number. (Sometimes you will use a slightly larger number, if the Checker Framework devel-
opers have improved the type annotations since the last release by the upstream maintainers.) If a newer version of
the upstream library is available, then open an issue requesting that the org.checkerframework.annotatedlib
version be updated.

16

There are two special cases. The annotated JDK is automatically put on your classpath; you don’t have to do anything
special for it. For the Javadoc classes in the JDK’s com.sun.javadoc package, use the stub file checker/resources/javadoc.astub.

If a library you wish to use is not available, then you can request that it be annotated, or you can volunteer to write
the annotations (see Chapter 29, page 174), which will help you and all other Checker Framework users.

2.2.2 Distributing your annotated project
The distributed .jar files can be used for pluggable type-checking of client code. The .jar files are only compatible
with a Java 8 JVM. Developers perform pluggable type-checking in-house to detect errors and verify their absence.
When you create .class files, run each relevant type system. Create the distributed .jar files from those .class
files, and also include the contents of checker-framework/checker/dist/checker-qual.jar from the Checker
Framework distribution, to define the annotations.

2.2.3 Summary of command-line options
You can pass command-line arguments to a checker via javac’s standard -A option (“A” stands for “annotation”). All of
the distributed checkers support the following command-line options.

Unsound checking: ignore some errors

• -AsuppressWarnings Suppress all warnings matching the given key; see Section 26.3.
• -AskipUses, -AonlyUses Suppress all errors and warnings at all uses of a given class — or at all uses except

those of a given class. See Section 26.4.
• -AskipDefs, -AonlyDefs Suppress all errors and warnings within the definition of a given class — or everywhere

except within the definition of a given class. See Section 26.5.
• -AignoreRawTypeArguments Ignore subtype tests for type arguments that were inferred for a raw type. If

possible, it is better to write the type arguments. See Section 24.1.1.
• -AassumeSideEffectFree Unsoundly assume that every method is side-effect-free; see Section 25.4.5.
• -AassumeAssertionsAreEnabled, -AassumeAssertionsAreDisabled Whether to assume that assertions are

enabled or disabled; see Section 25.4.6.
• -AignoreRangeOverflow Ignore the possibility of overflow for range annotations such as @IntRange; see

Section 19.3.
• -Awarns Treat checker errors as warnings. If you use this, you may wish to also supply -Xmaxwarns 10000,

because by default javac prints at most 100 warnings. If you use this, don’t supply -Werror, which is a javac
argument to halt compilation if a warning is issued.

More sound (strict) checking: enable errors that are disabled by default

• -AcheckPurityAnnotations Check the bodies of methods marked @SideEffectFree, @Deterministic, and
@Pure to ensure the method satisfies the annotation. By default, the Checker Framework unsoundly trusts the
method annotation. See Section 25.4.5.

• -AinvariantArrays Make array subtyping invariant; that is, two arrays are subtypes of one another only if
they have exactly the same element type. By default, the Checker Framework unsoundly permits covariant array
subtyping, just as Java does. See Section 25.1.

• -AcheckCastElementType In a cast, require that parameterized type arguments and array elements are the same.
By default, the Checker Framework unsoundly permits them to differ, just as Java does. See Section 24.1.6 and
Section 25.1.

• -AuseDefaultsForUncheckedCode Enables/disables unchecked code defaults. Takes arguments “source,bytecode”.
“-source,-bytecode” is the (unsound) default setting. “bytecode” specifies whether the checker should apply
unchecked code defaults to bytecode; see Section 25.3.5. Outside the scope of any relevant @AnnotatedFor
annotation, “source” specifies whether unchecked code default annotations are applied to source code and
suppress all type-checking warnings; see Section 29.4.

• -AconcurrentSemantics Whether to assume concurrent semantics (field values may change at any time) or
sequential semantics; see Section 32.4.4.

17

../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/framework/qual/AnnotatedFor.html

• -AconservativeUninferredTypeArguments Whether an error should be issued if type arguments could not
be inferred and whether method type arguments that could not be inferred should use conservative defaults. By
default, such type arguments are (largely) ignored in later checks. Passing this option uses a conservative value
instead. See Issue 979.

Type-checking modes: enable/disable functionality

• -Alint Enable or disable optional checks; see Section 26.6.
• -AsuggestPureMethods Suggest methods that could be marked @SideEffectFree, @Deterministic, or
@Pure; see Section 25.4.5.
• -AresolveReflection Determine the target of reflective calls, and perform more precise type-checking based

no that information; see Section 21. -AresolveReflection=debug causes debugging information to be output.
• -Ainfer Output suggested annotations for method signatures and fields. These annotations may reduce the

number of type-checking errors when running type-checking in the future; see Section 28.3.
• -AshowSuppressWarningKeys With each warning, show all possible keys to suppress that warning.

Partially-annotated libraries

• -Astubs List of stub files or directories; see Section 29.5.1.
• -AstubWarnIfNotFound Warn if a stub file entry could not be found; see Section 29.5.1.
• -AstubWarnIfOverwritesBytecode Warn if a stub file entry overwrite bytecode information; see Section 29.5.1.
• -AuseDefaultsForUncheckedCode=source Outside the scope of any relevant @AnnotatedFor annotation, use

unchecked code default annotations and suppress all type-checking warnings; see Section 29.4.

Debugging

• -AprintAllQualifiers, -AprintVerboseGenerics, -Adetailedmsgtext, -AprintErrorStack, -Anomsgtext
Amount of detail in messages; see Section 30.11.1.
• -Aignorejdkastub, -Anocheckjdk, -AstubDebug Stub and JDK libraries; see Section 30.11.2.
• -Afilenames, -Ashowchecks, -AshowInferenceSteps Progress tracing; see Section 30.11.3.
• -AoutputArgsToFile Output the compiler command-line arguments to a file. Useful when the command line is

generated and executed by a tool, such as a build system. This produces a standalone command line that can be
executed independently of the tool that generated it can make it easier to reproduce, report, and debug issues. For
example, the command line can be modified to enable attaching a debugger. See Section 30.11.4.

• -Aflowdotdir, -Averbosecfg, -Acfgviz Draw a visualization of the CFG (control flow graph); see Sec-
tion 30.11.5.

• -AresourceStats, -AatfDoNotCache, -AatfCacheSize Miscellaneous debugging options; see Section 30.11.6.

Some checkers support additional options, which are described in that checker’s manual section. For example, -Aquals
tells the Subtyping Checker (see Chapter 22) and the Fenum Checker (see Chapter 9) which annotations to check.

Here are some standard javac command-line options that you may find useful. Many of them contain the word
“processor”, because in javac jargon, a checker is an “annotation processor”.

• -processor Names the checker to be run; see Section 2.2
• -processorpath Indicates where to search for the checker; should also contain any qualifiers used by the

Subtyping Checker; see Section 22.2
• -proc:{none,only} Controls whether checking happens; -proc:none means to skip checking; -proc:only

means to do only checking, without any subsequent compilation; see Section 2.2.4
• -implicit:class Suppresses warnings about implicitly compiled files (not named on the command line); see

Section 31.2
• -J Supply an argument to the JVM that is running javac; for example, -J-Xmx2500m to increase its maximum

heap size
• -doe To “dump on error”, that is, output a stack trace whenever a compiler warning/error is produced. Useful

when debugging the compiler or a checker.

The Checker Framework does not support -source 1.4 or earlier. You must supply -source 1.5 or later, or no
-source command-line argument, when running javac.

18

https://github.com/typetools/checker-framework/issues/979
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/framework/qual/AnnotatedFor.html

2.2.4 Checker auto-discovery
“Auto-discovery” makes the javac compiler always run a checker plugin, even if you do not explicitly pass the
-processor command-line option. This can make your command line shorter, and ensures that your code is checked
even if you forget the command-line option.

To enable auto-discovery, place a configuration file named META-INF/services/javax.annotation.processing.Processor
in your classpath. The file contains the names of the checker plugins to be used, listed one per line. For instance, to run
the Nullness Checker and the Interning Checker automatically, the configuration file should contain:
org.checkerframework.checker.nullness.NullnessChecker
org.checkerframework.checker.interning.InterningChecker

You can disable this auto-discovery mechanism by passing the -proc:none command-line option to javac, which
disables all annotation processing including all pluggable type-checking.

2.2.5 Shorthand for built-in checkers
Ordinarily, javac’s -processor flag requires fully-qualified class names. When running a built-in checker, you may
omit the package name and the Checker suffix. The following three commands are equivalent:

javac -processor org.checkerframework.checker.nullness.NullnessChecker MyFile.java
javac -processor NullnessChecker MyFile.java
javac -processor nullness MyFile.java

This feature will work when multiple checkers are specified. For example:

javac -processor NullnessChecker,RegexChecker MyFile.java
javac -processor nullness,regex MyFile.java

This feature does not apply to Javac @argfiles.

2.3 What the checker guarantees
A checker can guarantee that a particular property holds throughout the code. For example, the Nullness Checker
(Chapter 3) guarantees that every expression whose type is a @NonNull type never evaluates to null. The Interning
Checker (Chapter 6) guarantees that every expression whose type is an @Interned type evaluates to an interned value.
The checker makes its guarantee by examining every part of your program and verifying that no part of the program
violates the guarantee.

There are some limitations to the guarantee.

• A compiler plugin can check only those parts of your program that you run it on. If you compile some parts of
your program without running the checker, then there is no guarantee that the entire program satisfies the property
being checked. Some examples of un-checked code are:

– Code compiled without the -processor switch, including any external library supplied as a .class file.
– Code compiled with the -AskipUses, -AonlyUses, -AskipDefs or -AonlyDefs properties (see Chap-

ter 26).
– Suppression of warnings, such as via the @SuppressWarnings annotation (see Chapter 26).
– Native methods (because the implementation is not Java code, it cannot be checked).

In each of these cases, any use of the code is checked — for example, a call to a native method must be compatible
with any annotations on the native method’s signature. However, the annotations on the un-checked code are
trusted; there is no verification that the implementation of the native method satisfies the annotations.

• The Checker Framework is, by default, unsound in a few places where a conservative analysis would issue too
many false positive warnings. These are listed in Section 2.2.3. You can supply a command-line argument to
make the Checker Framework sound for each of these cases.

19

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javac.html#BHCJEIBB
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/interning/qual/Interned.html

• Specific checkers may have other limitations; see their documentation for details.

A checker can be useful in finding bugs or in verifying part of a program, even if the checker is unable to verify the
correctness of an entire program.

In order to avoid a flood of unhelpful warnings, many of the checkers avoid issuing the same warning multiple
times. For example, in this code:

@Nullable Object x = ...;
x.toString(); // warning
x.toString(); // no warning

In this case, the second call to toString cannot possibly throw a null pointer warning — x is non-null if control flows
to the second statement. In other cases, a checker avoids issuing later warnings with the same cause even when later
code in a method might also fail. This does not affect the soundness guarantee, but a user may need to examine more
warnings after fixing the first ones identified. (More often, at least in our experience to date, a single fix corrects all the
warnings.)

If you find that a checker fails to issue a warning that it should, then please report a bug (see Section 33.2).

2.4 Tips about writing annotations
Section 29.1 gives additional tips that are specific to annotating a third-party library.

2.4.1 Write annotations before you run a checker
Before you run a checker, annotate the code, based on its documentation. Then, run the checker to uncover bugs in the
code or the documentation.

Don’t do the opposite, which is to run the checker and then add annotations according to the warnings issued. This
approach is less systematic, so you may overlook some annotations. It often leads to confusion and poor results. It leads
users to make changes not for any principled reason, but to “make the type-checker happy”, even when the changes are
in conflict with the documentation or the code. Also see “Annotations are a specification”, below.

2.4.2 How to get started annotating legacy code
Annotating an entire existing program may seem like a daunting task. But, if you approach it systematically and do a
little bit at a time, you will find that it is manageable.

Start small

Start small. Focus on one specific property that matters to you; in other words, run just one checker rather than multiple
ones. You may choose a different checker for different programs. Focus on the most mission-critical or error-prone part
of your code; don’t try to annotate your whole program at first.

It is easiest to add annotations if you know the code or the code contains documentation; you will find that you
spend most of your time understanding the code, and very little time actually writing annotations or running the checker.

When annotating, be systematic; we recommend annotating an entire class at a time (not just some of the methods)
so that you don’t lose track of your work or redo work. For example, working class-by-class avoids confusion about
whether an unannotated type means you determined that the default is desirable, or it means you didn’t yet examine that
type. You may find it helpful to start annotating the leaves of the call tree — that is, start with methods/classes/packages
that have few dependencies on other code or, equivalently, start with code that a lot of your other code depends on. For
example, within a package annotate supertypes before you annotated classes that extend or implement them. The reason
for this rule is that it is easiest to annotate a class if the code it depends on has already been annotated.

Don’t overuse pluggable type-checking. If the regular Java type system can verify a property using Java subclasses,
then that is a better choice than pluggable type-checking (see Section 32.1.2).

20

Annotations are a specification

When you write annotations, you are writing a specification, and you should think about them that way. Start out by
understanding the program so that you can write an accurate specification. Sections 2.4.3 and 2.4.4 give more tips about
writing specifications.

For each class, read its Javadoc. For instance, if you are adding annotations for the Nullness Checker (Section 3),
then you can search the documentation for “null” and then add @Nullable anywhere appropriate. For now, just annotate
signatures and fields; there is no need to annotate method bodies. The only reason to even read the method bodies yet is
to determine signature annotations for undocumented methods — for example, if the method returns null, you know its
return type should be annotated @Nullable, and a parameter that is compared against null may need to be annotated
@Nullable.

After you have annotated all the signatures, run the checker. Then, fix bugs in code and add/modify annotations
as necessary. Don’t get discouraged if you see many type-checker warnings at first. Often, adding just a few missing
annotations will eliminate many warnings, and you’ll be surprised how fast the process goes overall.

You may wonder about the effect of adding a given annotation (that is, of changing the specification for a given
method or class): how many other specification changes (added annotations) will it require, and will it conflict with
other code? It’s best to reason about the desired design, but you can also do an experiment. Suppose you are considering
adding an annotation to a method parameter. One approach is to manually examine all callees. A more automated
approach is to save the checker output before adding the annotation, and to compare it to the checker output after adding
the annotation. This helps you to focus on the specific consequences of your change.

Chapter 29 tells you how to annotate libraries that your code uses. Section 2.4.6 and Chapter 26 tell you what to do
when you are unable to eliminate checker warnings by adding annotations.

Write good code

Avoid complex code, which is more error-prone. If you write your code to be simple and clean enough for the
type-checker to verify, then it will also be easier for programmers to understand.

Your code should compile cleanly under the regular Java compiler. If you are not willing to write code that type-
checks in Java, then there is little point in using an even more powerful, restrictive type system. As a specific example,
your code should not use raw types like List; use parameterized types like List<String> instead (Section 24.1.1).

Do not write unnecessary annotations.

• Do not annotate local variables unless necessary. The checker infers annotations for local variables (see
Section 25.4). Usually, you only need to annotate fields and method signatures. You should add annotations
inside method bodies only if the checker is unable to infer the correct annotation.

• Do not write annotations that are redundant with defaults. For example, when checking nullness (Chapter 3,
page 25), the default annotation is @NonNull, in most locations other than some type bounds (Section 25.3.2).
When you are starting out, it might seem helpful to write redundant annotations as a reminder, but that’s like
when beginning programmers write a comment about every simple piece of code:

// The below code increments variable i by adding 1 to it.
i++;

As you become comfortable with pluggable type-checking, you will find redundant annotations to be distracting
clutter, so avoid putting them in your code in the first place.

• Avoid writing @SuppressWarnings annotations unless there is no alternative. It is tempting to think that your
code is right and the checker’s warnings are false positives. Sometimes they are, but slow down and convince
yourself of that before you dismiss them. Section 2.4.6 discusses what to do when a checker issues a warning
about your code.

2.4.3 Annotations indicate normal behavior
You should use annotations to specify normal behavior. The annotations indicate all the values that you want to flow to
a reference — not every value that might possibly flow there if your program has a bug.

21

Many methods are guaranteed to throw an exception if they are passed null as an argument. Examples include

java.lang.Double.valueOf(String)
java.lang.String.contains(CharSequence)
org.junit.Assert.assertNotNull(Object)
com.google.common.base.Preconditions.checkNotNull(Object)

@Nullable (see Section 3.2) might seem like a reasonable annotation for the parameter, for two reasons. First,
null is a legal argument with a well-defined semantics: throw an exception. Second, @Nullable describes a possible
program execution: it might be possible for null to flow there, if your program has a bug.

However, it is never useful for a programmer to pass null. It is the programmer’s intention that null never flows
there. If null does flow there, the program will not continue normally (whether or not it throws a NullPointerException).

Therefore, you should specify such parameters as @NonNull, indicating the intended use of the method. When you
specify the parameter as the @NonNull annotation, the checker is able to issue compile-time warnings about possible
run-time exceptions, which is its purpose. Specifying the parameter as @Nullable would suppress such warnings,
which is undesirable. (Since @NonNull is the default, you don’t have to write anything in the source code to specify the
parameter as non-null. You are allowed to write a redundant @NonNull annotation, but it is discouraged.)

If a method can possibly throw an exception because its parameter is null, then that parameter’s type should
be @NonNull, which guarantees that the type-checker will issue a warning for every client use that has the potential
to cause an exception. Don’t write @Nullable on the parameter just because there exist some executions that don’t
necessarily throw an exception.

2.4.4 Subclasses must respect superclass annotations
An annotation indicates a guarantee that a client can depend upon. A subclass is not permitted to weaken the contract;
for example, if a method accepts null as an argument, then every overriding definition must also accept null. A
subclass is permitted to strengthen the contract; for example, if a method does not accept null as an argument, then an
overriding definition is permitted to accept null.

As a bad example, consider an erroneous @Nullable annotation in
com/google/common/collect/Multiset.java:

101 public interface Multiset<E> extends Collection<E> {
...
122 /**
123 * Adds a number of occurrences of an element to this multiset.
...
129 * @param element the element to add occurrences of; may be {@code null} only
130 * if explicitly allowed by the implementation
...
137 * @throws NullPointerException if {@code element} is null and this
138 * implementation does not permit null elements. Note that if {@code
139 * occurrences} is zero, the implementation may opt to return normally.
140 */
141 int add(@Nullable E element, int occurrences);

There exist implementations of Multiset that permit null elements, and implementations of Multiset that do not
permit null elements. A client with a variable Multiset ms does not know which variety of Multiset ms refers to.
However, the @Nullable annotation promises that ms.add(null, 1) is permissible. (Recall from Section 2.4.3 that
annotations should indicate normal behavior.)

If parameter element on line 141 were to be annotated, the correct annotation would be @NonNull. Suppose a
client has a reference to same Multiset ms. The only way the client can be sure not to throw an exception is to pass only
non-null elements to ms.add(). A particular class that implements Multiset could declare add to take a @Nullable

22

../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://github.com/google/guava/blob/master/guava/src/com/google/common/collect/Multiset.java#L129

parameter. That still satisfies the original contract. It strengthens the contract by promising even more: a client with
such a reference can pass any non-null value to add(), and may also pass null.

However, the best annotation for line 141 is no annotation at all. The reason is that each implementation of the
Multiset interface should specify its own nullness properties when it specifies the type parameter for Multiset. For
example, two clients could be written as

class MyNullPermittingMultiset implements Multiset<@Nullable Object> { ... }
class MyNullProhibitingMultiset implements Multiset<@NonNull Object> { ... }

or, more generally, as

class MyNullPermittingMultiset<E extends @Nullable Object> implements Multiset<E> { ... }
class MyNullProhibitingMultiset<E extends @NonNull Object> implements Multiset<E> { ... }

Then, the specification is more informative, and the Checker Framework is able to do more precise checking, than if
line 141 has an annotation.

It is a pleasant feature of the Checker Framework that in many cases, no annotations at all are needed on type
parameters such as E in MultiSet.

2.4.5 Annotations on constructor invocations
In the checkers distributed with the Checker Framework, an annotation on a constructor invocation is equivalent to a
cast on a constructor result. That is, the following two expressions have identical semantics: one is just shorthand for
the other.

new @Untainted Date()
(@Untainted Date) new Date()

However, you should rarely have to use this. The Checker Framework will determine the qualifier on the result,
based on the “return value” annotation on the constructor definition. The “return value” annotation appears before the
constructor name, for example:

class MyClass {
@Untainted MyClass() { ... }

}

In general, you should only use an annotation on a constructor invocation when you know that the cast is guaranteed
to succeed.

2.4.6 What to do if a checker issues a warning about your code
When you run a type-checker on your code, it is likely to issue warnings or errors. Don’t panic! There are three general
causes for the warnings:

• There is a bug in your code, such as a possible null dereference. Fix your code to prevent that crash.
• There is a weakness in the annotations you wrote. In other words, the specification you wrote is incorrect

or inadequate. Improve the annotations, usually by writing more annotations in order to better express the
specification.

• There is a weakness in the type-checker. Your code is safe — it never suffers the error at run time — but the
checker cannot prove this fact. If possible, rewrite your code to be simpler for the checker to analyze; this is likely
to make it easier for people to understand, too. If that is not possible, suppress the warning (see Chapter 26);
be sure to include a code comment explaining how you know the code is correct even though the type-checker
cannot deduce that fact.

23

For each warning issued by the checker, you need to determine which of the above categories it falls into. Here is an
effective methodology to do so. It relies mostly on manual code examination, but you may also find it useful to write
test cases for your code or do other kinds of analysis, to verify your reasoning.

1. Write an explanation of why your code is correct and it never suffers the error at run time. In other words, this is
an English proof that the type-checker’s warning is incorrect.
Don’t skip any steps in your proof. (For example, don’t write an unsubstantiated claim such as “x is non-null
here”; instead, give a justification.) Don’t let your reasoning rely on facts that you do not write down explicitly.
For example, remember that calling a method might change the values of object fields; your proof might need to
state that certain methods have no side effects.
If you cannot write a proof, then there is a bug in your code (you should fix the bug) or your code is too complex
for you to understand (you should improve its documentation and/or design).

2. Translate the proof into annotations. Here are some examples.

• If your proof includes “variable x is never null at run time”, then annotate <x>’s type with @NonNull.
• If your proof includes “method foo always returns a legal regular expression”, then annotate foo’s return

type with @Regex.
• If your proof includes “if method join’s first argument is non-null, then join returns a non-null result”,

then annotate join’s first parameter and return type with @PolyNull.
• If your proof includes “method processOptions has already been called and it set field tz1”, then annotate
processOptions’s declaration with @EnsuresNonNull("tz1").
• If your proof includes “method isEmpty returned false, so its argument must have been non-null”, then

annotate isEmpty’s declaration with @EnsuresNonNullIf(expression="#1",result=false).

All of these are examples of correcting weaknesses in the annotations you wrote. The Checker Framework
provides many other powerful annotations; you may be surprised how many proofs you can express in annotations.
If you need to annotate a method that is defined in a library that your code uses, see Chapter 29, page 174,
Annotating Libraries.
If there are complex facts in your proof that cannot be expressed as annotations, then that is a weakness in the
type-checker. For example, the Nullness Checker cannot express “in list lst, elements stored at even indices are
always non-null, but elements stored at odd elements might be null.” In this case, you have two choices. First,
you can suppress the warning (Chapter 26, page 162); be sure to write a comment explaining your reasoning for
suppressing the warning. You may wish to submit a feature request (Section 33.2) asking for annotations that
handle your use case. Second, you can rewrite the code to make the proof simpler; in the above example, it might
be better to use a list of pairs rather than a heterogeneous list.

3. At this point, all the steps in your proof have been formalized as annotations. Re-run the checker and repeat the
process for any new or remaining warnings.
If every step of your proof can be expressed in annotations, but the checker cannot make one of the deductions (it
cannot follow one of the steps), then that is a weakness in the type-checker. First, double-check your reasoning.
Then, suppress the warning, along with a comment explaining your reasoning (Chapter 26, page 162). The
comment is an excerpt from your English proof, and the proof guides you to the best place to suppress the
warning. Finally, please submit a bug report so that the checker can be improved in the future (Section 33.2).

If you have trouble understanding a Checker Framework warning message, you can search for its text in this manual.
Also see Section 33.1.3 and Chapter 33, Troubleshooting. In particular, Section 33.1.3 explains this same methodology
in different words.

24

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/regex/qual/Regex.html
../api/org/checkerframework/checker/nullness/qual/PolyNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

Chapter 3

Nullness Checker

If the Nullness Checker issues no warnings for a given program, then running that program will never throw a null
pointer exception. This guarantee enables a programmer to prevent errors from occurring when a program is run. See
Section 3.1 for more details about the guarantee and what is checked.

The most important annotations supported by the Nullness Checker are @NonNull and @Nullable. @NonNull is
rarely written, because it is the default. All of the annotations are explained in Section 3.2.

To run the Nullness Checker, supply the -processor org.checkerframework.checker.nullness.NullnessChecker
command-line option to javac. For examples, see Section 3.5.

The NullnessChecker is actually an ensemble of three pluggable type-checkers that work together: the Nullness
Checker proper (which is the main focus of this chapter), the Initialization Checker (Section 3.8), and the Map Key
Checker (Chapter 4, page 49). Their type hierarchies are completely independent, but they work together to provide
precise nullness checking.

3.1 What the Nullness Checker checks
The checker issues a warning in these cases:

1. When an expression of non-@NonNull type is dereferenced, because it might cause a null pointer exception.
Dereferences occur not only when a field is accessed, but when an array is indexed, an exception is thrown, a lock
is taken in a synchronized block, and more. For a complete description of all checks performed by the Nullness
Checker, see the Javadoc for NullnessVisitor.

2. When an expression of @NonNull type might become null, because it is a misuse of the type: the null value could
flow to a dereference that the checker does not warn about.
As a special case of an of @NonNull type becoming null, the checker also warns whenever a field of @NonNull
type is not initialized in a constructor.

This example illustrates the programming errors that the checker detects:

@Nullable Object obj; // might be null
@NonNull Object nnobj; // never null
...
obj.toString() // checker warning: dereference might cause null pointer exception
nnobj = obj; // checker warning: nnobj may become null
if (nnobj == null) // checker warning: redundant test

Parameter passing and return values are checked analogously to assignments.
The Nullness Checker also checks the correctness, and correct use, of rawness annotations for checking initialization

(see Section 3.8.8) and of map key annotations (see Chapter 4, page 49).

25

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/NullnessVisitor.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

The checker performs additional checks if certain -Alint command-line options are provided. (See Section 26.6
for more details about the -Alint command-line option.)

1. Options that control soundness:

• If you supply the -Alint=forbidnonnullarraycomponents command-line option, then the checker
warns if it encounters an array creation with a non-null component type. See Section 3.3.4 for a discussion.

2. Options that warn about poor code style:

• If you supply the -Alint=redundantNullComparison command-line option, then the checker warns
when a null check is performed against a value that is guaranteed to be non-null, as in ("m" == null).
Such a check is unnecessary and might indicate a programmer error or misunderstanding. The lint option is
disabled by default because sometimes such checks are part of ordinary defensive programming.

3.2 Nullness annotations
The Nullness Checker uses three separate type hierarchies: one for nullness, one for rawness (Section 3.8.8), and one
for map keys (Chapter 4, page 49) The Nullness Checker has four varieties of annotations: nullness type qualifiers,
nullness method annotations, rawness type qualifiers, and map key type qualifiers.

3.2.1 Nullness qualifiers
The nullness hierarchy contains these qualifiers:

@Nullable indicates a type that includes the null value. For example, the type Boolean is nullable: a variable of
type Boolean always has one of the values TRUE, FALSE, or null.

@NonNull indicates a type that does not include the null value. The type boolean is non-null; a variable of type
boolean always has one of the values true or false. The type @NonNull Boolean is also non-null: a variable
of type @NonNull Boolean always has one of the values TRUE or FALSE — never null. Dereferencing an
expression of non-null type can never cause a null pointer exception.
The @NonNull annotation is rarely written in a program, because it is the default (see Section 3.3.2).

@PolyNull indicates qualifier polymorphism. For a description of @PolyNull, see Section 24.2.
@MonotonicNonNull indicates a reference that may be null, but if it ever becomes non-null, then it never

becomes null again. This is appropriate for lazily-initialized fields, among other uses. When the variable is read,
its type is treated as @Nullable, but when the variable is assigned, its type is treated as @NonNull.
Because the Nullness Checker works intraprocedurally (it analyzes one method at a time), when a
MonotonicNonNull field is first read within a method, the field cannot be assumed to be non-null. The benefit
of MonotonicNonNull over Nullable is its different interaction with flow-sensitive type qualifier refinement
(Section 25.4). After a check of a MonotonicNonNull field, all subsequent accesses within that method can be
assumed to be NonNull, even after arbitrary external method calls that have access to the given field.
It is permitted to initialize a MonotonicNonNull field to null, but the field may not be assigned to null any-
where else in the program. If you supply the noInitForMonotonicNonNull lint flag (for example, supply
-Alint=noInitForMonotonicNonNull on the command line), then @MonotonicNonNull fields are not allowed
to have initializers.
Use of @MonotonicNonNull on a static field is a code smell: it may indicate poor design. You should consider
whether it is possible to make the field a member field that is set in the constructor.

Figure 3.1 shows part of the type hierarchy for the Nullness type system. (The annotations exist only at compile
time; at run time, Java has no multiple inheritance.)

26

../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/PolyNull.html
../api/org/checkerframework/checker/nullness/qual/PolyNull.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

@NonNull Object @Nullable Date

@Nullable Object

@NonNull Date

Figure 3.1: Partial type hierarchy for the Nullness type system. Java’s Object is expressed as @Nullable Object.
Programmers can omit most type qualifiers, because the default annotation (Section 3.3.2) is usually correct. The
Nullness Checker verifies three type hierarchies: this one for nullness, one for initialization (Section 3.8), and one for
map keys (Chapter 4, page 49).

3.2.2 Nullness method annotations
The Nullness Checker supports several annotations that specify method behavior. These are declaration annotations, not
type annotations: they apply to the method itself rather than to some particular type.

@RequiresNonNull indicates a method precondition: The annotated method expects the specified variables
(typically field references) to be non-null when the method is invoked.

@EnsuresNonNull
@EnsuresNonNullIf indicates a method postcondition. With @EnsuresNonNull, the given expressions are

non-null after the method returns; this is useful for a method that initializes a field, for example. With
@EnsuresNonNullIf, if the annotated method returns the given boolean value (true or false), then the given
expressions are non-null. See Section 3.3.3 and the Javadoc for examples of their use.

3.2.3 Initialization qualifiers
The Nullness Checker invokes an Initialization Checker, whose annotations indicate whether an object is fully initialized
— that is, whether all of its fields have been assigned.

@Initialized
@UnknownInitialization
@UnderInitialization

Use of these annotations can help you to type-check more code. Figure 3.3 shows its type hierarchy. For details, see
Section 3.8.

A slightly simpler variant, called the Rawness Initialization Checker, is also available:

@Raw
@NonRaw
@PolyRaw

Figure 3.7 shows its type hierarchy. For details, see Section 3.8.8.

3.2.4 Map key qualifiers
@KeyFor

indicates that a value is a key for a given map — that is, indicates whether map.containsKey(value) would evaluate
to true.

This annotation is checked by a Map Key Checker (Chapter 4, page 49) that the Nullness Checker invokes. The
@KeyFor annotation enables the Nullness Checker to treat calls to Map.get precisely rather than assuming it may
always return null. In particular, a call mymap.get(mykey) returns a non-null value if two conditions are satisfied:

27

../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/Raw.html
../api/org/checkerframework/checker/nullness/qual/NonRaw.html
../api/org/checkerframework/checker/nullness/qual/PolyRaw.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#get-java.lang.Object-

1. mymap’s values are all non-null; that is, mymap was declared as Map<KeyType, @NonNull ValueType>.
Note that @NonNull is the default type, so it need not be written explicitly.

2. mykey is a key in mymap; that is, mymap.containsKey(mykey) returns true. You express this fact to the
Nullness Checker by declaring mykey as @KeyFor("mymap") KeyType mykey. For a local variable, you
generally do not need to write the @KeyFor("mymap") type qualifier, because it can be inferred.

If either of these two conditions is violated, then mymap.get(mykey) has the possibility of returning null.

3.3 Writing nullness annotations

3.3.1 Implicit qualifiers
The Nullness Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code (see
Section 25.3). For example, enum types are implicitly non-null, so you never need to write @NonNull MyEnumType.

For more information about implicitly-added nullness qualifiers, see the implementation of NullnessAnnotatedTypeFactory.

3.3.2 Default annotation
Unannotated references are treated as if they had a default annotation. The standard defaulting rule is CLIMB-to-top,
described in Section 25.3.2. Its effect is to default all types to @NonNull, except that @Nullable is used for casts,
locals, instanceof, and implicit bounds. A user can choose a different defaulting rule by writing a @DefaultQualifier
annotation on a package, class, or method. In the example below, fields are defaulted to @Nullable instead of
@NonNull.

@DefaultQualifier(value = Nullable.class, locations = TypeUseLocation.FIELD)
class MyClass {

Object nullableField = null;
@NonNull Object nonNullField = new Object();

}

3.3.3 Conditional nullness
The Nullness Checker supports a form of conditional nullness types, via the @EnsuresNonNullIf method annotations.
The annotation on a method declares that some expressions are non-null, if the method returns true (false, respectively).

Consider java.lang.Class. Method Class.getComponentType() may return null, but it is specified to return a
non-null value if Class.isArray() is true. You could declare this relationship in the following way (this particular
example is already done for you in the annotated JDK that comes with the Checker Framework):

class Class<T> {
@EnsuresNonNullIf(expression="getComponentType()", result=true)
public native boolean isArray();

public native @Nullable Class<?> getComponentType();
}

A client that checks that a Class reference is indeed that of an array, can then de-reference the result of
Class.getComponentType safely without any nullness check. The Checker Framework source code itself uses
such a pattern:

if (clazz.isArray()) {
// no possible null dereference on the following line
TypeMirror componentType = typeFromClass(clazz.getComponentType());
...

}

28

../api/org/checkerframework/checker/nullness/NullnessAnnotatedTypeFactory.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getComponentType--
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#isArray--

Another example is Queue.peek and Queue.poll, which return non-null if isEmpty returns false.
The argument to @EnsuresNonNullIf is a Java expression, including method calls (as shown above), method

formal parameters, fields, etc.; for details, see Section 25.5. More examples of the use of these annotations appear in the
Javadoc for @EnsuresNonNullIf.

3.3.4 Nullness and arrays
Suppose that you declare an array to contain non-null elements. Currently, the Nullness Checker does not verify that all
the elements of the array are initialized to a non-null value. This is an unsoundness in the checker.

To make the Nullness Checker conservatively reject code that may leave a non-null value in an array, use the
command-line option -Alint=forbidnonnullarraycomponents. The option is currently disabled because it makes
the checker issue many false positive errors.

When the -Alint=forbidnonnullarraycomponents option is supplied, the following is not allowed:

Object [] oa = new Object[10]; // error

(recall that Object means the same thing as @NonNull Object).
Instead, your code needs to create a nullable or lazy-nonnull array, initialize each component, and then assign the

result to a non-null array:

@MonotonicNonNull Object [] temp = new @MonotonicNonNull Object[10];
for (int i = 0; i < temp.length; ++i) {

temp[i] = new Object();
}
@SuppressWarnings("nullness") // temp array is now fully initialized
@NonNull Object [] oa = temp;

Note that the checker is currently not powerful enough to ensure that each array component was initialized.
Therefore, the last assignment needs to be trusted: that is, a programmer must verify that it is safe, then write a
@SuppressWarnings annotation.

3.3.5 Run-time checks for nullness
When you perform a run-time check for nullness, such as if (x != null) ..., then the Nullness Checker refines the
type of x to @NonNull. The refinement lasts until the end of the scope of the test or until x may be side-effected. For
more details, see Section 25.4.

3.3.6 Additional details
The Nullness Checker does some special checks in certain circumstances, in order to soundly reduce the number of
warnings that it produces.

For example, a call to System.getProperty(String) can return null in general, but it will not return null if the
argument is one of the built-in-keys listed in the documentation of System.getProperties(). The Nullness Checker is
aware of this fact, so you do not have to suppress a warning for a call like System.getProperty("line.separator").
The warning is still issued for code like this:

final String s = "line.separator";
nonNullvar = System.getProperty(s);

though that case could be handled as well, if desired. (Suppression of the warning is, strictly speaking, not sound,
because a library that your code calls, or your code itself, could perversely change the system properties; the Nullness
Checker assumes this bizarre coding pattern does not happen.)

29

https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html#peek--
https://docs.oracle.com/javase/8/docs/api/java/util/Queue.html#poll--
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html#isEmpty--
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#getProperty-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#getProperties--

3.3.7 Inference of @NonNull and @Nullable annotations
It can be tedious to write annotations in your code. Tools exist that can automatically infer annotations and insert them
in your source code. (This is different than type qualifier refinement for local variables (Section 25.4), which infers a
more specific type for local variables and uses them during type-checking but does not insert them in your source code.
Type qualifier refinement is always enabled, no matter how annotations on signatures got inserted in your source code.)

Your choice of tool depends on what default annotation (see Section 3.3.2) your code uses. You only need one of
these tools.

• Inference of @Nullable: If your code uses the standard CLIMB-to-top default (Section 25.3.2) or the NonNull
default, then use the AnnotateNullable tool of the Daikon invariant detector.

• Inference of @NonNull: If your code uses the Nullable default, use one of these tools:

– Julia analyzer,
– Nit: Nullability Inference Tool,
– Non-null checker and inferencer of the JastAdd Extensible Compiler.

3.4 Suppressing nullness warnings
When the Nullness Checker reports a warning, it’s best to change the code or its annotations, to eliminate the warning.
Alternately, you can suppress the warning, which does not change the code but prevents the Nullness Checker from
reporting this particular warning to you.

The Checker Framework supplies several ways to suppress warnings, most notably the
@SuppressWarnings("nullness") annotation (see Chapter 26). An example use is

// might return null
@Nullable Object getObject(...) { ... }

void myMethod() {
@SuppressWarnings("nullness") // with argument x, getObject always returns a non-null value
@NonNull Object o2 = getObject(x);

The Nullness Checker supports an additional warning suppression key, nullness:generic.argument. Use of
@SuppressWarnings("nullness:generic.argument") causes the Nullness Checker to suppress warnings related
to misuse of generic type arguments. One use for this key is when a class is declared to take only @NonNull type
arguments, but you want to instantiate the class with a @Nullable type argument, as in List<@Nullable Object>.

The Nullness Checker also permits you to use assertions or method calls to suppress warnings; see below.

3.4.1 Suppressing warnings with assertions and method calls
Occasionally, it is inconvenient or verbose to use the @SuppressWarnings annotation. For example, Java does
not permit annotations such as @SuppressWarnings to appear on statements. In such cases, you can use the
@AssumeAssertion string in an assert message (see Section 26.2).

If you need to suppress a warning within an expression, then sometimes writing an assertion is not convenient. In
such a case, you can suppress warnings by writing a call to the NullnessUtil.castNonNull method. The rest of this
section discusses the castNonNull method.

The Nullness Checker considers both the return value, and also the argument, to be non-null after the castNonNull
method call. The Nullness Checker issues no warnings in any of the following code:

// One way to use castNonNull as a cast:
@NonNull String s = castNonNull(possiblyNull1);

// Another way to use castNonNull as a cast:
castNonNull(possiblyNull2).toString();

30

../api/org/checkerframework/checker/nullness/qual/Nullable.html
http://plse.cs.washington.edu/daikon/download/doc/daikon.html#AnnotateNullable
http://plse.cs.washington.edu/daikon/
../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://www.juliasoft.com/eng
http://nit.gforge.inria.fr
http://jastadd.org/jastadd-tutorial-examples/non-null-types-for-java/
http://jastadd.org/
../api/org/checkerframework/checker/nullness/NullnessUtil.html#castNonNull-T-

// It is possible, but not recommmended, to use castNonNull as a statement:
// (It would be better to write an assert statement with @AssumeAssertion
// in its message, instead.)
castNonNull(possiblyNull3);
possiblyNull3.toString();

The castNonNull method throws AssertionError if Java assertions are enabled and the argument is null.
However, it is not intended for general defensive programming; see Section 26.2.1.

A potential disadvantage of using the castNonNull method is that your code becomes dependent on the Checker
Framework at run time as well as at compile time: you need to include checker-qual.jar on your classpath at run
time. If this is a problem, you can copy the implementation of castNonNull into your own code, and possibly renaming
it if you do not like the name. Be sure to retain the documentation that indicates that your copy is intended for use only
to suppress warnings and not for defensive programming. See Section 26.2.1 for an explanation of the distinction.

The Nullness Checker introduces a new method, rather than re-using
an existing method such as org.junit.Assert.assertNotNull(Object) or
com.google.common.base.Preconditions.checkNotNull(Object). Those methods are commonly used
for defensive programming, so it is impossible to know the programmer’s intent when writing them. Therefore, it is
important to have a method call that is used only for warning suppression. See Section 26.2.1 for a discussion of the
distinction between warning suppression and defensive programming.

3.5 Examples

3.5.1 Tiny examples
To try the Nullness Checker on a source file that uses the @NonNull qualifier, use the following command (where javac
is the Checker Framework compiler that is distributed with the Checker Framework):
javac -processor org.checkerframework.checker.nullness.NullnessChecker docs/examples/NullnessExample.java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations (and therefore the possibility of a null pointer exception

at run time), use the following command:
javac -processor org.checkerframework.checker.nullness.NullnessChecker docs/examples/NullnessExampleWithWarnings.java

The compiler will issue two warnings regarding violation of the semantics of @NonNull.

3.5.2 Example annotated source code
Some libraries that are annotated with nullness qualifiers are:

• The Nullness Checker itself.
• The Plume-lib library. Run the command make check-nullness.
• The Daikon invariant detector. Run the command make check-nullness.

3.6 Tips for getting started
Here are some tips about getting started using the Nullness Checker on a legacy codebase. For more generic advice (not
specific to the Nullness Checker), see Section 2.4.2.

Your goal is to add @Nullable annotations to the types of any variables that can be null. (The default is to assume
that a variable is non-null unless it has a @Nullable annotation.) Then, you will run the Nullness Checker. Each of
its errors indicates either a possible null pointer exception, or a wrong/missing annotation. When there are no more
warnings from the checker, you are done!

We recommend that you start by searching the code for occurrences of null in the following locations; when you
find one, write the corresponding annotation:

31

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://mernst.github.io/plume-lib/
http://plse.cs.washington.edu/daikon/
../api/org/checkerframework/checker/nullness/qual/Nullable.html

• in Javadoc: add @Nullable annotations to method signatures (parameters and return types).
• return null: add a @Nullable annotation to the return type of the given method.
• param == null: when a formal parameter is compared to null, then in most cases you can add a @Nullable

annotation to the formal parameter’s type
• TypeName field = null;: when a field is initialized to null in its declaration, then it needs either a
@Nullable or a @MonotonicNonNull annotation. If the field is always set to a non-null value in the constructor,
then you can just change the declaration to Type field;, without an initializer, and write no type annotation
(because the default is @NonNull).
• declarations of contains, containsKey, containsValue, equals, get, indexOf, lastIndexOf, and remove

(with Object as the argument type): change the argument type to @Nullable Object; for remove, also change
the return type to @Nullable Object.

You should ignore all other occurrences of null within a method body. In particular, you (almost) never need to
annotate local variables.

Only after this step should you run ant to invoke the Nullness Checker. The reason is that it is quicker to search for
places to change than to repeatedly run the checker and fix the errors it tells you about, one at a time.

Here are some other tips:

• In any file where you write an annotation such as @Nullable, don’t forget to add import
org.checkerframework.checker.nullness.qual.*;.

• To indicate an array that can be null, write, for example: int @Nullable [].
By contrast, @Nullable Object [] means a non-null array that contains possibly-null objects.

• If you know that a particular variable is definitely not null, but the Nullness Checker estimates that the variable
might be null, then you can make the Nullness Checker trust your judgment by writing an assertion (see
Section 26.2):

assert var != null : "@AssumeAssertion(nullness)";

• To indicate that a routine returns the same value every time it is called, use @Pure (see Section 25.4.5).
• To indicate a method precondition (a contract stating the conditions under which a client is allowed to call it),

you can use annotations such as @RequiresNonNull (see Section 3.2.2).

3.7 Other tools for nullness checking
The Checker Framework’s nullness annotations are similar to annotations used in IntelliJ IDEA, FindBugs, JML, the
JSR 305 proposal, NetBeans, and other tools. In particular, IDE tools such as Eclipse and IntelliJ should be viewed as
bug-finding tools rather than verification tools, since they give up precision, soundness, or both in favor of being fast
and easy to use. Also see Section 33.6 for a comparison to other tools.

You might prefer to use the Checker Framework because it has a more powerful analysis that can warn you about
more null pointer errors in your code.

If your code is already annotated with a different nullness annotation, the Checker Framework can type-check your
code. It treats annotations from other tools as if you had written the corresponding annotation from the Nullness Checker,
as described in Figure 3.2. If the other annotation is a declaration annotation, it may be moved; see Section 27.1.1.

The Checker Framework may issue more or fewer errors than another tool. This is expected, since each tool uses a
different analysis. Remember that the Checker Framework aims at soundness: it aims to never miss a possible null
dereference, while at the same time limiting false reports. Also, note FindBugs’s non-standard meaning for @Nullable
(Section 3.7.2).

Java permits you to import at most one annotation of a given name. For example, if you use both android.annotation.NonNull
and lombok.NonNull in your source code, then you must write at least one of them in fully-qualified form, as
@android.annotation.NonNull rather than as @NonNull.

32

../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html

android.annotation.NonNull
android.support.annotation.NonNull
com.sun.istack.internal.NotNull
edu.umd.cs.findbugs.annotations.NonNull
javax.annotation.Nonnull
javax.validation.constraints.NotNull
lombok.NonNull
org.eclipse.jdt.annotation.NonNull
org.eclipse.jgit.annotations.NonNull
org.jetbrains.annotations.NotNull
org.jmlspecs.annotation.NonNull
org.netbeans.api.annotations.common.NonNull
org.springframework.lang.NonNull

⇒ org.checkerframework.checker.nullness.qual.NonNull

android.annotation.Nullable
android.support.annotation.Nullable
com.sun.istack.internal.Nullable
edu.umd.cs.findbugs.annotations.Nullable
edu.umd.cs.findbugs.annotations.CheckForNull
edu.umd.cs.findbugs.annotations.PossiblyNull
edu.umd.cs.findbugs.annotations.UnknownNullness
javax.annotation.Nullable
javax.annotation.CheckForNull
org.eclipse.jdt.annotation.Nullable
org.eclipse.jgit.annotations.Nullable
org.jetbrains.annotations.Nullable
org.jmlspecs.annotation.Nullable
org.netbeans.api.annotations.common.NullAllowed
org.netbeans.api.annotations.common.CheckForNull
org.netbeans.api.annotations.common.NullUnknown
org.springframework.lang.Nullable

⇒ org.checkerframework.checker.nullness.qual.Nullable

Figure 3.2: Correspondence between other nullness annotations and the Checker Framework’s annotations.

3.7.1 Which tool is right for you?
Different tools are appropriate in different circumstances. Here is a brief comparison with FindBugs, but similar points
apply to other tools. (For example, the NullAway and Eradicate tools are more like sound type-checking than FindBugs,
but all of those tools accept unsoundness — that is, false negatives or missed warnings — in exchange for analysis
speed.)

The Checker Framework has a more powerful nullness analysis; FindBugs misses some real errors. FindBugs
requires you to annotate your code, but usually not as thoroughly as the Checker Framework does. Depending on the
importance of your code, you may desire: no nullness checking, the cursory checking of FindBugs, or the thorough
checking of the Checker Framework. You might even want to ensure that both tools run, for example if your coworkers
or some other organization are still using FindBugs. If you know that you will eventually want to use the Checker
Framework, there is no point using FindBugs first; it is easier to go straight to using the Checker Framework.

FindBugs can find other errors in addition to nullness errors; here we focus on its nullness checks. Even if you use
FindBugs for its other features, you may want to use the Checker Framework for analyses that can be expressed as
pluggable type-checking, such as detecting nullness errors.

Regardless of whether you wish to use the FindBugs nullness analysis, you may continue running all of the other
FindBugs analyses at the same time as the Checker Framework; there are no interactions among them.

33

https://github.com/uber/NullAway
http://fbinfer.com/docs/eradicate.html

If FindBugs (or any other tool) discovers a nullness error that the Checker Framework does not, please report it to
us (see Section 33.2) so that we can enhance the Checker Framework.

3.7.2 Incompatibility note about FindBugs @Nullable
FindBugs has a non-standard definition of @Nullable. FindBugs’s treatment is not documented in its own Javadoc;
it is different from the definition of @Nullable in every other tool for nullness analysis; it means the same thing as
@NonNull when applied to a formal parameter; and it invariably surprises programmers. Thus, FindBugs’s @Nullable
is detrimental rather than useful as documentation. In practice, your best bet is to not rely on FindBugs for nullness
analysis, even if you find FindBugs useful for other purposes.

You can skip the rest of this section unless you wish to learn more details.
FindBugs suppresses all warnings at uses of a @Nullable variable. (You have to use @CheckForNull to indicate a

nullable variable that FindBugs should check.) For example:

// declare getObject() to possibly return null
@Nullable Object getObject() { ... }

void myMethod() {
@Nullable Object o = getObject();
// FindBugs issues no warning about calling toString on a possibly-null reference!
o.toString();

}

The Checker Framework does not emulate this non-standard behavior of FindBugs, even if the code uses FindBugs
annotations.

With FindBugs, you annotate a declaration, which suppresses checking at all client uses, even the places that
you want to check. It is better to suppress warnings at only the specific client uses where the value is known to be
non-null; the Checker Framework supports this, if you write @SuppressWarnings at the client uses. The Checker
Framework also supports suppressing checking at all client uses, by writing a @SuppressWarnings annotation at the
declaration site. Thus, the Checker Framework supports both use cases, whereas FindBugs supports only one and gives
the programmer less flexibility.

In general, the Checker Framework will issue more warnings than FindBugs, and some of them may be about real
bugs in your program. See Section 3.4 for information about suppressing nullness warnings.

(FindBugs made a poor choice of names. The choice of names should make a clear distinction between annotations
that specify whether a reference is null, and annotations that suppress false warnings. The choice of names should also
have been consistent for other tools, and intuitively clear to programmers. The FindBugs choices make the FindBugs
annotations less helpful to people, and much less useful for other tools. As a separate issue, the FindBugs analysis is
also very imprecise. For type-related analyses, it is best to stay away from the FindBugs nullness annotations, and use a
more capable tool like the Checker Framework.)

3.7.3 Relationship to Optional<T>

Many null pointer exceptions occur because the programmer forgets to check whether a reference is null before
dereferencing it. Java 8’s Optional<T> class provides a partial solution: you cannot dereference the contained value
without calling the get method.

However, the use of Optional for this purpose is unsatisfactory. First, it adds syntactic complexity, making your
code longer and harder to read. (The Optional class provides some operations, such as map and orElse, that you
would otherwise have to write; without these its code bloat would be even worse.) Second, there is no guarantee that the
programmer remembers to call isPresent before calling get. Thus, use of Optional doesn’t solve the underlying
problem — it merely converts a NullPointerException into a NoSuchElementException exception, and in either
case your code crashes.

34

http://findbugs.sourceforge.net/api/edu/umd/cs/findbugs/annotations/Nullable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

The Nullness Checker does not suffer these limitations. It works with existing code and types, it ensures that you
check for null wherever necessary, and it infers when the check for null is not necessary based on previous statements
in the method.

See the article “Nothing is better than Java’s Optional class” for more details and explanation of the benefits of
@Nullable over Optional.

Java’s Optional class provides utility routines to reduce clutter when using Optional. The Nullness Checker
provides an Opt class that provides all the same methods, but written for regular possibly-null Java references.

3.8 Initialization Checker
The Initialization Checker determines whether an object is initialized or not. For any object that is not fully initialized,
the Nullness Checker treats its fields as possibly-null — even fields annotated as @NonNull.

Every object’s fields start out as null. By the time the constructor finishes executing, the @NonNull fields have been
set to a different value. Your code can suffer a NullPointerException when using a @NonNull field, if your code uses
the field during initialization. The Nullness Checker prevents this problem by warning you anytime that you may be
accessing an uninitialized field. This check is useful because it prevents errors in your code. However, the analysis
can be confusing to understand. If you wish to disable the initialization checks, pass the command-line argument
-AsuppressWarnings=uninitialized when running the Nullness Checker. You will no longer get a guarantee of no
null pointer exceptions, but you can still use the Nullness Checker to find most of the null pointer problems in your
code.

An object is partially initialized from the time that its constructor starts until its constructor finishes. This is relevant
to the Nullness Checker because while the constructor is executing — that is, before initialization completes — a
@NonNull field may be observed to be null, until that field is set. In particular, the Nullness Checker issues a warning
for code like this:

public class MyClass {
private @NonNull Object f;
public MyClass(int x, int y) {

// Error because constructor contains no assignment to this.f.
// By the time the constructor exits, f must be initialized to a non-null value.

}
public MyClass(int x) {

// Error because this.f is accessed before f is initialized.
// At the beginning of the constructor’s execution, accessing this.f
// yields null, even though field f has a non-null type.
this.f.toString();

}
public MyClass(int x, int y, int z) {

m();
}
public void m() {

// Error because this.f is accessed before f is initialized,
// even though the access is not in a constructor.
// When m is called from the constructor, accessing f yields null,
// even though field f has a non-null type.
this.f.toString();

}

When a field f is declared with a @NonNull type, then code can depend on the fact that the field is not null. However,
this guarantee does not hold for a partially-initialized object.

The Nullness Checker uses three annotations to indicate whether an object is initialized (all its @NonNull fields
have been assigned), under initialization (its constructor is currently executing), or its initialization state is unknown.

35

http://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
http://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html#benefits-of-nullable
http://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html#benefits-of-nullable
../api/org/checkerframework/checker/nullness/Opt.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

These distinctions are mostly relevant within the constructor, or for references to this that escape the constructor
(say, by being stored in a field or passed to a method before initialization is complete). Use of initialization annotations
is rare in most code.

The most common use for the @UnderInitialization annotation is for a helper routine that is called by constructor.
For example:

class MyClass {
Object field1;
Object field2;
Object field3;

public MyClass(String arg1) {
this.field1 = arg1;
init_other_fields();

}

// A helper routine that initializes all the fields other than field1.
@EnsuresNonNull({"field2", "field3"})
private void init_other_fields(@UnderInitialization(Object.class) MyClass this) {

field2 = new Object();
field3 = new Object();

}

public MyClass(String arg1, String arg2, String arg3) {
this.field1 = arg1;
this.field2 = arg2;
this.field3 = arg3;
checkRep();

}

// Verify that the representation invariants are satisfied.
// Works as long as the MyClass fields are initialized, even if the reciever’s
// class is a subclass of MyClass and not all of the subclass fields are initialized.
private void checkRep(@UnderInitialization(MyClass.class) MyClass this) {

...
}

}

Note that it would not be sound to type @code this as fully @link Initialized anywhere in a constructor (with the
exception of final classes, for which the set of all fields is known), because there might be subclasses with uninitialized
fields. The following example shows why:

class A {
@NonNull String a;
public A() {

a = "";
// Now, all fields of A are initialized.
// However, if this constructor is invoked as part of ’new B()’, then
// the fields of B are not yet initialized.
// If we would type ’this’ as @Initialized, then the following call is valid:

36

@UnknownInitialization Date

@UnknownInitialization Object

@Initialized Object @UnderInitialization Object

@Initialized Date @UnderInitialization Date

@UnderInitialization(Object.class) Giraffe

@UnderInitialization(Vertebrate.class) Giraffe

@UnderInitialization(Mammal.class) Giraffe

@UnderInitialization(Giraffe.class) Giraffe

Figure 3.3: Partial type hierarchy for the Initialization type system. @UnknownInitialization and
@UnderInitialization each take an optional parameter indicating how far initialization has proceeded, and the right
side of the figure illustrates its type hierarchy in more detail.

foo();
}
void foo() {}

}

class B extends A {
@NonNull String b;
@Override
void foo() {

// Dereferencing ’b’ is ok, since ’this’ is @Initialized and ’b’ @NonNull.
// However, when executing ’new B()’, this line throws a null-pointer exception.
b.toString();

}
}

3.8.1 Initialization qualifiers
The initialization hierarchy is shown in Figure 3.3. The initialization hierarchy contains these qualifiers:

@Initialized indicates a type that contains a fully-initialized object. Initialized is the default, so there is little
need for a programmer to write this explicitly.

@UnknownInitialization indicates a type that may contain a partially-initialized object. In a partially-initialized
object, fields that are annotated as @NonNull may be null because the field has not yet been assigned.
@UnknownInitialization takes a parameter that is the class the object is definitely initialized up to. For
instance, the type @UnknownInitialization(Foo.class) denotes an object in which every fields declared in
Foo or its superclasses is initialized, but other fields might not be. Just @UnknownInitialization is equivalent
to @UnknownInitialization(Object.class).

@UnderInitialization indicates a type that contains a partially-initialized object that is under initialization —
that is, its constructor is currently executing. It is otherwise the same as @UnknownInitialization. Within the
constructor, this has @UnderInitialization type until all the @NonNull fields have been assigned.

A partially-initialized object (this in a constructor) may be passed to a helper method or stored in a variable; if so, the
method receiver, or the field, would have to be annotated as @UnknownInitialization or as @UnderInitialization.

If a reference has @UnknownInitialization or @UnderInitialization type, then all of its @NonNull fields are
treated as @MonotonicNonNull: when read, they are treated as being @Nullable, but when written, they are treated as
being @NonNull.

The initialization hierarchy is orthogonal to the nullness hierarchy. It is legal for a reference
to be @NonNull @UnderInitialization, @Nullable @UnderInitialization, @NonNull @Initialized, or

37

../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Declarations Expression Expression’s nullness type, or checker error
class C {
@NonNull Object f;
@Nullable Object g;
...

}
@NonNull @Initialized C a; a @NonNull

a.f @NonNull
a.g @Nullable

@NonNull @UnderInitialization C b; b @NonNull
b.f @MonotonicNonNull
b.g @Nullable

@Nullable @Initialized C c; c @Nullable
c.f error: deref of nullable
c.g error: deref of nullable

@Nullable @UnderInitialization C d; d @Nullable
d.f error: deref of nullable
d.g error: deref of nullable

Figure 3.4: Examples of the interaction between nullness and initialization. Declarations are shown at the left for
reference, but the focus of the table is the expressions and their nullness type or error.

@Nullable @Initialized. The nullness hierarchy tells you about the reference itself: might the reference be
null? The initialization hierarchy tells you about the @NonNull fields in the referred-to object: might those fields be
temporarily null in contravention of their type annotation? Figure 3.4 contains some examples.

3.8.2 How an object becomes initialized
Within the constructor, this starts out with @UnderInitialization type. As soon as all of the @NonNull fields
in class C have been initialized, then this is treated as @UnderInitialization(C). This means that this is still
being initialized, but all initialization of C’s fields is complete, including all fields of supertypes. Eventually, when all
constructors complete, the type is @Initialized.

The Initialization Checker issues an error if the constructor fails to initialize any @NonNull field. This ensures that
the object is in a legal (initialized) state by the time that the constructor exits. This is different than Java’s test for
definite assignment (see JLS ch.16), which does not apply to fields (except blank final ones, defined in JLS §4.12.4)
because fields have a default value of null.

All @NonNull fields must either have a default in the field declaration, or be assigned in the constructor or in a
helper method that the constructor calls. If your code initializes (some) fields in a helper method, you will need to
annotate the helper method with an annotation such as @EnsuresNonNull({"field1", "field2"}) for all the fields
that the helper method assigns.

3.8.3 Partial initialization
So far, we have discussed initialization as if it is an all-or-nothing property: an object is non-initialized until initialization
completes, and then it is initialized. The full truth is a bit more complex: during the initialization process an object can
be partially initialized, and as the object’s superclass constructors complete, its initialization status is updated. The
Initialization Checker lets you express such properties when necessary.

Consider a simple example:

class A {
Object aField;
A() {

38

../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-16.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.12.4
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

aField = new Object();
}

}
class B extends A {

Object bField;
B() {

super();
bField = new Object();

}
}

Consider what happens during execution of new B().

1. B’s constructor begins to execute. At this point, neither the fields of A nor those of B have been initialized yet.
2. B’s constructor calls A’s constructor, which begins to execute. No fields of A nor of B have been initialized yet.
3. A’s constructor completes. Now, all the fields of A have been initialized, and their invariants (such as that field a

is non-null) can be depended on. However, because B’s constructor has not yet completed executing, the object
being constructed is not yet fully initialized. When treated as an A (e.g., if only the A fields are accessed), the
object is initialized, but when treated as a B, the object is still non-initialized.

4. B’s constructor completes. The object is initialized when treated as an A or a B. (And, the object is fully initialized
if B’s constructor was invoked via a new B(). But the type system cannot assume that – there might be a class
C extends B { ... }, and B’s constructor might have been invoked from that.)

At any moment during initialization, the superclasses of a given class can be divided into those that have completed
initialization and those that have not yet completed initialization. More precisely, at any moment there is a point in the
class hierarchy such that all the classes above that point are fully initialized, and all those below it are not yet initialized.
As initialization proceeds, this dividing line between the initialized and uninitialized classes moves down the type
hierarchy.

The Nullness Checker lets you indicate where the dividing line is between the initialized and non-initialized classes.
The @UnderInitialization(classliteral) indicates the first class that is known to be fully initialized. When
you write @UnderInitialization(OtherClass.class) MyClass x;, that means that variable x is initialized for
OtherClass and its superclasses, and x is (possibly) uninitialized for MyClass and all subclasses.

The example above lists 4 moments during construction. At those moments, the type of the object being constructed
is:

1. @UnderInitialization B
2. @UnderInitialization A
3. @UnderInitialization(A.class) A
4. @UnderInitialization(B.class) B

3.8.4 Method calls from the constructor
Consider the following incorrect program.

class A {
Object aField;
A() {

aField = new Object();
process(5); // illegal call

}
public void process(int arg) { ... }

}

39

../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html

The call to process() is not legal. process() is declared to be called on a fully-initialized receiver, which is
the default if you do not write a different initialization annotation. At the call to process(), all the fields of A have
been set, but this is not fully initialized because fields in subclasses of A have not yet been set. The type of this is
@UnderInitialization(A.class), meaning that this is partially-initialized, with the A part of initialization done
but the initialization of subclasses not yet complete.

The Initialization Checker output indicates this problem:

Client.java:7: error: [method.invocation.invalid] call to process(int) not allowed on the given receiver.
process(5); // illegal call

^
found : @UnderInitialization(A.class) A
required: @Initialized A

Here is a subclass and client code that crashes with a NullPointerException.

class B extends A {
List<Integer> processed;
B() {

super();
processed = new ArrayList<Integer>();

}
@Override
public void process(int arg) {

super();
processed.add(arg);

}
}
class Client {

public static void main(String[] args) {
new B();

}
}

You can correct the problem in multiple ways.
One solution is to not call methods that can be overridden from the constructor: move the call to process() to after

the constructor has completed.
Another solution is to change the declaration of process():

public void process(@UnderInitialization(A.class) A this, int arg) { ... }

If you choose this solution, you will need to rewrite the definition of B.process() so that it is consistent with the
declared receiver type.

A non-solution is to prevent subclasses from overriding process() by using final on the method. This doesn’t
work because even if process() is not overridden, it might call other methods that are overridden.

As final classes cannot have subclasses, they can be handled more flexibly: once all fields of the final class have
been initialized, this is fully initialized.

3.8.5 Initialization of circular data structures
There is one final aspect of the initialization type system to be considered: the rules governing reading and writing to
objects that are currently under initialization (both reading from fields of objects under initialization, as well as writing
objects under initialization to fields). By default, only fully-initialized objects can be stored in a field of another object.
If this was the only option, then it would not be possible to create circular data structures (such as a doubly-linked list)

40

x.f f is @NonNull f is @Nullable
x is @Initialized @Initialized @NonNull @Initialized @Nullable
x is @UnderInitialization @UnknownInitialization @Nullable @UnknownInitialization @Nullable
x is @UnknownInitialization @UnknownInitialization @Nullable @UnknownInitialization @Nullable

Figure 3.5: Initialization rules for reading a @NotOnlyInitialized field f.

x.f = y y is @Initialized y is @UnderInitialization y is @UnknownInitialization
x is @Initialized yes no no
x is @UnderInitialization yes yes yes
x is @UnknownInitialization yes no no

Figure 3.6: Rules for deciding when an assignment x.f = y is allowed for a @NotOnlyInitialized field f.

where fields have a @NonNull type. However, the annotation @NotOnlyInitialized can be used to indicate that a
field can store objects that are currently under initialization. In this case, the rules for reading and writing to that field
become a little bit more interesting, to soundly support circular structures.

The rules for reading from a @NotOnlyInitialized field are summarized in Figure 3.5. Essentially, nothing is
known about the initialization status of the value returned unless the receiver was @Initialized.

Similarly, Figure 3.6 shows under which conditions an assignment x.f = y is allowed for a @NotOnlyInitialized
field f. If the receiver x is @UnderInitialization, then any y can be of any initialization state. If y is known to be
fully initialized, then any receiver is allowed. All other assignments are disallowed.

These rules allow for the safe initialization of circular structures. For instance, consider a doubly linked list:

class List<T> {
@NotOnlyInitialized
Node<T> sentinel;

public List() {
this.sentinel = new Node<T>(this);

}

void insert(@Nullable T data) {
this.sentinel.insertAfter(data);

}

public static void main() {
List<Integer> l = new List<Integer>();
l.insert(1);
l.insert(2);

}
}

class Node<T> {
@NotOnlyInitialized
Node<T> prev;

@NotOnlyInitialized
Node<T> next;

@NotOnlyInitialized
List parent;

41

../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/NotOnlyInitialized.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html

@Nullable
T data;

// for sentinel construction
Node(@UnderInitialization List parent) {

this.parent = parent;
this.prev = this;
this.next = this;

}

// for data node construction
Node(Node<T> prev, Node<T> next, @Nullable T data) {

this.parent = prev.parent;
this.prev = prev;
this.next = next;
this.data = data;

}

void insertAfter(@Nullable T data) {
Node<T> n = new Node<T>(this, this.next, data);
this.next.prev = n;
this.next = n;

}
}

3.8.6 How to handle warnings
“error: the constructor does not initialize fields: . . . ”

Like any warning, “error: the constructor does not initialize fields: . . . ” indicates that either your annotations are
incorrect or your code is buggy. You can fix either the annotations or the code.

• Declare the field as @Nullable. Recall that if you did not write an annotation, the field defaults to @NonNull.
• Declare the field as @MonotonicNonNull. This is appropriate if the field starts out as null but is later set to a

non-null value. You may then wish to use the @EnsuresNonNull annotation to indicate which methods set the
field, and the @RequiresNonNull annotation to indicate which methods require the field to be non-null.

• Initialize the field in the constructor or in the field’s initializer, if the field should be initialized. (In this case, the
Initialization Checker has found a bug!)
Do not initialize the field to an arbitrary non-null value just to eliminate the warning. Doing so degrades your
code: it introduces a value that will confuse other programmers, and it converts a clear NullPointerException into
a more obscure error.

“call to . . . is not allowed on the given receiver”

If your code calls an instance method from a constructor, you may see a message such as the following:

Foo.java:123: error: call to initHelper() not allowed on the given receiver.
initHelper();

^
found : @UnderInitialization(com.google.Bar.class) @NonNull MyClass
required: @Initialized @NonNull MyClass

42

../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html

The problem is that the current object (this) is under initialization, but the receiver formal parameter (Section 32.6.1)
of method initHelper() is implicitly annotated as @Initialized. If initHelper() doesn’t depend on its receiver
being initialized — that is, it’s OK to call x.initHelper even if x is not initialized — then you can indicate that by
using @UnderInitialization or @UnknownInitialization.

class MyClass {
void initHelper(@UnknownInitialization MyClass this, String param1) { ... }

}

You are likely to want to annotate initHelper() with @EnsuresNonNull as well; see Section 3.2.2.
You may get the “call to . . . is not allowed on the given receiver” error even if your constructor has already initialized

all the fields. For this code:

public class MyClass {
@NonNull Object field;
public MyClass() {

field = new Object();
helperMethod();

}
private void helperMethod() {
}

}

the Nullness Checker issues the following warning:

MyClass.java:7: error: call to helperMethod() not allowed on the given receiver.
helperMethod();

^
found : @UnderInitialization(MyClass.class) @NonNull MyClass
required: @Initialized @NonNull MyClass

1 error

The reason is that even though the object under construction has had all the fields declared in MyClass ini-
tialized, there might be a subclass of MyClass. Thus, the receiver of helperMethod should be declared as
@UnderInitialization(MyClass.class), which says that initialization has completed for all the MyClass fields
but may not have been completed overall. If helperMethod had been a public method that could also be called
after initialization was actually complete, then the receiver should have type @UnknownInitialization, which is the
supertype of @UnknownInitialization and @UnderInitialization.

3.8.7 More details about initialization checking
Suppressing warnings You can suppress warnings related to partially-initialized objects with
@SuppressWarnings("initialization"). This can be placed on a single field; on a constructor; or on a
class to suppress all initialization warnings for all constructors.

To disable initialization checking, supply the command-line argument -AsuppressWarnings=uninitialized.
Do not use -AsuppressWarnings=initialization, because doing so will disable all nullness checking as well as
all initialization checking. (That is because of an implementation detail of the Nullness and Initialization Checkers:
they are actually the same checker, rather than being two separate checkers that are aggregated together.)

Use of method annotations A method with a non-initialized receiver may assume that a few fields (but not all of
them) are non-null, and it sometimes sets some more fields to non-null values. To express these concepts, use the
@RequiresNonNull, @EnsuresNonNull, and @EnsuresNonNullIf method annotations; see Section 3.2.2.

43

../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html

Source of the type system The type system enforced by the Initialization Checker is known as “Freedom Before
Commitment” [SM11]. Our implementation changes its initialization modifiers (“committed”, “free”, and “unclas-
sified”) to “initialized”, “unknown initialization”, and “under initialization”. Our implementation also has several
enhancements. For example, it supports partial initialization (the argument to the @UnknownInitialization and
@UnderInitialization annotations.

3.8.8 Rawness Initialization Checker
The Checker Framework supports two different initialization checkers that are integrated with the Nullness Checker.
You can use whichever one you prefer.

One (described in most of Section 3.8) uses the three annotations @Initialized, @UnknownInitialization, and
@UnderInitialization. We recommend that you use it.

The other (described here in Section 3.8.8) uses the two annotations @Raw and @NonRaw. The rawness type system
is slightly easier to use but slightly less expressive.

To run the Nullness Checker with the rawness variant of the Initialization Checker, invoke
the NullnessRawnessChecker rather than the NullnessChecker; that is, supply the -processor
org.checkerframework.checker.nullness.NullnessRawnessChecker command-line option to javac. Al-
though @Raw roughly corresponds to @UnknownInitialization and @NonRaw roughly corresponds to @Initialized,
the annotations are not aliased and you must use the ones that correspond to the type-checker that you are running.

An object is raw from the time that its constructor starts until its constructor finishes. This is relevant to the Nullness
Checker because while the constructor is executing — that is, before initialization completes — a @NonNull field may
be observed to be null, until that field is set. In particular, the Nullness Checker issues a warning for code like this:

public class MyClass {
private @NonNull Object f;
public MyClass(int x, int y) {

// Error because constructor contains no assignment to this.f.
// By the time the constructor exits, f must be initialized to a non-null value.

}
public MyClass(int x) {

// Error because this.f is accessed before f is initialized.
// At the beginning of the constructor’s execution, accessing this.f
// yields null, even though field f has a non-null type.
this.f.toString();

}
public MyClass(int x, int y, int z) {

m();
this.f = new Object();

}
public void m() {

// Error because this.f is accessed before f is initialized,
// even though the access is not in a constructor.
// When m is called from the constructor, accessing f yields null,
// even though field f has a non-null type.
this.f.toString();

}

In general, code can depend that field f is not null, because the field is declared with a @NonNull type. However, this
guarantee does not hold for a partially-initialized object.

The Nullness Checker uses the @Raw annotation to indicate that an object is not yet fully initialized — that is, not all
its @NonNull fields have been assigned. Rawness is mostly relevant within the constructor, or for references to this

44

../api/org/checkerframework/checker/initialization/qual/Initialized.html
../api/org/checkerframework/checker/initialization/qual/UnknownInitialization.html
../api/org/checkerframework/checker/initialization/qual/UnderInitialization.html
../api/org/checkerframework/checker/nullness/qual/Raw.html
../api/org/checkerframework/checker/nullness/qual/NonRaw.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Raw.html

@NonRaw Object @Raw Date

@Raw Object

@NonRaw Date

Figure 3.7: Partial type hierarchy for the Rawness Initialization type system.

that escape the constructor (say, by being stored in a field or passed to a method before initialization is complete). Use
of rawness annotations is rare in most code.

The most common use for the @Raw annotation is for a helper routine that is called by constructor. For example:

class MyClass {
Object field1;
Object field2;
Object field3;

public MyClass(String arg1) {
this.field1 = arg1;
init_other_fields();

}

// A helper routine that initializes all the fields other than field1
@EnsuresNonNull({"field2", "field3"})
private void init_other_fields(@Raw MyClass this) {

field2 = new Object();
field3 = new Object();

}
}

Rawness qualifiers

The rawness hierarchy is shown in Figure 3.7. The rawness hierarchy contains these qualifiers:

@Raw indicates a type that may contain a partially-initialized object. In a partially-initialized object, fields that are
annotated as @NonNull may be null because the field has not yet been assigned. Within the constructor, this has
@Raw type until all the @NonNull fields have been assigned. A partially-initialized object (this in a constructor)
may be passed to a helper method or stored in a variable; if so, the method receiver, or the field, would have to be
annotated as @Raw.

@NonRaw indicates a type that contains a fully-initialized object. NonRaw is the default, so there is little need for a
programmer to write this explicitly.

@PolyRaw indicates qualifier polymorphism over rawness (see Section 24.2).

If a reference has @Raw type, then all of its @NonNull fields are treated as @MonotonicNonNull: when read, they
are treated as being @Nullable, but when written, they are treated as being @NonNull.

The rawness hierarchy is orthogonal to the nullness hierarchy. It is legal for a reference to be @NonNull @Raw,
@Nullable @Raw, @NonNull @NonRaw, or @Nullable @NonRaw. The nullness hierarchy tells you about the reference
itself: might the reference be null? The rawness hierarchy tells you about the @NonNull fields in the referred-to object:
might those fields be temporarily null in contravention of their type annotation? Figure 3.8 contains some examples.

45

../api/org/checkerframework/checker/nullness/qual/Raw.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Raw.html
../api/org/checkerframework/checker/nullness/qual/NonRaw.html
../api/org/checkerframework/checker/nullness/qual/PolyRaw.html
../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

Declarations Expression Expression’s nullness type, or checker error
class C {
@NonNull Object f;
@Nullable Object g;
...

}
@NonNull @NonRaw C a; a @NonNull

a.f @NonNull
a.g @Nullable

@NonNull @Raw C b; b @NonNull
b.f @MonotonicNonNull
b.g @Nullable

@Nullable @NonRaw C c; c @Nullable
c.f error: deref of nullable
c.g error: deref of nullable

@Nullable @Raw C d; d @Nullable
d.f error: deref of nullable
d.g error: deref of nullable

Figure 3.8: Examples of the interaction between nullness and rawness. Declarations are shown at the left for reference,
but the focus of the table is the expressions and their nullness type or error.

How an object becomes non-raw

Within the constructor, this starts out with @Raw type. As soon as all of the @NonNull fields in class C have been
initialized, then this is treated as @NonRaw(C). This means that this is still being initialized, but all initialization of
C’s fields is complete, including all fields of supertypes. Eventually, when all constructors complete, the type is simply
@NonRaw.

The Nullness Checker issues an error if the constructor fails to initialize any @NonNull field. This ensures that the
object is in a legal (non-raw) state by the time that the constructor exits. This is different than Java’s test for definite
assignment (see JLS ch.16), which does not apply to fields (except blank final ones, defined in JLS §4.12.4) because
fields have a default value of null.

All @NonNull fields must either have a default in the field declaration, or be assigned in the constructor or in a
helper method that the constructor calls. If your code initializes (some) fields in a helper method, you will need to
annotate the helper method with an annotation such as @EnsuresNonNull({"field1", "field2"}) for all the fields
that the helper method assigns.

Partial initialization

So far, we have discussed rawness as if it is an all-or-nothing property: an object is fully raw until initialization
completes, and then it is no longer raw. The full truth is a bit more complex: during the initialization process, an object
can be partially initialized, and as the object’s superclass constructors complete, its rawness changes. The Nullness
Checker lets you express such properties when necessary.

Consider a simple example:

class A {
Object a;
A() {

a = new Object();
}

}
class B extends A {

46

../api/org/checkerframework/checker/nullness/qual/Raw.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonRaw.html
../api/org/checkerframework/checker/nullness/qual/NonRaw.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-16.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.12.4
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

Object b;
B() {

super();
b = new Object();

}
}

Consider what happens during execution of new B().

1. B’s constructor begins to execute. At this point, neither the fields of A nor those of B have been initialized yet.
2. B’s constructor calls A’s constructor, which begins to execute. No fields of A nor of B have been initialized yet.
3. A’s constructor completes. Now, all the fields of A have been initialized, and their invariants (such as that field a

is non-null) can be depended on. However, because B’s constructor has not yet completed executing, the object
being constructed is not yet fully initialized. When treated as an A (e.g., if only the A fields are accessed), the
object is initialized (non-raw), but when treated as a B, the object is still raw.

4. B’s constructor completes. The object is fully initialized (non-raw), if B’s constructor was invoked via a new B()
expression. On the other hand, if there was a class C extends B { ... }, and B’s constructor had been
invoked from that, then the object currently under construction would not be fully initialized — it would only be
initialized when treated as an A or a B, but not when treated as a C.

At any moment during initialization, the superclasses of a given class can be divided into those that have completed
initialization and those that have not yet completed initialization. More precisely, at any moment there is a point in the
class hierarchy such that all the classes above that point are fully initialized, and all those below it are not yet initialized.
As initialization proceeds, this dividing line between the initialized and raw classes moves down the type hierarchy.

The Nullness Checker lets you indicate where the dividing line is between the initialized and non-initialized classes.
You have two equivalent ways to indicate the dividing line: @Raw indicates the first class below the dividing line, or
@NonRaw(classliteral) indicates the first class above the dividing line.

When you write @Raw MyClass x;, that means that variable x is initialized for all superclasses of MyClass, and
(possibly) uninitialized for MyClass and all subclasses.

When you write @NonRaw(Foo.class) MyClass x;, that means that variable x is initialized for Foo and all its
superclasses, and (possibly) uninitialized for all subclasses of Foo.

If A is a direct superclass of B (as in the example above), then @Raw A x; and @NonRaw(B.class) A x; are
equivalent declarations. Neither one is the same as @NonRaw A x;, which indicates that, whatever the actual class of
the object that x refers to, that object is fully initialized. Since @NonRaw (with no argument) is the default, you will
rarely see it written.

The example above lists 4 moments during construction. At those moments, the type of the object being constructed
is:

1. @Raw Object
2. @Raw Object
3. @NonRaw(A.class) A
4. @NonRaw(B.class) B

Example As another example, consider the following 12 declarations:

@Raw Object rO;
@NonRaw(Object.class) Object nroO;
Object o;

@Raw A rA;
@NonRaw(Object.class) A nroA; // same as "@Raw A"
@NonRaw(A.class) A nraA;
A a;

47

../api/org/checkerframework/checker/nullness/qual/Raw.html
../api/org/checkerframework/checker/nullness/qual/NonRaw.html

@NonRaw(Object.class) B nroB;
@Raw B rB;
@NonRaw(A.class) B nraB; // same as "@Raw B"
@NonRaw(B.class) B nrbB;
B b;

In the following table, the type in cell C1 is a supertype of the type in cell C2 if: C1 is at least as high and at least as
far left in the table as C2 is. For example, nraA’s type is a supertype of those of rB, nraB, nrbB, a, and b. (The empty
cells on the top row are real types, but are not expressible. The other empty cells are not interesting types.)

@Raw Object rO;

@NonRaw(Object.class) Object nroO;
@Raw A rA;
@NonRaw(Object.class) A nroA;

@NonRaw(Object.class) B nroB;

@NonRaw(A.class) A nraA;
@Raw B rB;
@NonRaw(A.class) B nraB;

@NonRaw(B.class) B nrbB;
Object o; A a; B b;

More details about rawness checking

Suppressing warnings You can suppress warnings related to partially-initialized objects with
@SuppressWarnings("rawness"). Do not confuse this with the unrelated @SuppressWarnings("rawtypes")
annotation for non-instantiated generic types!

Use of method annotations A method with a raw receiver often assumes that a few fields (but not all of them) are non-
null, and sometimes sets some more fields to non-null values. To express these concepts, use the @RequiresNonNull,
@EnsuresNonNull, and @EnsuresNonNullIf method annotations; see Section 3.2.2.

The terminology “raw” The name “raw” comes from a research paper that proposed this approach [FL03]. A better
name might have been “not yet initialized” or “partially initialized”, but the term “raw” is now well-known. The @Raw
annotation has nothing to do with the raw types of Java Generics.

48

../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/nullness/qual/Raw.html

Chapter 4

Map Key Checker

The Map Key Checker tracks which values are keys for which maps. If variable v has type @KeyFor("m")..., then the
value of v is a key in Map m. That is, the expression m.containsKey(v) evaluates to true.

Section 3.2.4 describes how @KeyFor annotations enable the Nullness Checker (Chapter 3, page 25) to treat calls to
Map.get more precisely by refining its result to @NonNull in some cases.

You will not typically run the Map Key Checker. It is automatically run by other checkers, in particular the Nullness
Checker.

You can suppress warnings related to map keys with @SuppressWarnings("keyfor"); see Chapter 26, page 162.

4.1 Map key annotations
These qualifiers are part of the Map Key type system:

@KeyFor(String[] maps) indicates that the value assigned to the annotated variable is a key for at least the
given maps.

@UnknownKeyFor is used internally by the type system but should never be written by a programmer. It indicates
that the value assigned to the annotated variable is not known to be a key for any map. It is the default type
qualifier.

@KeyForBottom is used internally by the type system but should never be written by a programmer.

@UnknownKeyFor

@KeyForBottom

@KeyFor(map1) @KeyFor(map2)

@KeyFor({map1,map2}) @KeyFor({map2,map3})

@KeyFor({map1,...,mapn})

Figure 4.1: The subtyping relationship of the Map Key Checker’s qualifiers. @KeyFor(A) is a supertype of @KeyFor(B)
if and only if A is a subset of B. Qualifiers in gray are used internally by the type system but should never be written by
a programmer.

49

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#get-java.lang.Object-
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/nullness/qual/UnknownKeyFor.html
../api/org/checkerframework/checker/nullness/qual/KeyForBottom.html

4.2 Examples
The Map Key Checker keeps track of which variables reference keys to which maps. A variable annotated with
@KeyFor(mapSet) can only contain a value that is a key for all the maps in mapSet. For example:

Map<String,Date> m, n;
@KeyFor("m") String km;
@KeyFor("n") String kn;
@KeyFor({"m", "n"}) String kmn;
km = kmn; // OK - a key for maps m and n is also a key for map m
km = kn; // error: a key for map n is not necessarily a key for map m

As with any annotation, use of the @KeyFor annotation may force you to slightly refactor your code. For example,
this would be illegal:

Map<String,Object> m;
Collection<@KeyFor("m") String> coll;
coll.add(x); // error: element type is @KeyFor("m") String, but x does not have that type
m.put(x, ...);

The example type-checks if you reorder the two calls:

Map<String,Object> m;
Collection<@KeyFor("m") String> coll;
m.put(x, ...); // after this statement, x has type @KeyFor("m") String
coll.add(x); // OK

4.3 Inference of @KeyFor annotations
Within a method body, you usually do not have to write @KeyFor explicitly, because the checker infers it based on usage
patterns. When the Map Key Checker encounters a run-time check for map keys, such as “if (m.containsKey(k))
...”, then the Map Key Checker refines the type of k to @KeyFor("m") within the scope of the test (or until k is
side-effected within that scope). The Map Key Checker also infers @KeyFor annotations based on iteration over a map’s
key set or calls to put or containsKey. For more details about type refinement, see Section 25.4.

Suppose we have these declarations:

Map<String,Date> m = new Map<String,Date>();
String k = "key";
@KeyFor("m") String km;

Ordinarily, the following assignment does not type-check:

km = k; // Error since k is not known to be a key for map m.

The following examples show cases where the Map Key Checker infers a @KeyFor annotation for variable k based
on usage patterns, enabling the km = k assignment to type-check.

m.put(k, ...);
// At this point, the type of k is refined to @KeyFor("m") String.
km = k; // OK

if (m.containsKey(k)) {

50

https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#keySet--
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#put-K-V-
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html#containsKey-java.lang.Object-

// At this point, the type of k is refined to @KeyFor("m") String.
km = k; // OK
...

} else {
km = k; // Error since k is not known to be a key for map m.
...

}

The following example shows a case where the Map Key Checker resets its assumption about the type of a field
used as a key because that field may have been side-effected.

class MyClass {
private Map<String,Object> m;
private String k; // The type of k defaults to @UnknownKeyFor String
private @KeyFor("m") String km;

public void myMethod() {
if (m.containsKey(k)) {

km = k; // OK: the type of k is refined to @KeyFor("m") String

sideEffectFreeMethod();
km = k; // OK: the type of k is not affected by the method call

// and remains @KeyFor("m") String

otherMethod();
km = k; // error: At this point, the type of k is once again

// @UnknownKeyFor String, because otherMethod might have
// side-effected k such that it is no longer a key for map m.

}
}

@SideEffectFree
private void sideEffectFreeMethod() { ... }

private void otherMethod() { ... }
}

51

Chapter 5

Optional Checker for possibly-present data

Java 8 introduced the Optional class, a container that is either empty or contains a non-null value.
Using Optional is intended to help programmers remember to check whether data is present or not. However,

Optional itself is prone to misuse. The article Nothing is better than the Optional type gives reasons to use regular
nullable references rather than Optional. However, if you do use Optional, then the Optional Checker will help you
avoid Optional’s pitfalls.

Stuart Marks gave 7 rules to avoid problems with Optional:

1. Never, ever, use null for an Optional variable or return value.
2. Never use Optional.get() unless you can prove that the Optional is present.
3. Prefer alternative APIs over Optional.isPresent() and Optional.get().
4. It’s generally a bad idea to create an Optional for the specific purpose of chaining methods from it to get a value.
5. If an Optional chain has a nested Optional chain, or has an intermediate result of Optional, it’s probably too

complex.
6. Avoid using Optional in fields, method parameters, and collections.
7. Don’t use an Optional to wrap any collection type (List, Set, Map). Instead, use an empty collection to

represent the absence of values.

Rule #1 is guaranteed by the Nullness Checker (Chapter 3, page 25). Rules #2–#7 are guaranteed by the Optional
Checker, described in this chapter. (Exception: Rule #5 is not yet implemented and will be checked by the Optional
Checker in the future.)

Use of the Optional Checker guarantees that your program will not suffer a NullPointerException nor a
NoSuchElementException when calling methods on an expression of Optional type.

5.1 How to run the Optional Checker
javac -processor optional MyFile.java ...

5.2 Optional annotations
These qualifiers make up the Optional type system:

@MaybePresent The annotated Optional container may or may not contain a value. This is the default type.
@Present The annotated Optional container definitely contains a (non-null) value.
@PolyPresent indicates qualifier polymorphism (see Section 24.2).

The subtyping hierarchy of the Optional Checker’s qualifiers is shown in Figure 5.1.

52

https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
https://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
https://stuartmarks.wordpress.com/2016/09/27/vjug24-session-on-optional/
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#isPresent--
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html#get--
../api/org/checkerframework/checker/optional/qual/MaybePresent.html
../api/org/checkerframework/checker/optional/qual/Present.html
../api/org/checkerframework/checker/optional/qual/PolyPresent.html

@MaybePresent

@Present

Figure 5.1: The subtyping relationship of the Optional Checker’s qualifiers.

53

Chapter 6

Interning Checker

If the Interning Checker issues no errors for a given program, then all reference equality tests (i.e., all uses of “==”) are
proper; that is, == is not misused where equals() should have been used instead.

Interning is a design pattern in which the same object is used whenever two different objects would be considered
equal. Interning is also known as canonicalization or hash-consing, and it is related to the flyweight design pattern.
Interning has two benefits: it can save memory, and it can speed up testing for equality by permitting use of ==.

The Interning Checker prevents two types of errors in your code. First, == should be used only on interned values;
using == on non-interned values can result in subtle bugs. For example:

Integer x = new Integer(22);
Integer y = new Integer(22);
System.out.println(x == y); // prints false!

The Interning Checker helps programmers to prevent such bugs. Second, the Interning Checker also helps to prevent
performance problems that result from failure to use interning. (See Section 2.3 for caveats to the checker’s guarantees.)

Interning is such an important design pattern that Java builds it in for these types: String, Boolean, Byte,
Character, Integer, Short. Every string literal in the program is guaranteed to be interned (JLS §3.10.5), and the
String.intern() method performs interning for strings that are computed at run time. The valueOf methods in
wrapper classes always (Boolean, Byte) or sometimes (Character, Integer, Short) return an interned result (JLS
§5.1.7). Users can also write their own interning methods for other types.

It is a proper optimization to use ==, rather than equals(), whenever the comparison is guaranteed to produce the
same result — that is, whenever the comparison is never provided with two different objects for which equals() would
return true. Here are three reasons that this property could hold:

1. Interning. A factory method ensures that, globally, no two different interned objects are equals() to one another.
(Not every value of the given type is necessarily interned; it is possible for two objects of the class to be equals()
to one another, even if one of them is interned.) Interned objects should always be immutable.

2. Global control flow. The program’s control flow is such that the constructor for class C is called a limited number
of times, and with specific values that ensure the results are not equals() to one another. Objects of class C can
always be compared with ==. Such objects may be mutable or immutable.

3. Local control flow. Even though not all objects of the given type may be compared with ==, the specific objects
that can reach a given comparison may be. For example, suppose that an array contains no duplicates. Then
searching for the index of an element that is known to be in the array can use ==.

To eliminate Interning Checker errors, you will need to annotate the declarations of any expression used as an
argument to ==. Thus, the Interning Checker could also have been called the Reference Equality Checker.

To run the Interning Checker, supply the -processor org.checkerframework.checker.interning.InterningChecker
command-line option to javac. For examples, see Section 6.4.

54

https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html#jls-3.10.5
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#intern--
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.7
https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.7

Date @Interned Object

Object

@Interned Date @InternedDistinct Object

@InternedDistinct Date

Figure 6.1: Type hierarchy for the Interning type system.

6.1 Interning annotations
These qualifiers are part of the Interning type system:

@Interned indicates a type that includes only interned values (no non-interned values).
@InternedDistinct indicates a type such that each value is not equals() to any other Java value. For details,

see Section 6.2.2.
@UnknownInterned indicates a type whose values might or might not be interned. It is used internally by the type

system and is not written by programmers.
@PolyInterned indicates qualifier polymorphism (see Section 24.2).
@UsesObjectEquals is a class annotation (not a type annotation) that indicates that this class’s equals method is

the same as that of Object. In other words, neither this class nor any of its superclasses overrides the equals
method. Since Object.equals uses reference equality, this means that for such a class, == and equals are
equivalent, and so the Interning Checker does not issue errors or warnings for either one.

6.2 Annotating your code with @Interned
In order to perform checking, you must annotate your code with the @Interned type annotation. A type annotated with
@Interned contains the canonical representation of an object:

String s1 = ...; // type is (uninterned) "String"
@Interned String s2 = ...; // type is "@Interned String"

The Interning Checker ensures that only interned values can be assigned to s2.
To specify that all objects of a given type are interned, annotate the class declaration:

public @Interned class MyInternedClass { ... }

This is equivalent to annotating every use of MyInternedClass, in a declaration or elsewhere. For example, enum
classes are implicitly so annotated.

6.2.1 Implicit qualifiers
The Interning Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code (see
Section 25.3). For example, String literals and the null literal are always considered interned, and object creation
expressions (using new) are never considered @Interned unless they are annotated as such, as in
@Interned Double internedDoubleZero = new @Interned Double(0); // canonical representation for Double zero

For a complete description of all implicit interning qualifiers, see the Javadoc for InterningAnnotatedTypeFactory.

6.2.2 InternedDistinct: values not equals() to any other value
The @InternedDistinct annotation represents values that are not equals() to any other value. Suppose expression e
has type @InternedDistinct. Then e.equals(x) == (e == x). Therefore, it is legal to use == whenever at least
one of the operands has type @InternedDistinct.

@InternedDistinct is stronger (more restrictive) than @Interned. For example, consider these variables:

55

../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/InternedDistinct.html
../api/org/checkerframework/checker/interning/qual/UnknownInterned.html
../api/org/checkerframework/checker/interning/qual/PolyInterned.html
../api/org/checkerframework/checker/interning/qual/UsesObjectEquals.html
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/InterningAnnotatedTypeFactory.html
../api/org/checkerframework/checker/interning/qual/InternedDistinct.html

@Interned String i = "22";
String s = new Integer(22).toString();

The variable i is not @InternedDistinct because i.equals(s) is true.
@InternedDistinct is not as restrictive as stating that all objects of a given Java type are interned.
The @InternedDistinct annotation is rarely used, because it arises from coding paradigms that are tricky to

reason about. One use is on static fields that hold canonical values of a type. Given this declaration:

class MyType {
final static @InternedDistinct MyType SPECIAL = new MyType(...);
...

}

it would be legal to write myValue == MyType.SPECIAL rather than myValue.equals(MyType.SPECIAL).
The @InternedDistinct is trusted (not verified), because it would be too complex to analyze the equals()

method to ensure that no other value is equals() to a @InternedDistinct value. You will need to manually verify
that it is only written in locations where its contract is satisfied. For example, here is one set of guidelines that you
could check manually:

• The constructor is private.
• The factory method returns the canonical version for certain values.
• The class is final, so that subclasses cannot violate these properties.

6.3 What the Interning Checker checks
Objects of an @Interned type may be safely compared using the “==” operator.

The checker issues an error in two cases:

1. When a reference (in)equality operator (“==” or “!=”) has an operand of non-@Interned type. As a special case,
the operation is permitted if either argument is of @InternedDistinct type

2. When a non-@Interned type is used where an @Interned type is expected.

This example shows both sorts of problems:

Date date;
@Interned Date idate;

@InternedDistinct Date ddate;
...
if (date == idate) ... // error: reference equality test is unsafe
idate = date; // error: idate’s referent might no longer be interned
ddate = idate; // error: idate’s referent might be equals() to some other value

The checker also issues a warning when .equals is used where == could be safely used. You can disable this
behavior via the javac -Alint=-dotequals command-line option.

For a complete description of all checks performed by the checker, see the Javadoc for InterningVisitor.
You can also restrict which types the checker should examine and type-check, using the -Acheckclass option. For

example, to find only the interning errors related to uses of String, you can pass -Acheckclass=java.lang.String.
The Interning Checker always checks all subclasses and superclasses of the given class.

56

../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/InternedDistinct.html
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/InterningVisitor.html

com.sun.istack.internal.Interned ⇒ org.checkerframework.checker.interning.qual.Interned
Figure 6.2: Correspondence between other interning annotations and the Checker Framework’s annotations.

6.3.1 Limitations of the Interning Checker
The Interning Checker conservatively assumes that the Character, Integer, and Short valueOf methods return a
non-interned value. In fact, these methods sometimes return an interned value and sometimes a non-interned value,
depending on the run-time argument (JLS §5.1.7). If you know that the run-time argument to valueOf implies that
the result is interned, then you will need to suppress an error. (The Interning Checker should make use of the Value
Checker to estimate the upper and lower bounds on char, int, and short values so that it can more precisely determine
whether the result of a given valueOf call is interned.)

6.4 Examples
To try the Interning Checker on a source file that uses the @Interned qualifier, use the following command:

javac -processor org.checkerframework.checker.interning.InterningChecker docs/examples/InterningExample.java

Compilation will complete without errors or warnings.
To see the checker warn about incorrect usage of annotations, use the following command:

javac -processor org.checkerframework.checker.interning.InterningChecker docs/examples/InterningExampleWithWarnings.java

The compiler will issue an error regarding violation of the semantics of @Interned.
The Daikon invariant detector (http://plse.cs.washington.edu/daikon/) is also annotated with @Interned.

From directory java/, run make check-interning.

6.5 Other interning annotations
The Checker Framework’s interning annotations are similar to annotations used elsewhere.

If your code is already annotated with a different interning annotation, the Checker Framework can type-check your
code. It treats annotations from other tools as if you had written the corresponding annotation from the Interning Checker,
as described in Figure 6.2. If the other annotation is a declaration annotation, it may be moved; see Section 27.1.1.

57

https://docs.oracle.com/javase/specs/jls/se8/html/jls-5.html#jls-5.1.7
../api/org/checkerframework/checker/interning/qual/Interned.html
../api/org/checkerframework/checker/interning/qual/Interned.html
http://plse.cs.washington.edu/daikon/
../api/org/checkerframework/checker/interning/qual/Interned.html

Chapter 7

Lock Checker

The Lock Checker prevents certain concurrency errors by enforcing a locking discipline. A locking discipline indicates
which locks must be held when a given operation occurs. You express the locking discipline by declaring a variable’s
type to have the qualifier @GuardedBy("lockexpr"). This indicates that the variable’s value may be dereferenced
only if the given lock is held.

To run the Lock Checker, supply the -processor org.checkerframework.checker.lock.LockChecker command-
line option to javac. The -AconcurrentSemantics command-line option is always enabled for the Lock Checker (see
Section 32.4.4).

7.1 What the Lock Checker guarantees
The Lock Checker gives the following guarantee. Suppose that expression e has type @GuardedBy({"x", "y.z"}).
Then the value computed for e is only dereferenced by a thread when the thread holds locks x and y.z. Dereferencing
a value is reading or writing one of its fields. The guarantee about e’s value holds not only if the expression e is
dereferenced directly, but also if the value was first copied into a variable, returned as the result of a method call, etc.
Copying a reference is always permitted by the Lock Checker, regardless of which locks are held.

A lock is held if it has been acquired but not yet released. Java has two types of locks. A monitor lock is acquired
upon entry to a synchronized method or block, and is released on exit from that method or block. An explicit lock
is acquired by a method call such as Lock.lock(), and is released by another method call such as Lock.unlock().
The Lock Checker enforces that any expression whose type implements Lock is used as an explicit lock, and all other
expressions are used as monitor locks.

Ensuring that your program obeys its locking discipline is an easy and effective way to eliminate a common and
important class of errors. If the Lock Checker issues no warnings, then your program obeys its locking discipline.
However, your program might still have other types of concurrency errors. For example, you might have specified
an inadequate locking discipline because you forgot some @GuardedBy annotations. Your program might release and
re-acquire the lock, when correctness requires it to hold it throughout a computation. And, there are other concurrency
errors that cannot, or should not, be solved with locks.

7.2 Lock annotations
This section describes the lock annotations you can write on types and methods.

7.2.1 Type qualifiers
@GuardedBy(exprSet) If a variable x has type @GuardedBy("expr"), then a thread may dereference the value

referred to by x only when the thread holds the lock that expr currently evaluates to.

58

../api/org/checkerframework/checker/lock/qual/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html#lock--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html#unlock--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html

@GuardedBy({})

@GuardedByBottom

@GuardedBy("a") @GuardedBy("b") @GuardedBy({"a","b"})

@GuardedByUnknown

...

Figure 7.1: The subtyping relationship of the Lock Checker’s qualifiers. @GuardedBy({}) is the default type qualifier
for unannotated types (except all CLIMB-to-top locations other than upper bounds and exception parameters — see
Section 25.3.2).

The @GuardedBy annotation can list multiple expressions, as in @GuardedBy({"expr1", "expr2"}), in
which case the dereference is permitted only if the thread holds all the locks.
Section 25.5 explains which expressions the Lock Checker is able to analyze as lock expressions. These include
<self>, i.e. the value of the annotated reference (non-primitive) variable. For example, @GuardedBy("<self>")
Object o indicates that the value referenced by o is guarded by the intrinsic (monitor) lock of the value referenced
by o.
@GuardedBy({}), which means the value is always allowed to be dereferenced, is the default type qualifier
that is used for all locations where the programmer does not write an explicit locking type qualifier (except all
CLIMB-to-top locations other than upper bounds and exception parameters — see Section 25.3.2). (Section 7.5.4
discusses this choice.) It is also the conservative default type qualifier for method parameters in unannotated
libraries (see Chapter 29, page 174).

@GuardedByUnknown If a variable x has type @GuardedByUnknown, then it is not known which locks protect x’s
value. Those locks might even be out of scope (inaccessible) and therefore unable to be written in the annotation.
The practical consequence is that the value referred to by x can never be dereferenced.
Any value can be assigned to a variable of type @GuardedByUnknown. In particular, if it is written on a formal
parameter, then any value, including one whose locks are not currently held, may be passed as an argument.
@GuardedByUnknown is the conservative default type qualifier for method receivers in unannotated libraries (see
Chapter 29, page 174).

@GuardedByBottom If a variable x has type @GuardedByBottom, then the value referred to by x is null and can
never be dereferenced.

Figure 7.1 shows the type hierarchy of these qualifiers. All @GuardedBy annotations are incomparable: if exprSet1
6= exprSet2, then @GuardedBy(exprSet1) and @GuardedBy(exprSet2) are siblings in the type hierarchy. You
might expect that @GuardedBy({"x", "y"}) T is a subtype of @GuardedBy({"x"}) T. The first type requires two
locks to be held, and the second requires only one lock to be held and so could be used in any situation where both
locks are held. The type system conservatively prohibits this in order to prevent type-checking loopholes that would
result from aliasing and side effects — that is, from having two mutable references, of different types, to the same data.
See Section 7.4.2 for an example of a problem that would occur if this rule were relaxed.

Polymorphic type qualifiers

@GuardSatisfied(index) If a variable x has type @GuardSatisfied, then all lock expressions for x’s value are
held.
As with other qualifier-polymorphism annotations (Section 24.2), the index argument indicates when two values
are guarded by the same (unknown) set of locks.
@GuardSatisfied is only allowed in method signatures: on formal parameters (including the receiver) and
return types. It may not be written on fields. Also, it is a limitation of the current design that @GuardSatisfied
may not be written on array elements or on local variables.
A return type can only be annotated with @GuardSatisfied(index), not @GuardSatisfied.
See Section 7.4.6 for an example of a use of @GuardSatisfied.

59

../api/org/checkerframework/checker/lock/qual/GuardedByUnknown.html
../api/org/checkerframework/checker/lock/qual/GuardedByBottom.html
../api/org/checkerframework/checker/lock/qual/GuardSatisfied.html

7.2.2 Declaration annotations
The Lock Checker supports several annotations that specify method behavior. These are declaration annotations, not
type annotations: they apply to the method itself rather than to some particular type.

Method pre-conditions and post-conditions

@Holding(String[] locks) All the given lock expressions are held at the method call site.
@EnsuresLockHeld(String[] locks) The given lock expressions are locked upon method return if the method termi-

nates successfully. This is useful for annotating a method that acquires a lock such as ReentrantLock.lock().
@EnsuresLockHeldIf(String[] locks, boolean result) If the annotated method returns the given boolean value (true

or false), the given lock expressions are locked upon method return if the method terminates successfully. This is
useful for annotating a method that conditionally acquires a lock. See Section 7.4.4 for examples.

Side effect specifications

@LockingFree The method does not acquire or release locks, directly or indirectly. The method is not
synchronized, it contains no synchronized blocks, it contains no calls to lock or unlock methods, and
it contains no calls to methods that are not themselves @LockingFree.
Since @SideEffectFree implies @LockingFree, if both are applicable then you only need to write
@SideEffectFree.

@ReleasesNoLocks The method maintains a strictly nondecreasing lock hold count on the current thread for
any locks that were held prior to the method call. The method might acquire locks but then release them, or
might acquire locks but not release them (in which case it should also be annotated with @EnsuresLockHeld or
@EnsuresLockHeldIf).
This is the default for methods being type-checked that have no @LockingFree, @MayReleaseLocks,
@SideEffectFree, or @Pure annotation.

@MayReleaseLocks The method may release locks that were held prior to the method being called. You can write
this when you are certain the method releases locks, or when you don’t know whether the method releases locks.
This is the conservative default for methods in unannotated libraries (see Chapter 29, page 174).

7.3 Type-checking rules
In addition to the standard subtyping rules enforcing the subtyping relationship described in Figure 7.1, the Lock
Checker enforces the following additional rules.

7.3.1 Polymorphic qualifiers
@GuardSatisfied The overall rules for polymorphic qualifiers are given in Section 24.2.

Here are additional constraints for (pseudo-)assignments:

• If the left-hand side has type @GuardSatisfied (with or without an index), then all locks mentioned in the
right-hand side’s @GuardedBy type must be currently held.
• A formal parameter with type qualifier @GuardSatisfied without an index cannot be assigned to.
• If the left-hand side is a formal parameter with type @GuardSatisfied(index), the right-hand-side must

have identical @GuardSatisfied(index) type.

If a formal parameter type is annotated with @GuardSatisfied without an index, then that formal parameter type
is unrelated to every other type in the @GuardedBy hierarchy, including other occurrences of @GuardSatisfied
without an index.
@GuardSatisfied may not be used on formal parameters, receivers, or return types of a method annotated with
@MayReleaseLocks.

60

../api/org/checkerframework/checker/lock/qual/Holding.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeld.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html#lock--
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeldIf.html
../api/org/checkerframework/checker/lock/qual/LockingFree.html
../api/org/checkerframework/checker/lock/qual/ReleasesNoLocks.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeld.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeldIf.html
../api/org/checkerframework/checker/lock/qual/MayReleaseLocks.html

7.3.2 Dereferences
@GuardedBy An expression of type @GuardedBy(eset) may be dereferenced only if all locks in eset are held.
@GuardSatisfied An expression of type @GuardSatisfied may be dereferenced.
Not @GuardedBy or @GuardSatisfied An expression whose type is not annotated with @GuardedBy or @GuardSatisfied

may not be dereferenced.

7.3.3 Primitive types, boxed primitive types, and Strings
Primitive types, boxed primitive types (such as java.lang.Integer), and type java.lang.String are implicitly
annotated with @GuardedBy({}). It is an error for the programmer to annotate any of these types with an annotation
from the @GuardedBy type hierarchy, including @GuardedBy({}).

7.3.4 Overriding
Overriding methods annotated with @Holding If class B overrides method m from class A, then the expressions

in B’s @Holding annotation must be a subset of or equal to that of A’s @Holding annotation..
Overriding methods annotated with side effect annotations If class B overrides method m from class A, then the

side effect annotation on B’s declaration of m must be at least as strong as that in A’s declaration of m. From
weakest to strongest, the side effect annotations processed by the Lock Checker are:

@MayReleaseLocks
@ReleasesNoLocks
@LockingFree
@SideEffectFree
@Pure

7.3.5 Side effects
Releasing explicit locks Any method that releases an explicit lock must be annotated with @MayReleaseLocks. The

Lock Checker issues a warning if it encounters a method declaration annotated with @MayReleaseLocks and
having a formal parameter or receiver annotated with @GuardSatisfied. This is because the Lock Checker
cannot guarantee that the guard will be satisfied throughout the body of a method if that method may release a
lock.

No side effects on lock expressions If expression expr is used to acquire a lock, then expr must evaluate to the same
value, starting from when expr is used to acquire a lock until expr is used to release the lock. An expression
is used to acquire a lock if it is the receiver at a call site of a synchronized method, is the expression in a
synchronized block, or is the argument to a lock method.

Locks are released after possible side effects After a call to a method annotated with @LockingFree, @ReleasesNoLocks,
@SideEffectFree, or @Pure, the Lock Checker’s estimate of held locks after a method call is the same as that
prior to the method call. After a call to a method annotated with @MayReleaseLocks, the estimate of held
locks is conservatively reset to the empty set, except for those locks specified to be held after the call by an
@EnsuresLockHeld or @EnsuresLockHeldIf annotation on the method. Assignments to variables also cause
the estimate of held locks to be conservatively reduced to a smaller set if the Checker Framework determines that
the assignment might have side-effected a lock expression. For more information on side effects, please refer to
Section 25.4.5.

7.4 Examples
The Lock Checker guarantees that a value that was computed from an expression of @GuardedBy type is dereferenced
only when the current thread holds all the expressions in the @GuardedBy annotation.

61

7.4.1 Examples of @GuardedBy
The following example demonstrates the basic type-checking rules.

class MyClass {
final ReentrantLock lock; // Initialized in the constructor

@GuardedBy("lock") Object x = new Object();
@GuardedBy("lock") Object y = x; // OK, since dereferences of y will require "lock" to be held.
@GuardedBy({}) Object z = x; // ILLEGAL since dereferences of z don’t require "lock" to be held.
@GuardedBy("lock") Object myMethod() { // myMethod is implicitly annotated with @ReleasesNoLocks.

return x; // OK because the return type is annotated with @GuardedBy("lock")
}

[...]

void exampleMethod() {
x.toString(); // ILLEGAL because the lock is not known to be held
y.toString(); // ILLEGAL because the lock is not known to be held
myMethod().toString(); // ILLEGAL because the lock is not known to be held
lock.lock();
x.toString(); // OK: the lock is known to be held
y.toString(); // OK: the lock is known to be held, and toString() is annotated with @SideEffectFree.
myMethod().toString(); // OK: the lock is known to be held, since myMethod

// is implicitly annotated with @ReleasesNoLocks.
}

}

Note that the expression new Object() is inferred to have type @GuardedBy("lock") because it is immediately
assigned to a newly-declared variable having type annotation @GuardedBy("lock"). You could explicitly write new
@GuardedBy("lock") Object() but it is not required.

The following example demonstrates that using <self> as a lock expression allows a guarded value to be derefer-
enced even when the original variable name the value was originally assigned to falls out of scope.

class MyClass {
private final @GuardedBy("<self>") Object x = new Object();
void method() {

x.toString(); // ILLEGAL because x is not known to be held.
synchronized(x) {

x.toString(); // OK: x is known to be held.
}

}

public @GuardedBy("<self>") Object get_x() {
return x; // OK, since the return type is @GuardedBy("<self>").

}
}

class MyOtherClass {
void method() {

MyClass m = new MyClass();
final @GuardedBy("<self>") Object o = m.get_x();
o.toString(); // ILLEGAL because o is not known to be held.

62

synchronized(o) {
o.toString(); // OK: o is known to be held.

}
}

}

7.4.2 @GuardedBy({“a”, “b”}) is not a subtype of @GuardedBy({“a”})
@GuardedBy(exprSet)

The following example demonstrates the reason the Lock Checker enforces the following rule: if exprSet1 6=
exprSet2, then @GuardedBy(exprSet1) and @GuardedBy(exprSet2) are siblings in the type hierarchy.

class MyClass {
final Object lockA = new Object();
final Object lockB = new Object();
@GuardedBy("lockA") Object x = new Object();
@GuardedBy({"lockA", "lockB"}) Object y = new Object();
void myMethod() {

y = x; // ILLEGAL; if legal, later statement x.toString() would cause trouble
synchronized(lockA) {

x.toString(); // dereferences y’s value without holding lock lockB
}

}
}

If the Lock Checker permitted the assignment y = x;, then the undesired dereference would be possible.

7.4.3 Examples of @Holding
The following example shows the interaction between @GuardedBy and @Holding:

void helper1(@GuardedBy("myLock") Object a) {
a.toString(); // ILLEGAL: the lock is not held
synchronized(myLock) {

a.toString(); // OK: the lock is held
}

}
@Holding("myLock")
void helper2(@GuardedBy("myLock") Object b) {

b.toString(); // OK: the lock is held
}
void helper3(@GuardedBy("myLock") Object d) {

d.toString(); // ILLEGAL: the lock is not held
}
void myMethod2(@GuardedBy("myLock") Object e) {

helper1(e); // OK to pass to another routine without holding the lock
// (but helper1’s body has an error)

e.toString(); // ILLEGAL: the lock is not held
synchronized (myLock) {

helper2(e); // OK: the lock is held
helper3(e); // OK, but helper3’s body has an error

}
}

63

7.4.4 Examples of @EnsuresLockHeld and @EnsuresLockHeldIf
@EnsuresLockHeld and @EnsuresLockHeldIf are primarily intended for annotating JDK locking methods, as in:

package java.util.concurrent.locks;

class ReentrantLock {

@EnsuresLockHeld("this")
public void lock();

@EnsuresLockHeldIf (expression="this", result=true)
public boolean tryLock();

...
}

They can also be used to annotate user methods, particularly for higher-level lock constructs such as a Monitor, as
in this simplified example:

public class Monitor {

private final ReentrantLock lock; // Initialized in the constructor

...

@EnsuresLockHeld("lock")
public void enter() {

lock.lock();
}

...
}

7.4.5 Example of @LockingFree, @ReleasesNoLocks, and @MayReleaseLocks
@LockingFree is useful when a method does not make any use of synchronization or locks but causes other side
effects (hence @SideEffectFree is not appropriate). @SideEffectFree implies @LockingFree, therefore if both are
applicable, you should only write @SideEffectFree. @ReleasesNoLocks has a weaker guarantee than @LockingFree,
and @MayReleaseLocks provides no guarantees.

private Object myField;
private final ReentrantLock lock; // Initialized in the constructor
private @GuardedBy("lock") Object x; // Initialized in the constructor

[...]

// This method does not use locks or synchronization, but it cannot
// be annotated as @SideEffectFree since it alters myField.
@LockingFree
void myMethod() {

myField = new Object();
}

64

@SideEffectFree
int mySideEffectFreeMethod() {

return 0;
}

@MayReleaseLocks
void myUnlockingMethod() {

lock.unlock();
}

@ReleasesNoLocks
void myLockingMethod() {

lock.lock();
}

@MayReleaseLocks
void clientMethod() {

if (lock.tryLock()) {
x.toString(); // OK: the lock is held
myMethod();
x.toString(); // OK: the lock is still held since myMethod is locking-free
mySideEffectFreeMethod();
x.toString(); // OK: the lock is still held since mySideEffectFreeMethod is side-effect-free
myUnlockingMethod();
x.toString(); // ILLEGAL: myUnlockingMethod may have released a lock

}
if (lock.tryLock()) {

x.toString(); // OK: the lock is held
myLockingMethod();
x.toString(); // OK: the lock is held

}
if (lock.isHeldByCurrentThread()) {

x.toString(); // OK: the lock is known to be held
}

}

7.4.6 Polymorphism and method formal parameters with unknown guards
The polymorphic @GuardSatisfied type annotation allows a method body to dereference the method’s formal
parameters even if the @GuardedBy annotations on the actual parameters are unknown at the method declaration site.

The declaration of StringBuffer.append(String str) is annotated as:

@LockingFree
public @GuardSatisfied(1) StringBuffer append(@GuardSatisfied(1) StringBuffer this,

@GuardSatisfied(2) String str)

The method manipulates the values of its arguments, so all their locks must be held. However, the declaration does
not know what those are and they might not even be in scope at the declaration. Therefore, the declaration cannot
use @GuardedBy and must use @GuardSatisfied. The arguments to @GuardSatisfied indicate that the receiver
and result (which are the same value) are guarded by the same (unknown, possibly empty) set of locks, and the str
parameter may be guarded by a different set of locks.

65

https://docs.oracle.com/javase/8/docs/api/java/lang/StringBuffer.html#append-java.lang.String-

The @LockingFree annotation indicates that this method makes no use of locks or synchronization.
Given these annotations on append, the following code type-checks:

final ReentrantLock lock1, lock2; // Initialized in the constructor
@GuardedBy("lock1") StringBuffer filename;
@GuardedBy("lock2") StringBuffer extension;
...
lock1.lock();
lock2.lock();
filename = filename.append(extension);

7.5 More locking details
This section gives some details that are helpful for understanding how Java locking and the Lock Checker works.

7.5.1 Two types of locking: monitor locks and explicit locks
Java provides two types of locking: monitor locks and explicit locks.

• A synchronized(E) block acquires the lock on the value of E; similarly, a method declared using the
synchronized method modifier acquires the lock on the method receiver when called. (More precisely, the
current thread locks the monitor associated with the value of E; see JLS §17.1.) The lock is automatically released
when execution exits the block or the method body, respectively. We use the term “monitor lock” for a lock
acquired using a synchronized block or synchronized method modifier.

• A method call, such as Lock.lock(), acquires a lock that implements the Lock interface. The lock is released
by another method call, such as Lock.unlock(). We use the term “explicit lock” for a lock expression acquired
in this way.

You should not mix the two varieties of locking, and the Lock Checker enforces this. To prevent an object from
being used both as a monitor and an explicit lock, the Lock Checker issues a warning if a synchronized(E) block’s
expression E has a type that implements Lock.

7.5.2 Held locks and held expressions; aliasing
Whereas Java locking is defined in terms of values, Java programs are written in terms of expressions. We say that a
lock expression is held if the value to which the expression currently evaluates is held.

The Lock Checker conservatively estimates the expressions that are held at each point in a program. The Lock
Checker does not track aliasing (different expressions that evaluate to the same value); it only considers the exact
expression used to acquire a lock to be held. After any statement that might side-effect a held expression or a lock
expression, the Lock Checker conservatively considers the expression to be no longer held.

Section 25.5 explains which Java expressions the Lock Checker is able to analyze as lock expressions.
The @LockHeld and @LockPossiblyHeld type qualifiers are used internally by the Lock Checker and should never

be written by the programmer. If you see a warning mentioning @LockHeld or @LockPossiblyHeld, please contact
the Checker Framework developers as it is likely to indicate a bug in the Checker Framework.

7.5.3 Run-time checks for locking
When you perform a run-time check for locking, such as if (explicitLock.isHeldByCurrentThread()){...}
or if (Thread.holdsLock(monitorLock)){...}, then the Lock Checker considers the lock expression to be held
within the scope of the test. For more details, see Section 25.4.

66

https://docs.oracle.com/javase/specs/jls/se8/html/jls-17.html#jls-17.1
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html#lock--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html#unlock--
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Lock.html

7.5.4 Discussion of default qualifier
The default qualifier for unannotated types is @GuardedBy({}). This default forces you to write explicit @GuardSatisfied
in method signatures in the common case that clients ensure that all locks are held.

It might seem that @GuardSatisfied would be a better default for method signatures, but such a default would
require even more annotations. The reason is that @GuardSatisfied cannot be used on fields. If @GuardedBy({})
is the default for fields but @GuardSatisfied is the default for parameters and return types, then getters, setters, and
many other types of methods do not type-check without explicit lock qualifiers.

7.5.5 Discussion of @Holding
A programmer might choose to use the @Holding method annotation in two different ways: to specify correctness
constraints for a synchronization protocol, or to summarize intended usage. Both of these approaches are useful, and
the Lock Checker supports both.

Synchronization protocol @Holding can specify a synchronization protocol that is not expressible as locks over the
parameters to a method. For example, a global lock or a lock on a different object might need to be held. By requiring
locks to be held, you can create protocol primitives without giving up the benefits of the annotations and checking of
them.

Method summary that simplifies reasoning @Holding can be a method summary that simplifies reasoning. In this
case, the @Holding doesn’t necessarily introduce a new correctness constraint; the program might be correct even if the
lock were not already acquired.

Rather, here @Holding expresses a fact about execution: when execution reaches this point, the following locks are
known to be already held. This fact enables people and tools to reason intra- rather than inter-procedurally.

In Java, it is always legal to re-acquire a lock that is already held, and the re-acquisition always works. Thus,
whenever you write

@Holding("myLock")
void myMethod() {

...
}

it would be equivalent, from the point of view of which locks are held during the body, to write

void myMethod() {
synchronized (myLock) { // no-op: re-acquire a lock that is already held

...
}

}

It is better to write a @Holding annotation rather than writing the extra synchronized block. Here are reasons:

• The annotation documents the fact that the lock is intended to already be held; that is, the method’s contract
requires that the lock be held when the method is called.

• The Lock Checker enforces that the lock is held when the method is called, rather than masking a programmer
error by silently re-acquiring the lock.

• The version with a synchronized statement can deadlock if, due to a programmer error, the lock is not already
held. The Lock Checker prevents this type of error.

• The annotation has no run-time overhead. The lock re-acquisition consumes time, even if it succeeds.

67

net.jcip.annotations.GuardedBy
javax.annotation.concurrent.GuardedBy

⇒ org.checkerframework.checker.lock.qual.GuardedBy (for fields), or
org.checkerframework.checker.lock.qual.Holding (for methods)

Figure 7.2: Correspondence between other lock annotations and the Checker Framework’s annotations.

7.6 Other lock annotations
The Checker Framework’s lock annotations are similar to annotations used elsewhere.

If your code is already annotated with a different lock annotation, the Checker Framework can type-check your
code. It treats annotations from other tools as if you had written the corresponding annotation from the Lock Checker,
as described in Figure 7.2. If the other annotation is a declaration annotation, it may be moved; see Section 27.1.1.

7.6.1 Relationship to annotations in Java Concurrency in Practice
The book Java Concurrency in Practice [GPB+06] defines a @GuardedBy annotation that is the inspiration for ours.
The book’s @GuardedBy serves two related but distinct purposes:

• When applied to a field, it means that the given lock must be held when accessing the field. The lock acquisition
and the field access may occur arbitrarily far in the future.

• When applied to a method, it means that the given lock must be held by the caller at the time that the method is
called — in other words, at the time that execution passes the @GuardedBy annotation.

The Lock Checker renames the method annotation to @Holding, and it generalizes the @GuardedBy annotation into
a type annotation that can apply not just to a field but to an arbitrary type (including the type of a parameter, return
value, local variable, generic type parameter, etc.). Another important distinction is that the Lock Checker’s annotations
express and enforce a locking discipline over values, just like the JLS expresses Java’s locking semantics; by contrast,
JCIP’s annotations express a locking discipline that protects variable names and does not prevent race conditions. This
makes the annotations more expressive and also more amenable to automated checking. It also accommodates the
distinct meanings of the two annotations, and resolves ambiguity when @GuardedBy is written in a location that might
apply to either the method or the return type.

(The JCIP book gives some rationales for reusing the annotation name for two purposes. One rationale is that
there are fewer annotations to learn. Another rationale is that both variables and methods are “members” that can
be “accessed” and @GuardedBy creates preconditions for doing so. Variables can be accessed by reading or writing
them (putfield, getfield), and methods can be accessed by calling them (invokevirtual, invokeinterface). This informal
intuition is inappropriate for a tool that requires precise semantics.)

7.7 Possible extensions
The Lock Checker validates some uses of locks, but not all. It would be possible to enrich it with additional annotations.
This would increase the programmer annotation burden, but would provide additional guarantees.

Lock ordering: Specify that one lock must be acquired before or after another, or specify a global ordering for all
locks. This would prevent deadlock.

Not-holding: Specify that a method must not be called if any of the listed locks are held.
These features are supported by Clang’s thread-safety analysis.

68

http://jcip.net/
http://jcip.net.s3-website-us-east-1.amazonaws.com/annotations/doc/net/jcip/annotations/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/Holding.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
http://clang.llvm.org/docs/ThreadSafetyAnalysis.html

Chapter 8

Index Checker for sequence bounds (arrays
and strings)

The Index Checker warns about potentially out-of-bounds accesses to sequence data structures, such as arrays and
strings.

The Index Checker prevents IndexOutOfBoundsExceptions that result from an index expression that might be
negative or might be equal to or larger than the sequence’s length. It also prevents NegativeArraySizeExceptions
that result from a negative array dimension in an array creation expression. (A caveat: the Index Checker does not check
for arithmetic overflow. If an expression overflows, the Index Checker might fail to warn about a possible exception.
This is unlikely to be a problem in practice unless you have an array whose length is Integer.MAX_VALUE.)

The programmer can write annotations that indicate which expressions are indices for which sequences. The Index
Checker prohibits any operation that may violate these properties, and the Index Checker takes advantage of these
properties when verifying indexing operations. Typically, a programmer writes few annotations, because the Index
Checker infers properties of indexes from the code around them. For example, it will infer that x is positive within the
then block of an if (x > 0) statement. The programmer does need to write field types and method pre-conditions or
post-conditions. For instance, if a method’s formal parameter is used as an index for myArray, the programmer might
need to write an @IndexFor("myArray") annotation on the formal parameter’s types.

The Index Checker checks fixed-size data structures, whose size is never changed after creation. A fixed-size data
structure has no add or remove operation. Examples are strings and arrays, and you can add support for other fixed-size
data structures (see Section 8.9).

To run the Index Checker, run the command

javac -processor index MyJavaFile.java

8.1 Index Checker structure and annotations
Internally, the Index Checker computes information about integers that might be indices:

• the lower bound on an integer, such as whether it is known to be positive (Section 8.2)
• the upper bound on an integer, such as whether it is less than the length of a given sequence (Section 8.3)
• whether an integer came from calling the JDK’s binary search routine on an array (Section 8.6)
• whether an integer came from calling a string search routine (Section 8.7)

and about sequence lengths:

• the minimum length of a sequence, such “myArray contains at least 3 elements” (Section 8.4)
• whether two sequences have the same length (Section 8.5)

69

../api/org/checkerframework/checker/index/qual/IndexFor.html

The Index Checker checks of all these properties at once, but this manual discusses each type system in a different
section. There are some annotations that are shorthand for writing multiple annotations, each from a different type
system:

@IndexFor(String[] names) The value is a valid index for the named sequences. For example, the String.charAt(int)
method is declared as

class String {
char charAt(@IndexFor("this") index) { ... }

}

More generally, a variable declared as @IndexFor("someArray") int i has type @IndexFor("someArray")
int and its run-time value is guaranteed to be non-negative and less than the length of someArray. You could also
express this as @NonNegative @LTLengthOf("someArray") int i, but @IndexFor("someArray") int i
is more concise.

@IndexOrHigh(String[] names) The value is non-negative and is less than or equal to the length of each
named sequence. This type combines @NonNegative and @LTEqLengthOf.
For example, the Arrays.fill method is declared as
class Arrays {
void fill(Object[] a, @IndexFor("#1") int fromIndex, @IndexOrHigh("#1") int toIndex, Object val)

}

@LengthOf(String[] names) The value is exactly equal to the length of the named sequences. In the imple-
mentation, this type aliases @IndexOrHigh, so writing it only adds documentation (although future versions of
the Index Checker may use it to improve precision).

@IndexOrLow(String[] names) The value is -1 or is a valid index for each named sequence. This type
combines @GTENegativeOne and @LTLengthOf.

@PolyIndex indicates qualifier polymorphism. This type combines @PolyLowerBound and @PolyUpperBound. For
a description of qualifier polymorphism, see Section 24.2.

@PolyLength is a special polymorphic qualifier that combines @PolySameLen and @PolyValue from the Constant
Value Checker (see Chapter 19, page 118). @PolyLength exists as a shorthand for these two annotations, since
they often appear together.

8.2 Lower bounds
The Index Checker issues an error when a sequence is indexed by an integer that might be negative. The Lower Bound
Checker uses a type system (Figure 8.1) with the following qualifiers:

@Positive The value is 1 or greater, so it is not too low to be used as an index. Note that this annotation is trusted
by the Constant Value Checker, so if the Constant Value Checker is run on code containing this annotation, the
Lower Bound Checker must be run on the same code in order to guarantee soundness.

@NonNegative The value is 0 or greater, so it is not too low to be used as an index.
@GTENegativeOne The value is -1 or greater. It may not be used as an index for a sequence, because it might be

too low. (“GTE” stands for “Greater Than or Equal to”.)
@PolyLowerBound indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section 24.2.
@LowerBoundUnknown There is no information about the value. It may not be used as an index for a sequence,

because it might be too low.
@LowerBoundBottom The value cannot take on any integral types. The bottom type, which should not need to be

written by the programmer.

70

../api/org/checkerframework/checker/index/qual/IndexFor.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#charAt-int-
../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/checker/index/qual/IndexOrHigh.html
../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/checker/index/qual/LTEqLengthOf.html
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#fill-java.lang.Object:A-int-int-java.lang.Object-
../api/org/checkerframework/checker/index/qual/LengthOf.html
../api/org/checkerframework/checker/index/qual/IndexOrHigh.html
../api/org/checkerframework/checker/index/qual/IndexOrLow.html
../api/org/checkerframework/checker/index/qual/GTENegativeOne.html
../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/checker/index/qual/PolyIndex.html
../api/org/checkerframework/checker/index/qual/PolyLowerBound.html
../api/org/checkerframework/checker/index/qual/PolyUpperBound.html
../api/org/checkerframework/checker/index/qual/PolyLength.html
../api/org/checkerframework/checker/index/qual/PolySameLen.html
../api/org/checkerframework/common/value/qual/PolyValue.html
../api/org/checkerframework/checker/index/qual/PolyLength.html
../api/org/checkerframework/checker/index/qual/Positive.html
../api/org/checkerframework/checker/index/qual/NonNegative.html
../api/org/checkerframework/checker/index/qual/GTENegativeOne.html
../api/org/checkerframework/checker/index/qual/PolyLowerBound.html
../api/org/checkerframework/checker/index/qual/LowerBoundUnknown.html
../api/org/checkerframework/checker/index/qual/LowerBoundBottom.html

@LowerBoundUnknown

@Positive

@GTENegativeOne

@NonNegative

@LowerBoundBottom

@UpperBoundUnknown

@UpperBoundBottom

@LTOMLengthOf("myArray")

@LTLengthOf("myArray")

@LTEqLengthOf("myArray")

Figure 8.1: The two type hierarchies for integer types used by the Index Checker. On the left is a type system for lower
bounds. On the right is a type system for upper bounds. Qualifiers written in gray should never be written in source
code; they are used internally by the type system. "myArray" in the Upper Bound qualifiers is an example of an array’s
name.

8.3 Upper bounds
The Index Checker issues an error when a sequence index might be too high. To do this, it maintains information
about which expressions are safe indices for which sequences. The length of a sequence is arr.length for arrays and
str.length() for strings. It uses a type system (Figure 8.1) with the following qualifiers:

It issues an error when a sequence arr is indexed by an integer that is not of type @LTLengthOf("arr") or
@LTOMLengthOf("arr").

@LTLengthOf(String[] names, String[] offset) An expression with this type has value less than the
length of each sequence listed in names. The expression may be used as an index into any of those sequences, if
it is non-negative. For example, an expression of type @LTLengthOf("a") int might be used as an index to a.
The type @LTLengthOf({"a", "b"}) is a subtype of both @LTLengthOf("a") and @LTLengthOf("b"). (“LT”
stands for “Less Than”.)
@LTLengthOf takes an optional offset element, meaning that the annotated expression plus the offset is less
than the length of the given sequence. For example, suppose expression e has type @LTLengthOf(value =
{"a", "b"}, offset = {"-1", "x"}). Then e - 1 is less than a.length, and e + x is less than b.length.
This helps to make the checker more precise. Programmers rarely need to write the offset element.

@LTEqLengthOf(String[] names) An expression with this type has value less than or equal to the length of
each sequence listed in names. It may not be used as an index for these sequences, because it might be too high.
@LTEqLengthOf({"a", "b"}) is a subtype of both @LTEqLengthOf("a") and @LTEqLengthOf("b"). (“LTEq”
stands for “Less Than or Equal to”.)

@PolyUpperBound indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section 24.2.
@LTOMLengthOf(String[] names) An expression with this type has value at least 2 less than the length of

each sequence listed in names. It may always used as an index for a sequence listed in names, if it is non-negative.
This type exists to allow the checker to infer the safety of loops of the form:

for (int i = 0; i < array.length - 1; ++i) {
arr[i] = arr[i+1];

}

71

../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/checker/index/qual/LTEqLengthOf.html
../api/org/checkerframework/checker/index/qual/PolyUpperBound.html
../api/org/checkerframework/checker/index/qual/LTOMLengthOf.html

This annotation should rarely (if ever) be written by the programmer; usually @LTLengthOf(String[] names)
should be written instead. @LTOMLengthOf({"a", "b"}) is a subtype of both @LTOMLengthOf("a") and
@LTOMLengthOf("b"). (“LTOM” stands for “Less Than One Minus”, because another way of saying “at least 2
less than a.length” is “less than a.length-1”.)

@UpperBoundUnknown There is no information about the upper bound on the value of an expression with this type.
It may not be used as an index for a sequence, because it might be too high. This type is the top type, and should
never need to be written by the programmer.

@UpperBoundBottom This is the bottom type for the upper bound type system. It should never need to be written
by the programmer.

The following method annotations can be used to establish a postcondition of a method which ensures that a certain
expression is a valid index for a sequence:

@EnsuresLTLengthOf(String[] value, String[] targetValue, String[] offset) When the
method with this annotation returns, the expression (or all the expressions) given in the value element is less than
the length of the given sequences with the given offsets. More preciesly, the expression has the @LTLengthOf
qualifier with the value and offset arguments taken from the targetValue and offset elements of this
annotation.

@EnsuresLTLengthOfIf(String[] expression, boolean result, String[] targetValue, String[] offset)
If the method with this annotation returns the given boolean value, then the given expression (or all the given
expressions) is less than the length of the given sequences with the given offsets.

8.4 Sequence minimum lengths
The Index Checker estimates, for each sequence expression, how long its value might be at run time by computing
a minimum length that the sequence is guaranteed to have. This enables the Index Checker to verify indices that are
compile-time constants. For example, this code:

String getThirdElement(String[] arr) {
return arr[2];

}

is legal if arr has at least three elements, which can be indicated in this way:

String getThirdElement(String @MinLen(3) [] arr) {
return arr[2];

}

When the index is not a compile-time constant, as in arr[i], then the Index Checker depends not on a @MinLen
annotation but on i being annotated as @LTLengthOf("arr").

The MinLen type qualifier is implemented in practice by the Constant Value Checker, using @ArrayLenRange
annotations (see Chapter 19, page 118). This means that errors related to the minimum lengths of arrays must be
suppressed using the "value" argument to @SuppressWarnings. @ArrayLenRange and @ArrayLen annotations can
also be used to establish the minimum length of a sequence, if a more precise estimate of length is known. For example,
if arr is known to have exactly three elements:

String getThirdElement(String @ArrayLen(3) [] arr) {
return arr[2];

}

The following type qualifiers (from the Chapter 19, page 118) can establish the minimum length of a sequence:

72

../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/checker/index/qual/UpperBoundUnknown.html
../api/org/checkerframework/checker/index/qual/UpperBoundBottom.html
../api/org/checkerframework/checker/index/qual/EnsuresLTLengthOf.html
../api/org/checkerframework/checker/index/qual/EnsuresLTLengthOfIf.html
../api/org/checkerframework/checker/index/qual/LTLengthOf.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLen.html

@SameLenUnknown

@SameLenBottom

@SameLen("a") @SameLen("b")

@SameLen({"a", "b"})

Figure 8.2: The type hierarchy for arrays of equal length ("a" and "b" are assumed to be in-scope sequences). Qualifiers
written in gray should never be written in source code; they are used internally by the type system.

@MinLen(int value) The value of an expression of this type is a sequence with at least value elements. The
default annotation is @MinLen(0), and it may be applied to non-sequences. @MinLen(x) is a subtype of
@MinLen(x−1). An @MinLen annotation is treated internally as an @ArrayLenRange with only its from field
filled.

@ArrayLen(int[] value) The value of an expression of this type is a sequence whose length is exactly one of
the integers listed in its argument. The argument can contain at most ten integers; larger collections of integers
are converted to @ArrayLenRange annotations. The minimum length of a sequence with this annotation is the
smallest element of the argument.

@ArrayLenRange(int from, int to) The value of an expression of this type is a sequence whose length
is bounded by its arguments, inclusive. The minimum length of a sequence with this annotation is its from
argument.

The following method annotation can be used to establish a postcondition of a method which ensures that a certain
sequence has a minimum length:

@EnsuresMinLenIf(String[] expression, boolean result, int targetValue) If the method
with this annotation returns the given boolean value, then the given expression (or all the given expressions) is a
sequence with at least targetValue elements.

8.5 Sequences of the same length
The Index Checker determines whether two or more sequences have the same length. This enables it to verify that all
the indexing operations are safe in code like the following:

boolean lessThan(double[] arr1, double @SameLen("#1") [] arr2) {
for (int i = 0; i < arr1.length; i++) {

if (arr1[i] < arr2[i]) {
return true;

} else if (arr1[i] > arr2[i]) {
return false;

}
}
return false;

}

73

../api/org/checkerframework/common/value/qual/MinLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/EnsuresMinLenIf.html

@SearchIndexUnknown

@SearchIndexBottom

@SearchIndex("a")

@NegativeIndexFor("a") @SearchIndex({"a", "b})

@NegativeIndexFor({"a", "b"})

Figure 8.3: The type hierarchy for the Index Checker’s internal type system that captures information about the results
of calls to Arrays.binarySearch.

When needed, you can specify which sequences have the same length using the following type qualifiers (Figure 8.2):

@SameLen(String[] names) An expression with this type represents a sequence that has the same length as the
other sequences named in names. In general, @SameLen types that have non-intersecting sets of names are not
subtypes of each other. However, if at least one sequence is named by both types, the types are actually the same,
because all the named sequences must have the same length.

@PolySameLen indicates qualifier polymorphism. For a description of qualifier polymorphism, see Section 24.2.
@SameLenUnknown No information is known about which other sequences have the same length as this one. This is

the top type, and programmers should never need to write it.
@SameLenBottom This is the bottom type, and programmers should rarely need to write it. null has this type.

8.6 Binary search indices
The JDK’s Arrays.binarySearch method returns either where the value was found, or a negative value indicating
where the value could be inserted. The Search Index Checker represents this concept.

The Search Index Checker’s type hierarchy (Figure 8.3) has four type qualifiers:

@SearchIndexFor(String[] names) An expression with this type represents an integer that could have been
produced by calling Arrays.binarySearch: for each array a specifed in the annotation, the annotated integer is
between -a.length-1 and a.length-1, inclusive

@NegativeIndexFor(String[] names) An expression with this type represents a “negative index” that is
between a.length-1 and -1, inclusive; that is, a value that is both a @SearchIndex and is negative. Applying
the bitwise complement operator (~) to an expression of this type produces an expression of type @IndexOrHigh.

@SearchIndexBottom This is the bottom type, and programmers should rarely need to write it.
@SearchIndexUnknown No information is known about whether this integer is a search index. This is the top type,

and programmers should rarely need to write it.

74

https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#binarySearch-java.lang.Object:A-java.lang.Object-
../api/org/checkerframework/checker/index/qual/SameLen.html
../api/org/checkerframework/checker/index/qual/PolySameLen.html
../api/org/checkerframework/checker/index/qual/SameLenUnknown.html
../api/org/checkerframework/checker/index/qual/SameLenBottom.html
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#binarySearch-java.lang.Object:A-java.lang.Object-
../api/org/checkerframework/checker/index/qual/SearchIndexFor.html
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#binarySearch-java.lang.Object:A-java.lang.Object-
../api/org/checkerframework/checker/index/qual/NegativeIndexFor.html
../api/org/checkerframework/checker/index/qual/IndexOrHigh.html
../api/org/checkerframework/checker/index/qual/SearchIndexBottom.html
../api/org/checkerframework/checker/index/qual/SearchIndexUnknown.html

@SubstringIndexUnknown

@SubstringIndexBottom

@SubstringIndexFor(value="myStr", offset="subStr.length()-1")

Figure 8.4: The type hierarchy for the Substring Index Checker, which captures information about the results of calls to
String.indexOf and String.lastIndexOf.

8.7 Substring indices
The methods String.indexOf and String.lastIndexOf return an index of a given substring within a given string,
or -1 if no such substring exists. The index i returned from receiver.indexOf(substring) satisfies the following
property, which is stated here in three equivalent ways:

i == -1 || (i >= 0 && i <= receiver.length() - substring.length())
i == -1 || (@NonNegative && @LTLengthOf(value="receiver", offset="substring.length()-1"))
@SubstringIndexFor(value="receiver", offset="substring.length()-1")

The return type of methods String.indexOf and String.lastIndexOf has the annotation @SubstringIndexFor(
value="this", offset="#1.length()-1")). This allows writing code such as the following with no warnings
from the Index Checker:

public static String removeSubstring(String original, String removed) {
int i = original.indexOf(removed);
if (i != -1) {

return original.substring(0, i) + original.substring(i + removed.length());
}
return original;

}

The @SubstringIndexFor annotation is implemented in a Substring Index Checker that runs together with the
Index Checker and has its own type hierarchy (Figure 8.4) with three type qualifiers:

@SubstringIndexFor(String[] value, String[] offset) An expression with this type represents
an integer that could have been produced by calling String.indexOf: the annotated integer is either -1, or it is
non-negative and is less than or equal to receiver.length - offset (where the sequence receiver and the
offset offset are corresponding elements of the annotation’s arguments).

@SubstringIndexBottom This is the bottom type, and programmers should rarely need to write it.
@SubstringIndexUnknown No information is known about whether this integer is a substring index. This is the

top type, and programmers should rarely need to write it.

8.7.1 The need for the @SubstringIndexFor annotation
No other annotation supported by the Index Checker precisely represents the possible return values of methods
String.indexOf and String.lastIndexOf. The reason is the methods’ special cases for empty strings and for failed
matches.

Consider the result i of receiver.indexOf(substring):

75

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#indexOf-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#lastIndexOf-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#indexOf-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#lastIndexOf-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#indexOf-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#lastIndexOf-java.lang.String-
../api/org/checkerframework/checker/index/qual/SubstringIndexFor.html
../api/org/checkerframework/checker/index/qual/SubstringIndexFor.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#indexOf-java.lang.String-
../api/org/checkerframework/checker/index/qual/SubstringIndexBottom.html
../api/org/checkerframework/checker/index/qual/SubstringIndexUnknown.html
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#indexOf-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#lastIndexOf-java.lang.String-

• i is @GTENegativeOne, because i >= -1.
• i is @LTEqLengthOf("receiver"), because i <= receiver.length().
• i is not @IndexOrLow("receiver"), because for receiver = "", substring = "", i = 0, the property i
>= -1 && i < receiver.length() does not hold.
• i is not @IndexOrHigh("receiver"), because for receiver = "", substring = "b", i = -1, the prop-

erty i >= 0 && i <= receiver.length() does not hold.
• i is not @LTLengthOf(value = "receiver", offset = "substring.length()-1"), because for receiver
= "", substring = "abc", i = -1, the property i + substring.length() - 1 < receiver.length()
does not hold.

The last annotation in the list above, @LTLengthOf(value = "receiver", offset = "substring.length()-1"),
is the correct and precise upper bound for all values of i except -1. The offset expresses the fact that we can add
substring.length() to this index and still get a valid index for receiver. That is useful for type-checking code that
adds the length of the substring to the found index, in order to obtain the rest of the string. However, the upper bound
applies only after the index is explicitly checked not to be -1:

int i = receiver.indexOf(substring);
// i is @GTENegativeOne and @LTEqLengthOf("receiver")
// i is not @LTLengthOf(value = "receiver", offset = "substring.length()-1")
if (i != -1) {

// i is @NonNegative and @LTLengthOf(value = "receiver", offset = "substring.length()-1")
int j = i + substring.length();
// j is @IndexOrHigh("receiver")
return receiver.substring(j); // this call is safe

}

The property of the result of indexOf cannot be expressed by any combination of lower-bound (Section 8.2) and
upper-bound (Section 8.3) annotations, because the upper-bound annotations apply independently of the lower-bound
annotations, but in this case, the upper bound i <= receiver.length() - substring.length() holds only if i
>= 0. Therefore, to express this property and make the example type-check without false positives, a new annotation
such as @SubstringIndexFor(value = "receiver", offset = "substring.length()-1") is necessary.

8.8 Inequalities
The Index Checker estimates which expression’s values are less than other expressions’ values.

@LessThan(String[] values) An expression with this type has a value that is less than the value of each
expression listed in values. The expressions in values must be composed of final or effectively final variables
and constants.

@LessThanUnknown There is no information about the value of an expression this type relative to other expressions.
This is the top type, and should not be written by the programer.

@LessThanBottom This is the bottom type for the less than type system. It should never need to be written by the
programmer.

8.9 Annotating fixed-size data structures
The Index Checker has built-in support for Strings and arrays. You can add support for additional fixed-size data
structures by writing annotations. This allows the Index Checker to typecheck the data structure’s implementation and
to typecheck uses of the class.

This section gives an example: a fixed-length collection.

76

../api/org/checkerframework/checker/index/qual/LessThan.html
../api/org/checkerframework/checker/index/qual/LessThanUnknown.html
../api/org/checkerframework/checker/index/qual/LessThanBottom.html

/** ArrayWrapper is a fixed-size generic collection. */
public class ArrayWrapper<T> {

private final Object @SameLen("this") [] delegate;

@SuppressWarnings("index") // constructor creates object of size @SameLen(this) by definition
ArrayWrapper(@NonNegative int size) {

delegate = new Object[size];
}

public @LengthOf("this") int size() {
return delegate.length;

}

public void set(@IndexFor("this") int index, T obj) {
delegate[index] = obj;

}

@SuppressWarnings("unchecked") // required for normal Java compilation due to unchecked cast
public T get(@IndexFor("this") int index) {

return (T) delegate[index];
}

}

The Index Checker treats methods annotated with @LengthOf("this") as the length of a sequence like arr.length
for arrays and str.length() for strings.

With these annotations, client code like the following typechecks with no warnings:

public static void clearIndex1(ArrayWrapper<? extends Object> a, @IndexFor("#1") int i) {
a.set(i, null);

}

public static void clearIndex2(ArrayWrapper<? extends Object> a, int i) {
if (0 <= i && i < a.size()) {

a.set(i, null);
}

}

77

Chapter 9

Fake Enum Checker for fake enumerations

The Fake Enum Checker, or Fenum Checker, enables you to define a type alias or typedef, in which two different sets
of values have the same representation (the same Java type) but are not allowed to be used interchangeably. It is also
possible to create a typedef using the Subtyping Checker (Chapter 22, page 131), and that approach is sometimes more
appropriate.

One common use for the Fake Enum Checker is the fake enumeration pattern (Section 9.6). For example, consider
this code adapted from Android’s IntDef documentation:

@NavigationMode int NAVIGATION_MODE_STANDARD = 0;
@NavigationMode int NAVIGATION_MODE_LIST = 1;
@NavigationMode int NAVIGATION_MODE_TABS = 2;

@NavigationMode int getNavigationMode();

void setNavigationMode(@NavigationMode int mode);

The Fake Enum Checker can issue a compile-time warning if the programmer ever tries to call setNavigationMode
with an int that is not a @NavigationMode int.

The Fake Enum Checker gives the same safety guarantees as a true enumeration type or typedef, but retaining
backward-compatibility with interfaces that use existing Java types. You can apply fenum annotations to any Java type,
including all primitive types and also reference types. Thus, you could use it (for example) to represent floating-point
values between 0 and 1, or Strings with some particular characteristic. (Note that the Fake Enum Checker does not let
you create a shorter alias for a long type name, as a real typedef would if Java supported it.)

As explained in Section 9.1, you can either define your own fenum annotations, such as @NavigationMode above,
or you can use the existing @Fenum with a string argument. Figure 9.1 shows part of the type hierarchy for the Fenum
type system.

9.1 Fake enum annotations
The Fake Enum Checker supports two ways to introduce a new fake enum (fenum):

1. Introduce your own specialized fenum annotation with code like this in file MyFenum.java:
package myPackage.qual;

import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;

78

https://developer.android.com/reference/android/support/annotation/IntDef.html
../api/org/checkerframework/checker/fenum/qual/Fenum.html

@Fenum("A") @FenumUnqualified

@FenumTop

@FenumBottom

@Fenum("B") @FenumC @FenumD

Figure 9.1: Partial type hierarchy for the Fenum type system. There are two forms of fake enumeration annotations —
above, illustrated by @Fenum("A") and @FenumC. See Section 9.1 for descriptions of how to introduce both types of
fenums. The type qualifiers in gray (@FenumTop, @FenumUnqualified, and @FenumBottom) should never be written in
source code; they are used internally by the type system. @FenumUnqualified is the default qualifier for unannotated
types, except for upper bounds which default to @FenumTop.

import java.lang.annotation.Target;
import org.checkerframework.checker.fenum.qual.FenumTop;
import org.checkerframework.framework.qual.SubtypeOf;

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf(FenumTop.class)
public @interface MyFenum {}
You only need to adapt the italicized package, annotation, and file names in the example.
Note that all custom annotations must have the @Target({ElementType.TYPE_USE}) meta-annotation. See
section 30.4.1.

2. Use the provided @Fenum annotation, which takes a String argument to distinguish different fenums or type
aliases. For example, @Fenum("A") and @Fenum("B") are two distinct type qualifiers.

The first approach allows you to define a short, meaningful name suitable for your project, whereas the second
approach allows quick prototyping.

9.2 What the Fenum Checker checks
The Fenum Checker ensures that unrelated types are not mixed. All types with a particular fenum annotation, or
@Fenum(...) with a particular String argument, are disjoint from all unannotated types and from all types with a
different fenum annotation or String argument.

The checker ensures that only compatible fenum types are used in comparisons and arithmetic operations (if
applicable to the annotated type).

It is the programmer’s responsibility to ensure that fields with a fenum type are properly initialized before use.
Otherwise, one might observe a null reference or zero value in the field of a fenum type. (The Nullness Checker
(Chapter 3, page 25) can prevent failure to initialize a reference variable.)

9.3 Running the Fenum Checker
The Fenum Checker can be invoked by running the following commands.

• If you define your own annotation(s), provide the name(s) of the annotation(s) through the -Aquals option, using
a comma-no-space-separated notation:

79

../api/org/checkerframework/checker/fenum/qual/Fenum.html

javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.checker.fenum.FenumChecker \
-Aquals=myPackage.qual.MyFenum MyFile.java ...

The annotations listed in -Aquals must be accessible to the compiler during compilation in the classpath. In
other words, they must already be compiled (and, typically, be on the javac classpath) before you run the Fenum
Checker with javac. It is not sufficient to supply their source files on the command line.
You can also provide the fully-qualified paths to a set of directories that contain the annotations through the
-AqualDirs option, using a colon-no-space-separated notation. For example:

javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.checker.fenum.FenumChecker \
-AqualDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin MyFile.java ...

Note that in these two examples, the compiled class file of the myPackage.qual.MyFenum annotation must exist
in either the myProject/bin directory or the myLibrary/bin directory. The following placement of the class
file will work with the above commands:
.../myProject/bin/myPackage/qual/MyFenum.class

The two options can be used at the same time to provide groups of annotations from directories, and individually
named annotations.

• If your code uses the @Fenum annotation, you do not need the -Aquals or -AqualDirs option:

javac -processor org.checkerframework.checker.fenum.FenumChecker MyFile.java ...

For an example of running the Fake Enum Checker on Android code, see https://github.com/karlicoss/
checker-fenum-android-demo.

9.4 Suppressing warnings
One example of when you need to suppress warnings is when you initialize the fenum constants to literal values.
To remove this warning message, add a @SuppressWarnings annotation to either the field or class declaration, for
example:

@SuppressWarnings("fenum:assignment.type.incompatible") // initialization of fake enums
class MyConsts {

public static final @Fenum("A") int ACONST1 = 1;
public static final @Fenum("A") int ACONST2 = 2;

}

9.5 Example
The following example introduces two fenums in class TestStatic and then performs a few typical operations.

@SuppressWarnings("fenum:assignment.type.incompatible") // initialization of fake enums
public class TestStatic {

public static final @Fenum("A") int ACONST1 = 1;
public static final @Fenum("A") int ACONST2 = 2;

public static final @Fenum("B") int BCONST1 = 4;
public static final @Fenum("B") int BCONST2 = 5;

}

class FenumUser {
@Fenum("A") int state1 = TestStatic.ACONST1; // ok
@Fenum("B") int state2 = TestStatic.ACONST1; // Incompatible fenums forbidden!

80

../api/org/checkerframework/checker/fenum/qual/Fenum.html
https://github.com/karlicoss/checker-fenum-android-demo
https://github.com/karlicoss/checker-fenum-android-demo

void fenumArg(@Fenum("A") int p) {}

void foo() {
state1 = 4; // Direct use of value forbidden!
state1 = TestStatic.BCONST1; // Incompatible fenums forbidden!
state1 = TestStatic.ACONST2; // ok

fenumArg(5); // Direct use of value forbidden!
fenumArg(TestStatic.BCONST1); // Incompatible fenums forbidden!
fenumArg(TestStatic.ACONST1); // ok

}
}

Also, see the example project in the docs/examples/fenum-extension directory.

9.6 The fake enumeration pattern
Java’s enum keyword lets you define an enumeration type: a finite set of distinct values that are related to one another
but are disjoint from all other types, including other enumerations. Before enums were added to Java, there were two
ways to encode an enumeration, both of which are error-prone:

the fake enum pattern a set of int or String constants (as often found in older C code).
the typesafe enum pattern a class with private constructor.

Sometimes you need to use the fake enum pattern, rather than a real enum or the typesafe enum pattern. One
reason is backward-compatibility. A public API that predates Java’s enum keyword may use int constants; it cannot be
changed, because doing so would break existing clients. For example, Java’s JDK still uses int constants in the AWT
and Swing frameworks, and Android also uses int constants rather than Java enums. Another reason is performance,
especially in environments with limited resources. Use of an int instead of an object can reduce code size, memory
requirements, and run time.

In cases when code has to use the fake enum pattern, the Fake Enum Checker, or Fenum Checker, gives the same
safety guarantees as a true enumeration type. The developer can introduce new types that are distinct from all values of
the base type and from all other fake enums. Fenums can be introduced for primitive types as well as for reference
types.

9.7 References
• Case studies of the Fake Enum Checker:

“Building and using pluggable type-checkers” [DDE+11] (ICSE 2011, http://homes.cs.washington.edu/
~mernst/pubs/pluggable-checkers-icse2011.pdf#page=3)
• Java Language Specification on enums:
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9

• Tutorial trail on enums:
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

• Typesafe enum pattern:
http://www.oracle.com/technetwork/java/page1-139488.html

• Java Tip 122: Beware of Java typesafe enumerations:
https://www.javaworld.com/article/2077487/core-java/java-tip-122--beware-of-java-typesafe-enumerations.
html

81

https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9
http://www.oracle.com/technetwork/java/page1-139488.html
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf#page=3
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf#page=3
https://docs.oracle.com/javase/specs/jls/se8/html/jls-8.html#jls-8.9
https://docs.oracle.com/javase/tutorial/java/javaOO/enum.html
http://www.oracle.com/technetwork/java/page1-139488.html
https://www.javaworld.com/article/2077487/core-java/java-tip-122--beware-of-java-typesafe-enumerations.html
https://www.javaworld.com/article/2077487/core-java/java-tip-122--beware-of-java-typesafe-enumerations.html

Chapter 10

Tainting Checker

The Tainting Checker prevents certain kinds of trust errors. A tainted, or untrusted, value is one that comes from an
arbitrary, possibly malicious source, such as user input or unvalidated data. In certain parts of your application, using a
tainted value can compromise the application’s integrity, causing it to crash, corrupt data, leak private data, etc.

For example, a user-supplied pointer, handle, or map key should be validated before being dereferenced. As another
example, a user-supplied string should not be concatenated into a SQL query, lest the program be subject to a SQL
injection attack. A location in your program where malicious data could do damage is called a sensitive sink.

A program must “sanitize” or “untaint” an untrusted value before using it at a sensitive sink. There are two general
ways to untaint a value: by checking that it is innocuous/legal (e.g., it contains no characters that can be interpreted
as SQL commands when pasted into a string context), or by transforming the value to be legal (e.g., quoting all the
characters that can be interpreted as SQL commands). A correct program must use one of these two techniques so that
tainted values never flow to a sensitive sink. The Tainting Checker ensures that your program does so.

If the Tainting Checker issues no warning for a given program, then no tainted value ever flows to a sensitive sink.
However, your program is not necessarily free from all trust errors. As a simple example, you might have forgotten
to annotate a sensitive sink as requiring an untainted type, or you might have forgotten to annotate untrusted data as
having a tainted type.

To run the Tainting Checker, supply the -processor TaintingChecker command-line option to javac.

10.1 Tainting annotations
The Tainting type system uses the following annotations:

• @Untainted indicates a type that includes only untainted (trusted) values.
• @Tainted indicates a type that may include tainted (untrusted) or untainted (trusted) values. @Tainted is a

supertype of @Untainted. It is the default qualifier.
• @PolyTainted is a qualifier that is polymorphic over tainting (see Section 24.2).

10.2 Tips on writing @Untainted annotations
Most programs are designed with a boundary that surrounds sensitive computations, separating them from untrusted
values. Outside this boundary, the program may manipulate malicious values, but no malicious values ever pass the
boundary to be operated upon by sensitive computations.

In some programs, the area outside the boundary is very small: values are sanitized as soon as they are received from
an external source. In other programs, the area inside the boundary is very small: values are sanitized only immediately
before being used at a sensitive sink. Either approach can work, so long as every possibly-tainted value is sanitized
before it reaches a sensitive sink.

82

https://en.wikipedia.org/wiki/Sql_injection
https://en.wikipedia.org/wiki/Sql_injection
../api/org/checkerframework/checker/tainting/qual/Untainted.html
../api/org/checkerframework/checker/tainting/qual/Tainted.html
../api/org/checkerframework/checker/tainting/qual/PolyTainted.html

Once you determine the boundary, annotating your program is easy: put @Tainted outside the boundary, @Untainted
inside, and @SuppressWarnings("tainting") at the validation or sanitization routines that are used at the boundary.

The Tainting Checker’s standard default qualifier is @Tainted (see Section 25.3.1 for overriding this default). This
is the safest default, and the one that should be used for all code outside the boundary (for example, code that reads user
input). You can set the default qualifier to @Untainted in code that may contain sensitive sinks.

The Tainting Checker does not know the intended semantics of your program, so it cannot warn you if you mis-
annotate a sensitive sink as taking @Tainted data, or if you mis-annotate external data as @Untainted. So long as you
correctly annotate the sensitive sinks and the places that untrusted data is read, the Tainting Checker will ensure that all
your other annotations are correct and that no undesired information flows exist.

As an example, suppose that you wish to prevent SQL injection attacks. You would start by annotating the
Statement class to indicate that the execute operations may only operate on untainted queries (Chapter 29 describes
how to annotate external libraries):

public boolean execute(@Untainted String sql) throws SQLException;
public boolean executeUpdate(@Untainted String sql) throws SQLException;

10.3 @Tainted and @Untainted can be used for many purposes
The @Tainted and @Untainted annotations have only minimal built-in semantics. In fact, the Tainting Checker
provides only a small amount of functionality beyond the Subtyping Checker (Chapter 22). This lack of hard-coded
behavior has two consequences. The first consequence is that the annotations can serve many different purposes, such
as:

• Prevent SQL injection attacks: @Tainted is external input, @Untainted has been checked for SQL syntax.
• Prevent cross-site scripting attacks: @Tainted is external input, @Untainted has been checked for JavaScript

syntax.
• Prevent information leakage: @Tainted is secret data, @Untainted may be displayed to a user.

The second consequence is that the Tainting Checker is not useful unless you annotate the appropriate sources,
sinks, and untainting/sanitization routines.

If you want more specialized semantics, or you want to annotate multiple types of tainting (for example, HTML and
SQL) in a single program, then you can copy the definition of the Tainting Checker to create a new annotation and
checker with a more specific name and semantics. You will change the copy to rename the annotations, and you will
annotate libraries and/or your code to identify sources, sinks, and validation/sanitization routines. See Chapter 30 for
more details.

83

https://docs.oracle.com/javase/8/docs/api/java/sql/Statement.html

Chapter 11

Regex Checker for regular expression
syntax

The Regex Checker prevents, at compile-time, use of syntactically invalid regular expressions and access of invalid
capturing groups.

A regular expression, or regex, is a pattern for matching certain strings of text. In Java, a programmer writes a
regular expression as a string. At run time, the string is “compiled” into an efficient internal form (Pattern) that is
used for text-matching. Regular expression in Java also have capturing groups, which are delimited by parentheses and
allow for extraction from text.

The syntax of regular expressions is complex, so it is easy to make a mistake. It is also easy to accidentally use a
regex feature from another language that is not supported by Java (see section “Comparison to Perl 5” in the Pattern
Javadoc). Ordinarily, the programmer does not learn of these errors until run time. The Regex Checker warns about
these problems at compile time.

For further details, including case studies, see a paper about the Regex Checker [SDE12].
To run the Regex Checker, supply the -processor org.checkerframework.checker.regex.RegexChecker

command-line option to javac.

11.1 Regex annotations
These qualifiers make up the Regex type system:

@Regex indicates that the run-time value is a valid regular expression String. If the optional parameter is supplied to
the qualifier, then the number of capturing groups in the regular expression is at least that many. If not provided,
the parameter defaults to 0. For example, if an expression’s type is @Regex(1) String, then its run-time value
could be "colo(u?)r" or "(brown|beige)" but not "colou?r" nor a non-regex string such as "1) first
point".

@PolyRegex indicates qualifier polymorphism (see Section 24.2).

The subtyping hierarchy of the Regex Checker’s qualifiers is shown in Figure 11.1.

11.2 Annotating your code with @Regex

11.2.1 Implicit qualifiers
The Regex Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code (see
Section 25.3). The checker implicitly adds the Regex qualifier with the parameter set to the correct number of capturing

84

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
../api/org/checkerframework/checker/regex/qual/Regex.html
../api/org/checkerframework/checker/regex/qual/PolyRegex.html

@UnknownRegex

@Regex(0) = @Regex

@Regex(2)

@Regex(1)

@RegexBottom

.

.

.

Figure 11.1: The subtyping relationship of the Regex Checker’s qualifiers. Because the parameter to a @Regex qualifier
is at least the number of capturing groups in a regular expression, a @Regex qualifier with more capturing groups is a
subtype of a @Regex qualifier with fewer capturing groups. Qualifiers in gray are used internally by the type system but
should never be written by a programmer.

public @Regex String parenthesize(@Regex String regex) {
return "(" + regex + ")"; // Even though the parentheses are not @Regex Strings,

// the whole expression is a @Regex String
}

Figure 11.2: An example of the Regex Checker’s support for concatenation of non-regular-expression Strings to produce
valid regular expression Strings.

groups to any String literal that is a valid regex. The Regex Checker allows the null literal to be assigned to any type
qualified with the Regex qualifier.

11.2.2 Capturing groups
The Regex Checker validates that a legal capturing group number is passed to Matcher’s group, start and end
methods. To do this, the type of Matcher must be qualified with a @Regex annotation with the number of capturing
groups in the regular expression. This is handled implicitly by the Regex Checker for local variables (see Section 25.4),
but you may need to add @Regex annotations with a capturing group count to Pattern and Matcher fields and
parameters.

11.2.3 Concatenation of partial regular expressions
In general, concatenating a non-regular-expression String with any other string yields a non-regular-expression

String. The Regex Checker can sometimes determine that concatenation of non-regular-expression Strings will produce
valid regular expression Strings. For an example see Figure 11.2.

85

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#group-int-
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#start-int-
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Matcher.html#end-int-

String regex = getRegexFromUser();
if (! RegexUtil.isRegex(regex)) {

throw new RuntimeException("Error parsing regex " + regex, RegexUtil.regexException(regex));
}
Pattern p = Pattern.compile(regex);

Figure 11.3: Example use of RegexUtil methods.

11.2.4 Testing whether a string is a regular expression
Sometimes, the Regex Checker cannot infer whether a particular expression is a regular expression — and sometimes
your code cannot either! In these cases, you can use the isRegex method to perform such a test, and other helper
methods to provide useful error messages. A common use is for user-provided regular expressions (such as ones passed
on the command-line). Figure 11.3 gives an example of the intended use of the RegexUtil methods.

RegexUtil.isRegex returns true if its argument is a valid regular expression.
RegexUtil.regexError returns a String error message if its argument is not a valid regular expression, or null

if its argument is a valid regular expression.
RegexUtil.regexException returns the PatternSyntaxException that Pattern.compile(String) throws

when compiling an invalid regular expression. It returns null if its argument is a valid regular expression.

An additional version of each of these methods is also provided that takes an additional group count param-
eter. The RegexUtil.isRegex method verifies that the argument has at least the given number of groups. The
RegexUtil.regexError and RegexUtil.regexException methods return a String error message and Pattern-
SyntaxException, respectively, detailing why the given String is not a syntactically valid regular expression with at
least the given number of capturing groups.

If you detect that a String is not a valid regular expression but would like to report the error higher
up the call stack (potentially where you can provide a more detailed error message) you can throw a
RegexUtil.CheckedPatternSyntaxException. This exception is functionally the same as a PatternSyntax-
Exception except it is checked to guarantee that the error will be handled up the call stack. For more details, see the
Javadoc for RegexUtil.CheckedPatternSyntaxException.

A potential disadvantage of using the RegexUtil class is that your code becomes dependent on the Checker
Framework at run time as well as at compile time. That is, the checker-qual.jar file must be on the classpath at run
time. You can avoid this by copying the RegexUtil class into your own code.

11.2.5 Suppressing warnings
If you are positive that a particular string that is being used as a regular expression is syntactically valid, but the Regex
Checker cannot conclude this and issues a warning about possible use of an invalid regular expression, then you can use
the RegexUtil.asRegex method to suppress the warning.

You can think of this method as a cast: it returns its argument unchanged, but with the type @Regex String if it is
a valid regular expression. It throws an error if its argument is not a valid regular expression, but you should only use it
when you are sure it will not throw an error.

There is an additional RegexUtil.asRegex method that takes a capturing group parameter. This method works the
same as described above, but returns a @Regex String with the parameter on the annotation set to the value of the
capturing group parameter passed to the method.

The use case shown in Figure 11.3 should support most cases so the asRegex method should be used rarely.

86

../api/org/checkerframework/checker/regex/RegexUtil.html#isRegex-java.lang.String-
../api/org/checkerframework/checker/regex/RegexUtil.html#regexError-java.lang.String-
../api/org/checkerframework/checker/regex/RegexUtil.html#regexException-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/util/regex/PatternSyntaxException.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html#compile-java.lang.String-
../api/org/checkerframework/checker/regex/RegexUtil.html#isRegex-java.lang.String-int-
../api/org/checkerframework/checker/regex/RegexUtil.html#regexError-java.lang.String-int-
../api/org/checkerframework/checker/regex/RegexUtil.html#regexException-java.lang.String-int-
../api/org/checkerframework/checker/regex/RegexUtil.CheckedPatternSyntaxException.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/PatternSyntaxException.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/PatternSyntaxException.html
../api/org/checkerframework/checker/regex/RegexUtil.CheckedPatternSyntaxException.html
../api/org/checkerframework/checker/regex/RegexUtil.html#asRegex-java.lang.String-
../api/org/checkerframework/checker/regex/RegexUtil.html#asRegex-java.lang.String-int-

Chapter 12

Format String Checker

The Format String Checker prevents use of incorrect format strings in format methods such as System.out.printf
and String.format.

The Format String Checker warns you if you write an invalid format string, and it warns you if the other arguments
are not consistent with the format string (in number of arguments or in their types). Here are examples of errors that the
Format String Checker detects at compile time. Section 12.3 provides more details.

String.format("%y", 7); // error: invalid format string

String.format("%d", "a string"); // error: invalid argument type for %d

String.format("%d %s", 7); // error: missing argument for %s
String.format("%d", 7, 3); // warning: unused argument 3
String.format("{0}", 7); // warning: unused argument 7, because {0} is wrong syntax

To run the Format String Checker, supply the -processor org.checkerframework.checker.formatter.FormatterChecker
command-line option to javac.

12.1 Formatting terminology
Printf-style formatting takes as an argument a format string and a list of arguments. It produces a new string in which
each format specifier has been replaced by the corresponding argument. The format specifier determines how the format
argument is converted to a string. A format specifier is introduced by a % character. For example, String.format("The
%s is %d.","answer",42) yields "The answer is 42.". "The %s is %d." is the format string, "%s" and "%d"
are the format specifiers; "answer" and 42 are format arguments.

12.2 Format String Checker annotations
The @Format qualifier on a string type indicates a valid format string. The JDK documentation for the Formatter
class explains the requirements for a valid format string. A programmer rarely writes the @Format annotation, as it is
inferred for string literals. A programmer may need to write it on fields and on method signatures.

The @Format qualifier is parameterized with a list of conversion categories that impose restrictions on the format
arguments. Conversion categories are explained in more detail in Section 12.2.1. The type qualifier for "%d %f" is for
example @Format({INT, FLOAT}).

Consider the below printFloatAndInt method. Its parameter must be a format string that can be used in a format
method, where the first format argument is “float-like” and the second format argument is “integer-like”. The type of its
parameter, @Format({FLOAT, INT}) String, expresses that contract.

87

https://docs.oracle.com/javase/8/docs/api/java/io/PrintStream.html#printf-java.lang.String-java.lang.Object...-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#format-java.lang.String-java.lang.Object...-
../api/org/checkerframework/checker/formatter/qual/Format.html
https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html#syntax
../api/org/checkerframework/checker/formatter/qual/Format.html

@InvalidFormat

@UnknownFormat

@FormatBottom

@Format(...,)

Figure 12.1: The Format String Checker type qualifier hierarchy. The figure does not show the subtyping rules among
different @Format(...) qualifiers; see Section 12.2.2.

void printFloatAndInt(@Format({FLOAT, INT}) String fs) {
System.out.printf(fs, 3.1415, 42);

}

printFloatAndInt("Float %f, Number %d"); // OK
printFloatAndInt("Float %f"); // error

Figure 12.1 shows all the type qualifiers. The annotations other than @Format are only used internally and cannot
be written in your code. @InvalidFormat indicates an invalid format string — that is, a string that cannot be used
as a format string. For example, the type of "%y" is @InvalidFormat String. @FormatBottom is the type of the
null literal. @UnknownFormat is the default that is applied to strings that are not literals and on which the user has not
written a @Format annotation.

12.2.1 Conversion Categories
Given a format specifier, only certain format arguments are compatible with it, depending on its “conversion” — its last,
or last two, characters. For example, in the format specifier "%d", the conversion d restricts the corresponding format
argument to be “integer-like”:

String.format("%d", 5); // OK
String.format("%d", "hello"); // error

Many conversions enforce the same restrictions. A set of restrictions is represented as a conversion category. The
“integer like” restriction is for example the conversion category INT. The following conversion categories are defined in
the ConversionCategory enumeration:

GENERAL imposes no restrictions on a format argument’s type. Applicable for conversions b, B, h, H, s, S.
CHAR requires that a format argument represents a Unicode character. Specifically, char, Character, byte, Byte,

short, and Short are allowed. int or Integer are allowed if Character.isValidCodePoint(argument)
would return true for the format argument. (The Format String Checker permits any int or Integer without
issuing a warning or error — see Section 12.3.2.) Applicable for conversions c, C.

INT requires that a format argument represents an integral type. Specifically, byte, Byte, short, Short, int and
Integer, long, Long, and BigInteger are allowed. Applicable for conversions d, o, x, X.

FLOAT requires that a format argument represents a floating-point type. Specifically, float, Float, double, Double,
and BigDecimal are allowed. Surprisingly, integer values are not allowed. Applicable for conversions e, E, f, g,
G, a, A.

TIME requires that a format argument represents a date or time. Specifically, long, Long, Calendar, and Date are
allowed. Applicable for conversions t, T.

UNUSED imposes no restrictions on a format argument. This is the case if a format argument is not used as replacement
for any format specifier. "%2$s" for example ignores the first format argument.

88

../api/org/checkerframework/checker/formatter/qual/InvalidFormat.html
../api/org/checkerframework/checker/formatter/qual/FormatBottom.html
../api/org/checkerframework/checker/formatter/qual/UnknownFormat.html
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#GENERAL
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#FLOAT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#TIME
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#UNUSED

Further, all conversion categories accept null.
The same format argument may serve as a replacement for multiple format specifiers. Until now, we have assumed

that the format specifiers simply consume format arguments left to right. But there are two other ways for a format
specifier to select a format argument:

• n$ specifies a one-based index n. In the format string "%2$s", the format specifier selects the second format
argument.

• The < flag references the format argument that was used by the previous format specifier. In the format string "%d
%<d" for example, both format specifiers select the first format argument.

In the following example, the format argument must be compatible with both conversion categories, and can therefore
be neither a Character nor a long.

format("Char %1$c, Int %1$d", (int)42); // OK
format("Char %1$c, Int %1$d", new Character(42)); // error
format("Char %1$c, Int %1$d", (long)42); // error

Only three additional conversion categories are needed represent all possible intersections of previously-mentioned
conversion categories:

NULL is used if no object of any type can be passed as parameter. In this case, the only legal value is null. The format
string "%1$f %1$c", for example requires that the first format argument be null. Passing a value such as 4 or
4.2 would lead to an exception.

CHAR_AND_INT is used if a format argument is restricted by a CHAR and a INT conversion category (CHAR ∩ INT).
INT_AND_TIME is used if a format argument is restricted by an INT and a TIME conversion category (INT ∩ TIME).

All other intersections lead to already existing conversion categories. For example, GENERAL ∩ CHAR = CHAR and
UNUSED ∩ GENERAL = GENERAL.

Figure 12.2 summarizes the subset relationship among all conversion categories.

GENERAL

FLOAT

UNUSED

INT TIME CHAR

CHAR_AND_INT INT_AND_TIME

NULL

Figure 12.2: The subset relationship among conversion categories.

89

../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#NULL
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR_AND_INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#CHAR
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT_AND_TIME
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#INT
../api/org/checkerframework/checker/formatter/qual/ConversionCategory.html#TIME

12.2.2 Subtyping rules for @Format
Here are the subtyping rules among different @Format qualifiers. It is legal to:

• use a format string with a weaker (less restrictive) conversion category than required.
• use a format string with fewer format specifiers than required. Although this is legal a warning is issued because

most occurrences of this are due to programmer error.

The following example shows the subtyping rules in action:

@Format({FLOAT, INT}) String f;

f = "%f %d"; // OK
f = "%s %d"; // OK, %s is weaker than %f
f = "%f"; // warning: last argument is ignored
f = "%f %d %s"; // error: too many arguments
f = "%d %d"; // error: %d is not weaker than %f

String.format(f, 0.8, 42);

12.3 What the Format String Checker checks
If the Format String Checker issues no errors, it provides the following guarantees:

1. The following guarantees hold for every format method invocation:

(a) The format method’s first parameter (or second if a Locale is provided) is a valid format string (or null).
(b) A warning is issued if one of the format string’s conversion categories is UNUSED.
(c) None of the format string’s conversion categories is NULL.

2. If the format arguments are passed to the format method as varargs, the Format String Checker guarantees the
following additional properties:

(a) No fewer format arguments are passed than required by the format string.
(b) A warning is issued if more format arguments are passed than required by the format string.
(c) Every format argument’s type satisfies its conversion category’s restrictions.

3. If the format arguments are passed to the format method as an array, a warning is issued by the Format String
Checker.

Following are examples for every guarantee:

String.format("%d", 42); // OK
String.format(Locale.GERMAN, "%d", 42); // OK
String.format(new Object()); // error (1a)
String.format("%y"); // error (1a)
String.format("%2$s", "unused", "used"); // warning (1b)
String.format("%1$d %1$f", 5.5); // error (1c)
String.format("%1$d %1$f %d", null, 6); // error (1c)
String.format("%s"); // error (2a)
String.format("%s", "used", "ignored"); // warning (2b)
String.format("%c",4.2); // error (2c)
String.format("%c", (String)null); // error (2c)
String.format("%1$d %1$f", new Object[]{1}); // warning (3)
String.format("%s", new Object[]{"hello"}); // warning (3)

90

../api/org/checkerframework/checker/formatter/qual/Format.html
https://docs.oracle.com/javase/8/docs/api/java/util/Locale.html

12.3.1 Possible false alarms
There are three cases in which the Format String Checker may issue a warning or error, even though the code cannot
fail at run time. (These are in addition to the general conservatism of a type system: code may be correct because of
application invariants that are not captured by the type system.) In each of these cases, you can rewrite the code, or you
can manually check it and write a @SuppressWarnings annotation if you can reason that the code is correct.

Case 1b: Unused format arguments. It is legal to provide more arguments than are required by the format string;
Java ignores the extras. However, this is an uncommon case. In practice, a mismatch between the number of format
specifiers and the number of format arguments is usually an error.

Case 1c: Format arguments that can only be null. It is legal to write a format string that permits only null arguments
and throws an exception for any other argument. An example is String.format("%1$d %1$f", null). The Format
String Checker forbids such a format string. If you should ever need such a format string, simply replace the problematic
format specifier with "null". For example, you would replace the call above by String.format("null null").

Case 3: Array format arguments. The Format String Checker performs no analysis of arrays, only of varargs
invocations. It is better style to use varargs when possible.

12.3.2 Possible missed alarms
The Format String Checker helps prevent bugs by detecting, at compile time, which invocations of format methods will
fail. While the Format String Checker finds most of these invocations, there are cases in which a format method call
will fail even though the Format String Checker issued neither errors nor warnings. These cases are:

1. The format string is null. Use the Nullness Checker to prevent this.
2. A format argument’s toString method throws an exception.
3. A format argument implements the Formattable interface and throws an exception in the formatTo method.
4. A format argument’s conversion category is CHAR or CHAR_AND_INT, and the passed value is an int or Integer,

and Character.isValidCodePoint(argument) returns false.

The following examples illustrate these limitations:

class A {
public String toString() {

throw new Error();
}

}

class B implements Formattable {
public void formatTo(Formatter fmt, int f,

int width, int precision) {
throw new Error();

}
}

// The checker issues no errors or warnings for the
// following illegal invocations of format methods.
String.format(null); // NullPointerException (1)
String.format("%s", new A()); // Error (2)
String.format("%s", new B()); // Error (3)
String.format("%c", (int)-1); // IllegalFormatCodePointException (4)

91

12.4 Implicit qualifiers
The Format String Checker adds implicit qualifiers, reducing the number of annotations that must appear in your code
(see Section 25.3). The checker implicitly adds the @Format qualifier with the appropriate conversion categories to any
String literal that is a valid format string.

12.5 @FormatMethod
Your project may contain methods that forward their arguments to a format method. Consider for example the following
log method:

@FormatMethod
void log(String format, Object... args) {

if (enabled) {
logfile.print(indent_str);
logfile.printf(format , args);

}
}

You should annotate such a method with the @FormatMethod annotation, which indicates that the String argument
is a format string for the remaining arguments.

12.6 Testing whether a format string is valid
The Format String Checker automatically determines whether each String literal is a valid format string or not. When
a string is computed or is obtained from an external resource, then the string must be trusted or tested.

One way to test a string is to call the FormatUtil.asFormat method to check whether the format string is valid
and its format specifiers match certain conversion categories. If this is not the case, asFormat raises an exception. Your
code should catch this exception and handle it gracefully.

The following code examples may fail at run time, and therefore they do not type check. The type-checking errors
are indicated by comments.

Scanner s = new Scanner(System.in);
String fs = s.next();
System.out.printf(fs, "hello", 1337); // error: fs is not known to be a format string

Scanner s = new Scanner(System.in);
@Format({GENERAL, INT}) String fs = s.next(); // error: fs is not known to have the given type
System.out.printf(fs, "hello", 1337); // OK

The following variant does not throw a run-time error, and therefore passes the type-checker:

Scanner s = new Scanner(System.in);
String format = s.next()
try {

format = FormatUtil.asFormat(format, GENERAL, INT);
} catch (IllegalFormatException e) {

// Replace this by your own error handling.
System.err.println("The user entered the following invalid format string: " + format);
System.exit(2);

}
// fs is now known to be of type: @Format({GENERAL, INT}) String
System.out.printf(format, "hello", 1337);

92

../api/org/checkerframework/checker/formatter/qual/FormatMethod.html
../api/org/checkerframework/checker/formatter/FormatUtil.html#asFormat-java.lang.String-org.checkerframework.checker.formatter.qual.ConversionCategory...-

A potential disadvantage of using the FormatUtil class is that your code becomes dependent on the Checker Framework
at run time as well as at compile time. You can avoid this by adding the Checker Framework to your project, or by
copying the FormatUtil class into your own code.

93

Chapter 13

Internationalization Format String Checker
(I18n Format String Checker)

The Internationalization Format String Checker, or I18n Format String Checker, prevents use of incorrect i18n format
strings.

If the I18n Format String Checker issues no warnings or errors, then MessageFormat.format will raise no error at
run time. “I18n” is short for “internationalization” because there are 18 characters between the “i” and the “n”.

Here are the examples of errors that the I18n Format Checker detects at compile time.

// Warning: the second argument is missing.
MessageFormat.format("{0} {1}", 3.1415);
// String argument cannot be formatted as Time type.
MessageFormat.format("{0, time}", "my string");
// Invalid format string: unknown format type: thyme.
MessageFormat.format("{0, thyme}", new Date());
// Invalid format string: missing the right brace.
MessageFormat.format("{0", new Date());
// Invalid format string: the argument index is not an integer.
MessageFormat.format("{0.2, time}", new Date());
// Invalid format string: "#.#.#" subformat is invalid.
MessageFormat.format("{0, number, #.#.#}", 3.1415);

For instructions on how to run the Internationalization Format String Checker, see Section 13.6.
The Internationalization Checker or I18n Checker (Chapter 14.2, page 101) has a different purpose. It verifies that

your code is properly internationalized: any user-visible text should be obtained from a localization resource and all
keys exist in that resource.

13.1 Internationalization Format String Checker annotations
The MessageFormat documentation specifies the syntax of the i18n format string.

These are the qualifiers that make up the I18n Format String type system. Figure 13.1 shows their subtyping
relationships.

@I18nFormat represents a valid i18n format string. For example, @I18nFormat({GENERAL, NUMBER, UNUSED,
DATE}) is a legal type for "{0}{1, number} {3, date}", indicating that when the format string is used, the
first argument should be of GENERAL conversion category, the second argument should be of NUMBER conversion
category, and so on. Conversion categories such as GENERAL are described in Section 13.2.

94

https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html#format-java.lang.String-java.lang.Object...-
https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html

@I18nFormatBottom

@I18nUnknownFormat

@I18nInvalidFormat @I18nFormat(...,) @I18nFormatFor("#1") @I18nFormatFor("#n") ...

Figure 13.1: The Internationalization Format String Checker type qualifier hierarchy. The figure does not show the
subtyping rules among different @I18nFormat(...) qualifiers; see Section 13.2. All @I18nFormatFor annotations
are unrelated by subtyping. The qualifiers in gray are used internally by the checker and should never be written by a
programmer.

@I18nFormatFor indicates that the qualified type is a valid i18n format string for use with some array of values.
For example, @I18nFormatFor("#2") indicates that the string can be used to format the contents of the second
parameter array. The argument is a Java expression whose syntax is explained in Section 25.5. An example of its
use is:

static void method(@I18nFormatFor("#2") String format, Object... args) {
// the body may use the parameters like this:
MessageFormat.format(format, args);

}

method("{0, number} {1}", 3.1415, "A string"); // OK
// error: The string "hello" cannot be formatted as a Number.
method("{0, number} {1}", "hello", "goodbye");

@I18nInvalidFormat represents an invalid i18n format string. Programmers are not allowed to write this
annotation. It is only used internally by the type checker.

@I18nUnknownFormat represents any string. The string might or might not be a valid i18n format string. Program-
mers are not allowed to write this annotation.

@I18nFormatBottom indicates that the value is definitely null. Programmers are not allowed to write this
annotation.

13.2 Conversion categories
In a message string, the optional second element within the curly braces is called a format type and must be one of
number, date, time, and choice. These four format types correspoond to different conversion categories. date and
time correspond to DATE in the conversion categories figure. choice corresponds to NUMBER. The format type
restricts what arguments are legal. For example, a date argument is not compatible with the number format type, i.e.,
MessageFormat.format("{0, number}", new Date()) will throw an exception.

The I18n Checker represents the possible arguments via conversion categories. A conversion category defines a set
of restrictions or a subtyping rule.

Figure 13.2 summarizes the subset relationship among all conversion categories.

13.3 Subtyping rules for @I18nFormat
Here are the subtyping rules among different @I18nFormat qualifiers. It is legal to:

• use a format string with a weaker (less restrictive) conversion category than required.
• use a format string with fewer format specifiers than required. Although this is legal a warning is issued because

most occurrences of this are due to programmer error.

95

../api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nInvalidFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nUnknownFormat.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatBottom.html

UNUSED

GENERAL

DATE

NUMBER

Figure 13.2: The subset relationship among i18n conversion categories.

The following example shows the subtyping rules in action:

@I18nFormat({NUMBER, DATE}) String f;

f = "{0, number, #.#} {1, date}"; // OK
f = "{0, number} {1}"; // OK, GENERAL is weaker (less restrictive) than DATE
f = "{0} {1, date}"; // OK, GENERAL is weaker (less restrictive) than NUMBER
f = "{0, number}"; // warning: last argument is ignored
f = "{0}"; // warning: last argument is ignored
f = "{0, number} {1, number}"; // error: NUMBER is stronger (more restrictive) than DATE
f = "{0} {1} {2}"; // error: too many arguments

The conversion categories are:

UNUSED indicates an unused argument. For example, in MessageFormat.format("{0, number} {2, number}",
3.14, "Hello", 2.718) , the second argument Hello is unused. Thus, the conversion categories for the
format, 0, number 2, number, is (NUMBER, UNUSED, NUMBER).

GENERAL means that any value can be supplied as an argument.
DATE is applicable for date, time, and number types. An argument needs to be of Date, Time, or Number type or a

subclass of them, including Timestamp and the classes listed immediately below.
NUMBER means that the argument needs to be of Number type or a subclass: Number, AtomicInteger, AtomicLong,

BigDecimal, BigInteger, Byte, Double, Float, Integer, Long, Short.

13.4 What the Internationalization Format String Checker checks
The Internationalization Format String Checker checks calls to the i18n formatting method MessageFormat.format
and guarantees the following:

1. The checker issues a warning for the following cases:

(a) There are missing arguments from what is required by the format string.
MessageFormat.format("{0, number} {1, number}", 3.14); // Output: 3.14 {1}

(b) More arguments are passed than what is required by the format string.
MessageFormat.format("{0, number}", 1, new Date());
MessageFormat.format("{0, number} {0, number}", 3.14, 3.14);
This does not cause an error at run time, but it often indicates a programmer mistake. If it is intentional,
then you should suppress the warning (see Chapter 26).

96

../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#UNUSED
../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#GENERAL
../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#DATE
https://docs.oracle.com/javase/8/docs/api/java/sql/Date.html
https://docs.oracle.com/javase/8/docs/api/java/sql/Time.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Number.html
https://docs.oracle.com/javase/8/docs/api/java/sql/Timestamp.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nConversionCategory.html#NUMBER
https://docs.oracle.com/javase/8/docs/api/java/lang/Number.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicInteger.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/atomic/AtomicLong.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigInteger.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Byte.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Double.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Float.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Integer.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Long.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Short.html
https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html#format-java.lang.String-java.lang.Object...-

(c) Some argument is an array of objects.
MessageFormat.format("{0, number} {1}", array);
The checker cannot verify whether the format string is valid, so the checker conservatively issues a warning.
This is a limitation of the Internationalization Format String Checker.

2. The checker issues an error for the following cases:

(a) The format string is invalid.
• Unmatched braces.
MessageFormat.format("{0, time", new Date());

• The argument index is not an integer or is negative.
MessageFormat.format("{0.2, time}", new Date());
MessageFormat.format("{-1, time}", new Date());

• Unknown format type.
MessageFormat.format("{0, foo}", 3.14);

• Missing a format style required for choice format.
MessageFormat.format("{0, choice}", 3.14);

• Wrong format style.
MessageFormat.format("{0, time, number}", 3.14);

• Invalid subformats.
MessageFormat.format("{0, number, #.#.#}", 3.14)

(b) Some argument’s type doesn’t satisfy its conversion category.
MessageFormat.format("{0, number}", new Date());

The Checker also detects illegal assignments: assigning a non-format-string or an incompatible format string to a
variable declared as containing a specific type of format string. For example,

@I18nFormat({GENERAL, NUMBER}) String format;
// OK.
format = "{0} {1, number}";
// OK, GENERAL is weaker (less restrictive) than NUMBER.
format = "{0} {1}";
// OK, it is legal to have fewer arguments than required (less restrictive).
// But the warning will be issued instead.
format = "{0}";

// Error, the format string is stronger (more restrictive) than the specifiers.
format = "{0} {1} {2}";
// Error, the format string is more restrictive. NUMBER is a subtype of GENERAL.
format = "{0, number} {1, number}";

13.5 Resource files
A programmer rarely writes an i18n format string literally. (The examples in this chapter show that for simplicity.)
Rather, the i18n format strings are read from a resource file. The program chooses a resource file at run time depending
on the locale (for example, different resource files for English and Spanish users).
For example, suppose that the resource1.properties file contains

key1 = The number is {0, number}.

Then code such as the following:

String formatPattern = ResourceBundle.getBundle("resource1").getString("key1");
System.out.println(MessageFormat.format(formatPattern, 2.2361));

97

will output “The number is 2.2361.” A different resource file would contain key1 = El número es {0, number}.
When you run the I18n Format String Checker, you need to indicate which resource file it should check. If you

change the resource file or use a different resource file, you should re-run the checker to ensure that you did not make
an error. The I18n Format String Checker supports two types of resource files: ResourceBundles and property files. The
example above shows use of resource bundles. For more about checking property files, see Chapter 14, page 100.

13.6 Running the Internationalization Format Checker
The checker can be invoked by running one of the following commands (with the whole command on one line).

• Using ResourceBundles:
javac -processor org.checkerframework.checker.i18nformatter.I18nFormatterChecker -Abundlenames=MyResource MyFile.java

• Using property files:
javac -processor org.checkerframework.checker.i18nformatter.I18nFormatterChecker -Apropfiles=MyResource.properties

MyFile.java

• Not using a property file. Use this if the programmer hard-coded the format patterns without loading them from a
property file.
javac -processor org.checkerframework.checker.i18nformatter.I18nFormatterChecker MyFile.java

13.7 Testing whether a string has an i18n format type
In the case that the checker cannot infer the i18n format type of a string, you can use the I18nFormatUtil.hasFormat
method to define the type of the string in the scope of a conditional statement.

I18nFormatUtil.hasFormat returns true if the given string has the given i18n format type.

For an example, see Section 13.8.

13.8 Examples of using the Internationalization Format Checker
• Using MessageFormat.format.

// suppose the bundle "MyResource" contains: key1={0, number} {1, date}
String value = ResourceBundle.getBundle("MyResource").getString("key1");
MessageFormat.format(value, 3.14, new Date()); // OK
// error: incompatible types in argument; found String, expected number
MessageFormat.format(value, "Text", new Date());

• Using the I18nFormatUtil.hasFormat method to check whether a format string has particular conversion
categories.

void test1(String format) {
if (I18nFormatUtil.hasFormat(format, I18nConversionCategory.GENERAL,

I18nConversionCategory.NUMBER)) {
MessageFormat.format(format, "Hello", 3.14); // OK
// error: incompatible types in argument; found String, expected number
MessageFormat.format(format, "Hello", "Bye");
// error: missing arguments; expected 2 but 1 given
MessageFormat.format(format, "Bye");
// error: too many arguments; expected 2 but 3 given
MessageFormat.format(format, "A String", 3.14, 3.14);

98

../api/org/checkerframework/checker/i18nformatter/I18nFormatUtil.html#hasFormat-java.lang.String-org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...-
../api/org/checkerframework/checker/i18nformatter/I18nFormatUtil.html#hasFormat-java.lang.String-org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...-
https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html#format-java.lang.String-java.lang.Object...-
../api/org/checkerframework/checker/i18nformatter/I18nFormatUtil.html#hasFormat-java.lang.String-org.checkerframework.checker.i18nformatter.qual.I18nConversionCategory...-

}
}

• Using @I18nFormatFor to ensure that an argument is a particular type of format string.

static void method(@I18nFormatFor("#2") String f, Object... args) {...}

// OK, MessageFormat.format(...) would return "3.14 Hello greater than one"
method("{0, number} {1} {2, choice,0#zero|1#one|1<greater than one}",

3.14, "Hello", 100);

// error: incompatible types in argument; found String, expected number
method("{0, number} {1}", "Bye", "Bye");

• Annotating a string with @I18nFormat.

@I18nFormat({I18nConversionCategory.DATE}) String;
s1 = "{0}";
s1 = "{0, number}"; // error: incompatible types in assignment

99

../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormat.html

Chapter 14

Property File Checker

The Property File Checker ensures that a property file or resource bundle (both of which act like maps from keys to
values) is only accessed with valid keys. Accesses without a valid key either return null or a default value, which
can lead to a NullPointerException or hard-to-trace behavior. The Property File Checker (Section 14.1, page 100)
ensures that the used keys are found in the corresponding property file or resource bundle.

We also provide two specialized checkers. An Internationalization Checker (Section 14.2, page 101) verifies
that code is properly internationalized. A Compiler Message Key Checker (Section 14.3, page 101) verifies that
compiler message keys used in the Checker Framework are declared in a property file; This is an example of a simple
specialization of the property file checker, and the Checker Framework source code shows how it is used.

It is easy to customize the property key checker for other related purposes. Take a look at the source code of the
Compiler Message Key Checker and adapt it for your purposes.

14.1 General Property File Checker
The general Property File Checker ensures that a resource key is located in a specified property file or resource bundle.

The annotation @PropertyKey indicates that the qualified String is a valid key found in the property file or
resource bundle. You do not need to annotate String literals. The checker looks up every String literal in the specified
property file or resource bundle, and adds annotations as appropriate.

If you pass a String variable to be eventually used as a key, you also need to annotate all these variables with
@PropertyKey.

The checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.propkey.PropertyKeyChecker
-Abundlenames=MyResource MyFile.java ...

You must specify the resources, which map keys to strings. The checker supports two types of resource: resource
bundles and property files. You can specify one or both of the following two command-line options:

1. -Abundlenames=resource_name
resource_name is the name of the resource to be used with ResourceBundle.getBundle(). The checker
uses the default Locale and ClassLoader in the compilation system. (For a tutorial about ResourceBundles,
see https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html.) Multiple resource
bundle names are separated by colons ’:’.

2. -Apropfiles=prop_file
prop_file is the name of a properties file that maps keys to values. The file format is described in the Javadoc for
Properties.load(). Multiple files are separated by colons ’:’.

100

../api/org/checkerframework/checker/propkey/qual/PropertyKey.html
https://docs.oracle.com/javase/8/docs/api/java/util/ResourceBundle.html#getBundle-java.lang.String-java.util.Locale-java.lang.ClassLoader-
https://docs.oracle.com/javase/tutorial/i18n/resbundle/concept.html
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html#load-java.io.Reader-

14.2 Internationalization Checker (I18n Checker)
The Internationalization Checker, or I18n Checker, verifies that your code is properly internationalized. International-
ization is the process of designing software so that it can be adapted to different languages and locales without needing
to change the code. Localization is the process of adapting internationalized software to specific languages and locales.

Internationalization is sometimes called i18n, because the word starts with “i”, ends with “n”, and has 18 characters
in between. Localization is similarly sometimes abbreviated as l10n.

The checker focuses on one aspect of internationalization: user-visible strings should be presented in the user’s own
language, such as English, French, or German. This is achieved by looking up keys in a localization resource, which
maps keys to user-visible strings. For instance, one version of a resource might map "CANCEL_STRING" to "Cancel",
and another version of the same resource might map "CANCEL_STRING" to "Abbrechen".

There are other aspects to localization, such as formatting of dates (3/5 vs. 5/3 for March 5), that the checker does
not check.

The Internationalization Checker verifies these two properties:

1. Any user-visible text should be obtained from a localization resource. For example, String literals should not be
output to the user.

2. When looking up keys in a localization resource, the key should exist in that resource. This check catches
incorrect or misspelled localization keys.

If you use the Internationalization Checker, you may want to also use the Internationalization Format String Checker,
or I18n Format String Checker (Chapter 13). It verifies that internationalization format strings are well-formed and
used with arguments of the proper type, so that MessageFormat.format does not fail at run time.

14.2.1 Internationalization annotations
The Internationalization Checker supports two annotations:

1. @Localized: indicates that the qualified String is a message that has been localized and/or formatted with
respect to the used locale.

2. @LocalizableKey: indicates that the qualified String or Object is a valid key found in the localization resource.
This annotation is a specialization of the @PropertyKey annotation, that gets checked by the general Property
Key Checker.

You may need to add the @Localized annotation to more methods in the JDK or other libraries, or in your own
code.

14.2.2 Running the Internationalization Checker
The Internationalization Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.i18n.I18nChecker -Abundlenames=MyResource MyFile.java ...

You must specify the localization resource, which maps keys to user-visible strings. Like the general Property Key
Checker, the Internationalization Checker supports two types of localization resource: ResourceBundles using the
-Abundlenames=resource_name option or property files using the -Apropfiles=prop_file option.

14.3 Compiler Message Key Checker
The Checker Framework uses compiler message keys to output error messages. These keys are substituted by localized
strings for user-visible error messages. Using keys instead of the localized strings in the source code enables easier
testing, as the expected error keys can stay unchanged while the localized strings can still be modified. We use the
Compiler Message Key Checker to ensure that all internal keys are correctly localized. Instead of using the Property
File Checker, we use a specialized checker, giving us more precise documentation of the intended use of Strings.

101

https://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html#format-java.lang.String-java.lang.Object...-
../api/org/checkerframework/checker/i18n/qual/Localized.html
../api/org/checkerframework/checker/i18n/qual/LocalizableKey.html

The single annotation used by this checker is @CompilerMessageKey. The Checker Framework is completely
annotated; for example, class org.checkerframework.framework.source.Result uses @CompilerMessageKey in
methods failure and warning. For most users of the Checker Framework there will be no need to annotate any
Strings, as the checker looks up all String literals and adds annotations as appropriate.

The Compiler Message Key Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.compilermsgs.CompilerMessagesChecker
-Apropfiles=messages.properties MyFile.java ...

You must specify the resource, which maps compiler message keys to user-visible strings. The checker supports the
same options as the general property key checker. Within the Checker Framework we only use property files, so the
-Apropfiles=prop_file option should be used.

102

../api/org/checkerframework/checker/compilermsgs/qual/CompilerMessageKey.html

Chapter 15

Signature String Checker for string
representations of types

The Signature String Checker, or Signature Checker for short, verifies that string representations of types and signatures
are used correctly.

Java defines multiple different string representations for types (see Section 15.1), and it is easy to misuse them or to
miss bugs during testing. Using the wrong string format leads to a run-time exception or an incorrect result. This is a
particular problem for fully qualified and binary names, which are nearly the same — they differ only for nested classes
and arrays.

15.1 Signature annotations
Java defines six formats for the string representation of a type. There is an annotation for each of these representations.
Figure 15.1 shows how they are related; examples appear in a table below.

@FullyQualifiedName A fully qualified name (JLS §6.7), such as package.Outer.Inner, is used in Java code
and in messages to the user.

@BinaryName A binary name (JLS §13.1), such as package.Outer$Inner, is the conceptual name of a type in its
own .class file.

@FieldDescriptor A field descriptor (JVMS §4.3.2), such as Lpackage/Outer$Inner;, is used in a .class
file’s constant pool, for example to refer to other types. It abbreviates primitives and arrays. It uses internal form
(binary names, but with / instead of .; see JVMS §4.2) for class names. See examples below.

@ClassGetName The type representation used by the Class.getName(), Class.forName(String), and
Class.forName(String, boolean, ClassLoader) methods. This format is: for any non-array type, the
binary name; and for any array type, a format like the FieldDescriptor field descriptor, but using “.” where the
field descriptor uses “/”. See examples below.

@InternalForm The internal form (JVMS §4.2), such as package/Outer$Inner, is how a class name is actually
represented in its own .class file. It is also known as the “syntax of binary names that appear in class file
structures”. It is the same as the binary name, but with periods (.) replaced by slashes (/). Programmers more
often use the binary name, leaving the internal form as a JVM implementation detail.

@ClassGetSimpleName The type representation returned by the Class.getSimpleName() method. This format
is not required by any method in the JDK, so you will rarely write it in source code. The string can be empty.
This is not the same as the “simple name” defined in (JLS §6.2), which is the same as @Identifier.

Other type qualifiers are the intersection of two or more qualifiers listed above; for example, a @SourceNameForNonInner
is a string that is a valid fully qualified name and a valid binary name. A programmer should never or rarely use these
qualifiers, and you can ignore them as implementation details of the Signature Checker, though you might occasionally

103

../api/org/checkerframework/checker/signature/qual/FullyQualifiedName.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html#jls-6.7
../api/org/checkerframework/checker/signature/qual/BinaryName.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html#jls-13.1
../api/org/checkerframework/checker/signature/qual/FieldDescriptor.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.2.1
../api/org/checkerframework/checker/signature/qual/ClassGetName.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getName--
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.2
../api/org/checkerframework/checker/signature/qual/InternalForm.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.2
../api/org/checkerframework/checker/signature/qual/ClassGetSimpleName.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#getSimpleName--
https://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html#jls-6.2
../api/org/checkerframework/checker/signature/qual/Identifier.html
../api/org/checkerframework/checker/signature/qual/SourceNameForNonInner.html

@FullyQualifiedName
String

@BinaryName
String

@SourceNameForNonArrayNonInner

String

@Identifier
String

@IdentifierOrArray
String

@ClassGetName
String

@FieldDescriptor
String

@BinaryNameForNonArray

String

@FieldDescriptorForArray

String

@SourceNameForNonInner

String

@InternalForm
String

@ClassGetSimpleName
String

@BinaryNameInUnnamedPackage
String

@BinaryNameForNonArray-
InUnnamedPackage String

@SignatureUnknown
String

@InternalFormForNonArray

String

Figure 15.1: Partial type hierarchy for the Signature type system, showing string representations of a Java type.
Programmers only need to write the boldfaced qualifiers, in the second row; qualifiers below those are included to
improve the internal handling of String literals.

see them in an error message. These qualifiers exist to give literals sufficiently precise types that they can be used in any
appropriate context.

Java also defines other string formats for a type: qualified names (JLS §6.2) and canonical names (JLS §6.7). The
Signature Checker does not include annotations for these.

Here are examples of the supported formats:

fully-qualified name binary name Class.getName field descriptor internal form Class.getSimpleName
int int int I int int
int[][] int[][] [[I [[I int[][] int[][]
MyClass MyClass MyClass LMyClass; MyClass MyClass
MyClass[] MyClass[] [LMyClass; [LMyClass; MyClass[] MyClass[]
n/a for anonymous class MyClass$22 MyClass$22 LMyClass$22; MyClass$22 (empty string)
n/a for array of anon. class MyClass$22[] [LMyClass$22; [LMyClass$22; MyClass$22[] []
java.lang.Integer java.lang.Integer java.lang.Integer Ljava/lang/Integer; java/lang/Integer Integer
java.lang.Integer[] java.lang.Integer[] [Ljava.lang.Integer; [Ljava/lang/Integer; java/lang/Integer[] Integer[]
pkg.Outer.Inner pkg.Outer$Inner pkg.Outer$Inner Lpkg/Outer$Inner; pkg/Outer$Inner Inner
pkg.Outer.Inner[] pkg.Outer$Inner[] [Lpkg.Outer$Inner; [Lpkg/Outer$Inner; pkg/Outer$Inner[] Inner[]
n/a for anonymous class pkg.Outer$22 pkg.Outer$22 Lpkg/Outer$22; pkg/Outer$22 (empty string)
n/a for array of anon. class pkg.Outer$22[] [Lpkg.Outer$22; [Lpkg/Outer$22; pkg/Outer$22[] []

Java defines one format for the string representation of a method signature:

@MethodDescriptor A method descriptor (JVMS §4.3.3) identifies a method’s signature (its parameter and return
types), just as a field descriptor identifies a type. The method descriptor for the method

Object mymethod(int i, double d, Thread t)

is

(IDLjava/lang/Thread;)Ljava/lang/Object;

104

https://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html#jls-6.2
https://docs.oracle.com/javase/specs/jls/se8/html/jls-6.html#jls-6.7
../api/org/checkerframework/checker/signature/qual/MethodDescriptor.html
https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-4.html#jvms-4.3.3

15.2 What the Signature Checker checks
Certain methods in the JDK, such as Class.forName, are annotated indicating the type they require. The Signature
Checker ensures that clients call them with the proper arguments. The Signature Checker does not reason about string
operations such as concatenation, substring, parsing, etc.

To run the Signature Checker, supply the -processor org.checkerframework.checker.signature.SignatureChecker
command-line option to javac.

105

Chapter 16

GUI Effect Checker

One of the most prevalent GUI-related bugs is invalid UI update or invalid thread access: accessing the UI directly
from a background thread.

Most GUI frameworks (including Android, AWT, Swing, and SWT) create a single distinguished thread — the UI
event thread — that handles all GUI events and updates. To keep the interface responsive, any expensive computation
should be offloaded to background threads (also called worker threads). If a background thread accesses a UI element
such as a JPanel (by calling a JPanel method or reading/writing a field of JPanel), the GUI framework raises an exception
that terminates the program. To fix the bug, the background thread should send a request to the UI thread to perform the
access on its behalf.

It is difficult for a programmer to remember which methods may be called on which thread(s). The GUI Effect
Checker solves this problem. The programmer annotates each method to indicate whether:

• It accesses no UI elements (and may run on any thread); such a method is said to have the “safe effect”.
• It may access UI elements (and must run on the UI thread); such a method is said to have the “UI effect”.

The GUI Effect Checker verifies these effects and statically enforces that UI methods are only called from the
correct thread. A method with the safe effect is prohibited from calling a method with the UI effect.

For example, the effect system can reason about when method calls must be dispatched to the UI thread via a
message such as Display.syncExec.

@SafeEffect
public void calledFromBackgroundThreads(JLabel l) {

l.setText("Foo"); // Error: calling a @UIEffect method from a @SafeEffect method
Display.syncExec(new @UI Runnable {

@UIEffect // inferred by default
public void run() {

l.setText("Bar"); // OK: accessing JLabel from code run on the UI thread
}

});

}

The GUI Effect Checker’s annotations fall into three categories:

• effect annotations on methods (Section 16.1),
• class or package annotations controlling the default effect (Section 16.4), and
• effect-polymorphism: code that works for both the safe effect and the UI effect (Section 16.5).

106

16.1 GUI effect annotations
There are two primary GUI effect annotations:

• @SafeEffect is a method annotation marking code that must not access UI objects.
• @UIEffect is a method annotation marking code that may access UI objects. Most UI object methods (e.g.,

methods of JPanel) are annotated as @UIEffect.

@SafeEffect is a sub-effect of @UIEffect, in that it is always safe to call a @SafeEffect method anywhere it is
permitted to call a @UIEffect method. We write this relationship as

@SafeEffect ≺ @UIEffect

16.2 What the GUI Effect Checker checks
The GUI Effect Checker ensures that only the UI thread accesses UI objects. This prevents GUI errors such as invalid
UI update and invalid thread access.

The GUI Effect Checker issues errors in the following cases:

• A @UIEffect method is invoked by a @SafeEffect method.
• Method declarations violate subtyping restrictions: a supertype declares a @SafeEffect method, and a subtype

annotates an overriding version as @UIEffect.

Additionally, if a method implements or overrides a method in two supertypes (two interfaces, or an interface and
parent class), and those supertypes give different effects for the methods, the GUI Effect Checker issues a warning (not
an error).

16.3 Running the GUI Effect Checker
The GUI Effect Checker can be invoked by running the following command:

javac -processor org.checkerframework.checker.guieffect.GuiEffectChecker MyFile.java ...

16.4 Annotation defaults
The default method annotation is @SafeEffect, since most code in most programs is not related to the UI. This also
means that typically, code that is unrelated to the UI need not be annotated at all.

The GUI Effect Checker provides three primary ways to change the default method effect for a class or package:

• @UIType is a class annotation that makes the effect for unannotated methods in that class default to @UIEffect.
(See also @UI in Section 16.5.2.)
• @UIPackage is a package annotation, that makes the effect for unannotated methods in that package default

to @UIEffect. It is not transitive; a package nested inside a package marked @UIPackage does not inherit the
changed default.

• @SafeType is a class annotation that makes the effect for unannotated methods in that class default to @SafeEffect.
Because @SafeEffect is already the default effect, @SafeType is only useful for class types inside a package
marked @UIPackage.

There is one other place where the default annotation is not automatically @SafeEffect: anonymous inner classes.
Since anonymous inner classes exist primarily for brevity, it would be unfortunate to spoil that brevity with extra
annotations. By default, an anonymous inner class method that overrides or implements a method of the parent type
inherits that method’s effect. For example, an anonymous inner class implementing an interface with method @UIEffect
void m() need not explicitly annotate its implementation of m(); the implementation will inherit the parent’s effect.
Methods of the anonymous inner class that are not inherited from a parent type follow the standard defaulting rules.

107

../api/org/checkerframework/checker/guieffect/qual/SafeEffect.html
../api/org/checkerframework/checker/guieffect/qual/UIEffect.html
../api/org/checkerframework/checker/guieffect/qual/UIType.html
../api/org/checkerframework/checker/guieffect/qual/UIPackage.html
../api/org/checkerframework/checker/guieffect/qual/SafeType.html

16.5 Polymorphic effects
Sometimes a type is reused for both UI-specific and background-thread work. A good example is the Runnable
interface, which is used both for creating new background threads (in which case the run() method must have the
@SafeEffect) and for sending code to the UI thread to execute (in which case the run() method may have the
@UIEffect). But the declaration of Runnable.run() may have only one effect annotation in the source code. How do
we reconcile these conflicting use cases?

Effect-polymorphism permits a type to be used for both UI and non-UI purposes. It is similar to Java’s generics in
that you define, then use, the effect-polymorphic type. Recall that to define a generic type, you write a type parameter
such as <T> and use it in the body of the type definition; for example, class List<T> { ... T get() {...} ...
}. To instantiate a generic type, you write its name along with a type argument; for example, List<Date> myDates;.

16.5.1 Defining an effect-polymorphic type
To declare that a class is effect-polymorphic, annotate its definition with @PolyUIType. To use the effect variable in
the class body, annotate a method with @PolyUIEffect. It is an error to use @PolyUIEffect in a class that is not
effect-polymorphic.

Consider the following example:

@PolyUIType
public interface Runnable {

@PolyUIEffect
void run();

}

This declares that class Runnable is parameterized over one generic effect, and that when Runnable is instantiated, the
effect argument will be used as the effect for the run method.

16.5.2 Using an effect-polymorphic type
To instantiate an effect-polymorphic type, write one of these three type qualifiers before a use of the type:

• @AlwaysSafe instantiates the type’s effect to @SafeEffect.
• @UI instantiates the type’s effect to @UIEffect. Additionally, it changes the default method effect for the class to
@UIEffect.
• @PolyUI instantiates the type’s effect to @PolyUIEffect for the same instantiation as the current (containing)

class. For example, this is the qualifier of the receiver this inside a method of a @PolyUIType class, which is
how one method of an effect-polymorphic class may call an effect-polymorphic method of the same class.

As an example:

@AlwaysSafe Runnable s = ...; s.run(); // s.run() is @SafeEffect
@PolyUI Runnable p = ...; p.run(); // p.run() is @PolyUIEffect (context-dependent)
@UI Runnable u = ...; u.run(); // u.run() is @UIEffect

It is an error to apply an effect instantiation qualifier to a type that is not effect-polymorphic.

16.5.3 Subclassing a specific instantiation of an effect-polymorphic type
Sometimes you may wish to subclass a specific instantiation of an effect-polymorphic type, just as you may extend
List<String>.

To do this, simply place the effect instantiation qualifier by the name of the type you are defining, e.g.:

108

../api/org/checkerframework/checker/guieffect/qual/PolyUIType.html
../api/org/checkerframework/checker/guieffect/qual/PolyUIEffect.html
../api/org/checkerframework/checker/guieffect/qual/AlwaysSafe.html
../api/org/checkerframework/checker/guieffect/qual/UI.html
../api/org/checkerframework/checker/guieffect/qual/PolyUI.html

@UI
public class UIRunnable extends Runnable {...}
@AlwaysSafe
public class SafeRunnable extends Runnable {...}

The GUI Effect Checker will automatically apply the qualifier to all classes and interfaces the class being defined
extends or implements. (This means you cannot write a class that is a subtype of a @AlwaysSafe Foo and a @UI Bar,
but this has not been a problem in our experience.)

16.5.4 Subtyping with polymorphic effects
With three effect annotations, we must extend the static sub-effecting relationship:

@SafeEffect ≺ @PolyUIEffect ≺ @UIEffect
This is the correct sub-effecting relation because it is always safe to call a @SafeEffect method (whether from an
effect-polymorphic method or a UI method), and a @UIEffect method may safely call any other method.

This induces a subtyping hierarchy on type qualifiers:
@AlwaysSafe ≺ @PolyUI ≺ @UI

This is sound because a method instantiated according to any qualifier will always be safe to call in place of a method
instantiated according to one of its super-qualifiers. This allows clients to pass “safer” instances of some object type to
a given method.

Effect polymorphism and arguments

Sometimes it is useful to have @PolyUI parameters on a method. As a trivial example, this permits us to specify an
identity method that works for both @UI Runnable and @AlwaysSafe Runnable:

public @PolyUI Runnable id(@PolyUI Runnable r) {
return r;

}

This use of @PolyUI will be handled as is standard for polymorphic qualifiers in the Checker Framework (see Section
24.2).

@PolyUIEffect methods should generally not use @PolyUI arguments: it is permitted by the framework, but its
interaction with inheritance is subtle, and may not behave as you would hope.

The shortest explanation is this: @PolyUI arguments may only be overridden by @PolyUI arguments, even though
the implicitly @PolyUI receiver may be overridden with a @AlwaysSafe receiver.

As noted earlier (Section 24.1.6), Java’s generics are invariant — A<X> is a subtype of B<Y> only if X is identical
to Y. Class-level use of @PolyUI behaves slightly differently. Marking a type declaration @PolyUIType is conceptu-
ally equivalent to parameterizing the type by some E extends Effect. But in this view, Runnable<SafeEffect>
(really @AlwaysSafe Runnable) would be considered a subtype of Runnable<UIEffect> (really @UI Runnable), as
explained earlier in this section. Java’s generics do not permit this, which is called covariant subtyping in the effect
parameter. Permitting it for all generics leads to problems where a type system can miss errors. Java solves this by
making all generics invariant, which rejects more programs than strictly necessary, but leads to an easy-to-explain limi-
tation. For this checker, covariant subtyping of effect parameters is very important: being able to pass an @AlwaysSafe
Runnable in place of a @UI Runnable is extremely useful. Since we need to allow some cases for flexibility, but need
to reject other cases to avoid missing errors, the distinction is a bit more subtle for this checker.

Consider this small example (warning: the following is rejected by the GUI Effect Checker):

@PolyUIType
public interface Dispatcher {

@PolyUIEffect
void dispatch(@PolyUI Runnable toRun);

}

109

@SafeType
public class SafeDispatcher {

@Override
public void dispatch(@AlwaysSafe Runnable toRun) {

runOnBackgroundThread(toRun);
}

}

This may initially seem like harmless code to write, which simply specializes the implicit effect parameter from
Dispatcher in the SafeDispatcher implementation. However, the way method effect polymorphism is implemented
is by implicitly making the receiver of a @PolyUIEffect method — the object on which the method is invoked —
@PolyUI. So if the definitions above were permitted, the following client code would be possible:

@AlwaysSafe SafeDispatcher s = ...;
@UI Runnable uitask = ...;
s.dispatch(uitask);

At the call to dispatch, the Checker Framework is free to consider s as its supertype, @UI SafeDispatcher. This
permits the framework to choose the same qualifier for both the (implicit) receiver use of @PolyUI and the toRun
argument to Dispatcher.dispatch, passing the checker. But this code would then pass a UI-thread-only task to a
method which should only accept background thread tasks — exactly what the checker should prevent!

To resolve this, the GUI Effect Checker rejects the definitions above, specifically the @AlwaysSafe on SafeDispatcher.dispatch’s
parameter, which would need to remain @PolyUI.

A subtlety of the code above is that the receiver for SafeDispatcher.dispatch is also overridden, switching from
a @PolyUI receiver to a @Safe receiver. That change is permissible. But when that is done, the polymorphic arguments
may no longer be interchangeable with the receiver.

16.6 References
The ECOOP 2013 paper “JavaUI: Effects for Controlling UI Object Access” includes some case studies on the checker’s
efficacy, including descriptions of the relatively few false warnings we encountered. It also contains a more formal
description of the effect system. You can obtain the paper at:
http://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html

110

http://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html

Chapter 17

Units Checker

For many applications, it is important to use the correct units of measurement for primitive types. For example, NASA’s
Mars Climate Orbiter (cost: $327 million) was lost because of a discrepancy between use of the metric unit Newtons
and the imperial measure Pound-force.

The Units Checker ensures consistent usage of units. For example, consider the following code:

@m int meters = 5 * UnitsTools.m;
@s int secs = 2 * UnitsTools.s;
@mPERs int speed = meters / secs;

Due to the annotations @m and @s, the variables meters and secs are guaranteed to contain only values with meters
and seconds as units of measurement. Utility class UnitsTools provides constants with which unqualified integer are
multiplied to get values of the corresponding unit. The assignment of an unqualified value to meters, as in meters =
99, will be flagged as an error by the Units Checker.

The division meters/secs takes the types of the two operands into account and determines that the result is of
type meters per second, signified by the @mPERs qualifier. We provide an extensible framework to define the result of
operations on units.

17.1 Units annotations
The checker currently supports three varieties of units annotations: kind annotations (@Length, @Mass, . . .), the SI units
(@m, @kg, . . .), and polymorphic annotations (@PolyUnit).

Kind annotations can be used to declare what the expected unit of measurement is, without fixing the particular unit
used. For example, one could write a method taking a @Length value, without specifying whether it will take meters or
kilometers. The following kind annotations are defined:

@Acceleration
@Angle
@Area
@Current
@Length
@Luminance
@Mass
@Speed
@Substance
@Temperature
@Time

111

../api/org/checkerframework/checker/units/qual/Length.html
../api/org/checkerframework/checker/units/qual/Mass.html
../api/org/checkerframework/checker/units/qual/m.html
../api/org/checkerframework/checker/units/qual/kg.html
../api/org/checkerframework/checker/units/qual/PolyUnit.html
../api/org/checkerframework/checker/units/qual/Acceleration.html
../api/org/checkerframework/checker/units/qual/Angle.html
../api/org/checkerframework/checker/units/qual/Area.html
../api/org/checkerframework/checker/units/qual/Current.html
../api/org/checkerframework/checker/units/qual/Length.html
../api/org/checkerframework/checker/units/qual/Luminance.html
../api/org/checkerframework/checker/units/qual/Mass.html
../api/org/checkerframework/checker/units/qual/Speed.html
../api/org/checkerframework/checker/units/qual/Substance.html
../api/org/checkerframework/checker/units/qual/Temperature.html
../api/org/checkerframework/checker/units/qual/Time.html

For each kind of unit, the corresponding SI unit of measurement is defined:

1. For @Acceleration: Meter Per Second Square @mPERs2
2. For @Angle: Radians @radians, and the derived unit Degrees @degrees
3. For @Area: the derived units square millimeters @mm2, square meters @m2, and square kilometers @km2
4. For @Current: Ampere @A
5. For @Length: Meters @m and the derived units millimeters @mm and kilometers @km
6. For @Luminance: Candela @cd
7. For @Mass: kilograms @kg and the derived unit grams @g
8. For @Speed: meters per second @mPERs and kilometers per hour @kmPERh
9. For @Substance: Mole @mol

10. For @Temperature: Kelvin @K and the derived unit Celsius @C
11. For @Time: seconds @s and the derived units minutes @min and hours @h

You may specify SI unit prefixes, using enumeration Prefix. The basic SI units (@s, @m, @g, @A, @K, @mol, @cd)
take an optional Prefix enum as argument. For example, to use nanoseconds as unit, you could use @s(Prefix.nano)
as a unit type. You can sometimes use a different annotation instead of a prefix; for example, @mm is equivalent to
@m(Prefix.milli).

Class UnitsTools contains a constant for each SI unit. To create a value of the particular unit, multiply an
unqualified value with one of these constants. By using static imports, this allows very natural notation; for example,
after statically importing UnitsTools.m, the expression 5 * m represents five meters. As all these unit constants are
public, static, and final with value one, the compiler will optimize away these multiplications.

The polymorphic annotation @PolyUnit enables you to write a method that takes an argument of any unit type and
returns a result of that same type. For more about polymorphic qualifiers, see Section 24.2. For an example of its use,
see the @PolyUnit Javadoc.

17.2 Extending the Units Checker
You can create new kind annotations and unit annotations that are specific to the particular needs of your project. An
easy way to do this is by copying and adapting an existing annotation. (In addition, search for all uses of the annotation’s
name throughout the Units Checker implementation, to find other code to adapt; read on for details.)

Here is an example of a new unit annotation.

@Documented
@Retention(RetentionPolicy.RUNTIME)
@SubtypeOf({Time.class})
@UnitsMultiple(quantity=s.class, prefix=Prefix.nano)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface ns {}

The @SubtypeOf meta-annotation specifies that this annotation introduces an additional unit of time. The
@UnitsMultiple meta-annotation specifies that this annotation should be a nano multiple of the basic unit @s:
@ns and @s(Prefix.nano) behave equivalently and interchangeably. Most annotation definitions do not have a
@UnitsMultiple meta-annotation.

Note that all custom annotations must have the @Target(ElementType.TYPE_USE) meta-annotation. See section
30.4.1.

To take full advantage of the additional unit qualifier, you need to do two additional steps. (1) Provide constants that
convert from unqualified types to types that use the new unit. See class UnitsTools for examples (you will need to
suppress a checker warning in just those few locations). (2) Put the new unit in relation to existing units. Provide an
implementation of the UnitsRelations interface as a meta-annotation to one of the units.

See demonstration docs/examples/units-extension/ for an example extension that defines Hertz (hz) as scalar
per second, and defines an implementation of UnitsRelations to enforce it.

112

../api/org/checkerframework/checker/units/qual/mPERs2.html
../api/org/checkerframework/checker/units/qual/radians.html
../api/org/checkerframework/checker/units/qual/degrees.html
../api/org/checkerframework/checker/units/qual/mm2.html
../api/org/checkerframework/checker/units/qual/m2.html
../api/org/checkerframework/checker/units/qual/km2.html
../api/org/checkerframework/checker/units/qual/A.html
../api/org/checkerframework/checker/units/qual/m.html
../api/org/checkerframework/checker/units/qual/mm.html
../api/org/checkerframework/checker/units/qual/km.html
../api/org/checkerframework/checker/units/qual/cd.html
../api/org/checkerframework/checker/units/qual/kg.html
../api/org/checkerframework/checker/units/qual/g.html
../api/org/checkerframework/checker/units/qual/mPERs.html
../api/org/checkerframework/checker/units/qual/kmPERh.html
../api/org/checkerframework/checker/units/qual/mol.html
../api/org/checkerframework/checker/units/qual/K.html
../api/org/checkerframework/checker/units/qual/C.html
../api/org/checkerframework/checker/units/qual/s.html
../api/org/checkerframework/checker/units/qual/min.html
../api/org/checkerframework/checker/units/qual/h.html
../api/org/checkerframework/checker/units/qual/Prefix.html
../api/org/checkerframework/checker/units/qual/PolyUnit.html
../api/org/checkerframework/checker/units/qual/PolyUnit.html

17.3 What the Units Checker checks
The Units Checker ensures that unrelated types are not mixed.

All types with a particular unit annotation are disjoint from all unannotated types, from all types with a different
unit annotation, and from all types with the same unit annotation but a different prefix.

Subtyping between the units and the unit kinds is taken into account, as is the @UnitsMultiple meta-annotation.
Multiplying a scalar with a unit type results in the same unit type.
The division of a unit type by the same unit type results in the unqualified type.
Multiplying or dividing different unit types, for which no unit relation is known to the system, will result in a

MixedUnits type, which is separate from all other units. If you encounter a MixedUnits annotation in an error message,
ensure that your operations are performed on correct units or refine your UnitsRelations implementation.

The Units Checker does not change units based on multiplication; for example, if variable mass has the type @kg
double, then mass * 1000 has that same type rather than the type @g double. (The Units Checker has no way of
knowing whether you intended a conversion, or you were computing the mass of 1000 items. You need to make all
conversions explicit in your code, and it’s good style to minimize the number of conversions.)

17.4 Running the Units Checker
The Units Checker can be invoked by running the following commands.

• If your code uses only the SI units that are provided by the framework, simply invoke the checker:

javac -processor org.checkerframework.checker.units.UnitsChecker MyFile.java ...

• If you define your own units, provide the fully-qualified class names of the annotations through the -Aunits
option, using a comma-no-space-separated notation:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \

-processor org.checkerframework.checker.units.UnitsChecker \
-Aunits=myPackage.qual.MyUnit,myPackage.qual.MyOtherUnit MyFile.java ...

The annotations listed in -Aunits must be accessible to the compiler during compilation in the classpath. In
other words, they must already be compiled (and, typically, be on the javac classpath) before you run the Units
Checker with javac. It is not sufficient to supply their source files on the command line.

• You can also provide the fully-qualified paths to a set of directories that contain units qualifiers through the
-AunitsDirs option, using a colon-no-space-separated notation. For example:

javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.checker.units.UnitsChecker \
-AunitsDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin MyFile.java ...

Note that in these two examples, the compiled class file of the myPackage.qual.MyUnit and myPackage.qual.MyOtherUnit
annotations must exist in either the myProject/bin directory or the myLibrary/bin directory. The following
placement of the class files will work with the above commands:
.../myProject/bin/myPackage/qual/MyUnit.class
.../myProject/bin/myPackage/qual/MyOtherUnit.class

The two options can be used at the same time to provide groups of annotations from directories, and individually
named annotations.

Also, see the example project in the docs/examples/units-extension directory.

17.5 Suppressing warnings
One example of when you need to suppress warnings is when you initialize a variable with a unit type by a literal
value. To remove this warning message, it is best to introduce a constant that represents the unit and to add a
@SuppressWarnings annotation to that constant. For examples, see class UnitsTools.

113

17.6 References
• The GNU Units tool provides a comprehensive list of units:
http://www.gnu.org/software/units/

• The F# units of measurement system inspired some of our syntax:
https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure

114

http://www.gnu.org/software/units/
https://en.wikibooks.org/wiki/F_Sharp_Programming/Units_of_Measure

Chapter 18

Signedness Checker

The Signedness Checker guarantees that signed and unsigned values are not mixed together in a computation. In
addition, it prohibits meaningless operations, such as division on an unsigned value.

18.1 Annotations
The Signedness Checker uses type annotations to indicate the signedness that the programmer intends an expression to
have.

These are the qualifiers in the signedness type system:

@Unsigned indicates that the programmer intends the value to be interpreted as unsigned. That is, if the most
significant bit in the bitwise representation is set, then the bits should be interpreted as a large positive value.

@Signed indicates that the programmer intends the value to be interpreted as signed. That is, if the most significant
bit in the bitwise representation is set, then the bits should be interpreted as a negative value. This is the default
annotation.

@Constant indicates that a value is a compile-time constant and could be interpreted as unsigned or signed. This
annotation is used internally, and should not be written by the programmer.

@UnknownSignedness indicates that a value’s type is not relevant or known to this checker. This annotation is
used internally, and should not be written by the programmer.

@SignednessBottom indicates that the value is null. This annotation is used internally, and should not be written
by the programmer.

Signedness is primarily about how the bits of the representation are interpreted, not about the values that it can
represent. An unsigned value is always positive, but just because a variable’s value is positive does not mean that it
should be marked as @Unsigned. If variable v will be compared to a signed value, or used in arithmetic operations with
a signed value, then v should have signed type.

@Unsigned @Signed

@UnknownSignedness

@Constant

@SignednessBottom

Figure 18.1: The type qualifier hierarchy of the signedness annotations. Qualifiers in gray are used internally by the
type system but should never be written by a programmer.

115

../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/Signed.html
../api/org/checkerframework/checker/signedness/qual/Constant.html
../api/org/checkerframework/checker/signedness/qual/UnknownSignedness.html
../api/org/checkerframework/checker/signedness/qual/SignednessBottom.html

18.1.1 Default qualifiers
The only type qualifier that the programmer should need to write is @Unsigned. When a programmer leaves an
expression unannotated, the Signedness Checker treats it in one of the following ways:

• All byte, short, int, and long literals default to @Constant.
• All byte, short, int, and long variables default to @Signed.
• All other expressions default to @UnknownSignedness.

18.2 Prohibited operations
The Signedness Checker prohibits the following uses of operators:

• Division (/) or modulus (%) with an @Unsigned operand.
• Signed right shift (>>) with an @Unsigned left operand.
• Unsigned right shift (>>>) with a @Signed left operand.
• Greater/less than (or equal) comparators (<, <=, >, >=) with an @Unsigned operand.
• Any other binary operator with one @Unsigned operand and one @Signed operand, with the exception of left

shift (<<).

Like every type-checker built with the Checker Framework, the Signedness Checker ensures that assignments
and pseudo-assignments have consistent types. For example, it is not permitted to assign a @Signed expression to an
@Unsigned variable or vice versa.

18.3 Rationale
The Signedness Checker prevents misuse of unsigned values in Java code. Most Java operations interpret operands as
signed. If applied to unsigned values, those operations would produce unexpected, incorrect results.

Consider the following Java code:

int s1 = -1;
int s2 = -2;

@Unsigned int u1 = 0xFFFFFFFF; // unsigned: 2^32 - 1, signed: -1
@Unsigned int u2 = 0xFFFFFFFE; // unsigned: 2^32 - 2, signed: -2

int result;

result = s2 / s1; // OK: result is 2, which is correct for -2 / -1
result = u2 / u1; // ERROR: result is 2, which is incorrect for (2^32 - 1) / (2^32 - 2)

int s3 = -1;
int s4 = 5;

@Unsigned int u3 = 0xFFFFFFFF; // unsigned: 2^32 - 1, signed: -1
@Unsigned int u4 = 5;

result = s3 % s4; // OK: result is 4, which is correct for -2 % 5
result = u3 % u4; // ERROR: result is 4, which is incorrect for (2^32 - 1) % 5

These examples illustrate why division and modulus with an unsigned operand are illegal. Other uses of operators
are prohibited for similar reasons.

116

../api/org/checkerframework/checker/signedness/qual/Unsigned.html
../api/org/checkerframework/checker/signedness/qual/Constant.html
../api/org/checkerframework/checker/signedness/qual/Signed.html
../api/org/checkerframework/checker/signedness/qual/UnknownSignedness.html

18.4 Utility routines for manipulating unsigned values
Class SignednessUtil provides static utility methods for working with unsigned values. Some of these re-implement
functionality in JDK 8, making it available in earlier versions of Java. Others provide new functionality. All of them are
properly annotated with @Unsigned where appropriate, so using them may reduce the number of annotations that you
need to write.

117

../api/org/checkerframework/checker/signedness/SignednessUtil.html
../api/org/checkerframework/checker/signedness/qual/Unsigned.html

Chapter 19

Constant Value Checker

The Constant Value Checker is a constant propagation analysis: for each variable, it determines whether that variable’s
value can be known at compile time.

There are two ways to run the Constant Value Checker.

• Typically, it is automatically run by another type checker. When using the Constant Value Checker as part of
another checker, the statically-executable.astub file in the Constant Value Checker directory must be
passed as a stub file for the checker.

• Alternately, you can run just the Constant Value Checker, by supplying the following command-line options to
javac: -processor org.checkerframework.common.value.ValueChecker -Astubs=statically-executable.astub

19.1 Annotations
The Constant Value Checker uses type annotations to indicate the value of an expression (Section 19.1.1), and it uses
method annotations to indicate methods that the Constant Value Checker can execute at compile time (Section 19.1.3).

19.1.1 Type Annotations
Typically, the programmer does not write any type annotations. Rather, the type annotations are inferred by the Constant
Value Checker. The programmer is also permitted to write type annotations. This is only necessary in locations where
the Constant Value Checker does not infer annotations: on fields and method signatures.

The main type annotations are @BoolVal, @IntVal, @IntRange, @DoubleVal, and @StringVal. Additional
type annotations for arrays and strings are @ArrayLen, @ArrayLenRange, and @MinLen. A polymorphic qualifier
(@PolyValue) is also supported (see Section 24.2).

Each *Val type annotation takes as an argument a set of values, and its meaning is that at run time, the expression
evaluates to one of the values. For example, an expression of type @StringVal("a", "b") evaluates to one of the
values "a", "b", or null. The set is limited to 10 entries; if a variable could be more than 10 different values, the
Constant Value Checker gives up and its type becomes @IntRange for integral types, @ArrayLenRange for array types,
@ArrayLen or @ArrayLenRange for String, and @UnknownVal for all other types. The @ArrayLen annotation means
that at run time, the expression evaluates to an array or a string whose length is one of the annotation’s arguments.

In the case of too many strings in @StringVal, the values are forgotten and just the lengths are used in @ArrayLen.
If this would result in too many lengths, only the minimum and maximum lengths are used in @ArrayLenRange, giving
a range of possible lengths of the string.

The @StringVal annotation may be applied to a char array. Although byte arrays are often converted to/from strings,
the @StringVal annotation may not be applied to them. This is because the conversion depends on the platform’s
character set.

@IntRange takes two arguments — a lower bound and an upper bound. Its meaning is that at run time, the expression
evaluates to a value between the bounds (inclusive). For example, an expression of type @IntRange(from=0, to=255)

118

../api/org/checkerframework/common/value/qual/BoolVal.html
../api/org/checkerframework/common/value/qual/IntVal.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/DoubleVal.html
../api/org/checkerframework/common/value/qual/StringVal.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/MinLen.html
../api/org/checkerframework/common/value/qual/PolyValue.html
../api/org/checkerframework/common/value/qual/StringVal.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/UnknownVal.html
../api/org/checkerframework/common/value/qual/IntRange.html

@UnknownVal

@IntVal(long[])@IntRange(long,long) @DoubleVal(double[])@BoolVal(boolean[]) @StringVal(String[]) @ArrayLen(int[]) @ArrayLenRange(int,int)

@BottomVal

@IntRange(from=0,to=200)

@IntVal(1)

@IntVal({1,2})@IntRange(from=0,to=1) @DoubleVal(1.0)

@DoubleVal({0.0,1.0,2.0})

@StringVal("a")

@StringVal({"a","aa"}) @StringVal({"a","b"})

@StringVal({"a","aa","b"}) @ArrayLen(1)

@ArrayLen({1,2})

@ArrayLenRange(0,200)

Figure 19.1: At the top, the type qualifier hierarchy of the Constant Value Checker annotations. Qualifiers in gray
are used internally by the type system but should never be written by a programmer. At the bottom are examples of
additional subtyping relationships that depend on the annotations’ arguments.

public void foo(boolean b) {
int i = 1; // i has type: @IntVal({1}) int
if (b) {

i = 2; // i now has type: @IntVal({2}) int
}

// i now has type: @IntVal({1,2}) int
i = i + 1; // i now has type: @IntVal({2,3}) int

}

Figure 19.2: The Constant Value Checker infers different types for a variable on different lines of the program.

evaluates to 0, 1, 2, . . . , 254, or 255. An @IntVal and @IntRange annotation that represent the same set of values
are semantically identical and interchangeable: they have exactly the same meaning, and using either one has the
same effect. @ArrayLenRange has the same relationship to @ArrayLen that @IntRange has to @IntVal. The @MinLen
annotation is an alias for @ArrayLenRange (meaning that every @MinLen annotation is automatically converted to an
@ArrayLenRange annotation) that only takes one argument, which is the lower bound of the range. The upper bound of
the range is the maximum integer value.

Figure 19.1 shows the subtyping relationship among the type annotations. For two annotations of the same type,
subtypes have a smaller set of possible values, as also shown in the figure. Because int can be casted to double, an
@IntVal annotation is a subtype of a @DoubleVal annotation with the same values.

Figure 19.2 illustrates how the Constant Value Checker infers type annotations (using flow-sensitive type qualifier
refinement, Section 25.4).

If your code is already annotated with a different constant value or range annotation, the Checker Framework can
type-check your code. It treats annotations from other tools as if you had written the corresponding annotation from
the Constant Value Checker, as described in Figure 19.3. If the other annotation is a declaration annotation, it may be
moved; see Section 27.1.1.

119

../api/org/checkerframework/common/value/qual/IntVal.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html
../api/org/checkerframework/common/value/qual/ArrayLen.html
../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/IntVal.html

android.support.annotation.IntRange ⇒ org.checkerframework.checker.common.value.qual.IntRange
Figure 19.3: Correspondence between other constant value and range annotations and the Checker Framework’s
annotations.

@StaticallyExecutable @Pure
public int foo(int a, int b) {

return a + b;
}

public void bar() {
int a = 5; // a has type: @IntVal({5}) int
int b = 4; // b has type: @IntVal({4}) int
int c = foo(a, b); // c has type: @IntVal({9}) int

}

Figure 19.4: The @StaticallyExecutable annotation enables constant propagation through method calls.

19.1.2 Compile-time execution of expressions
Whenever all the operands of an expression are compile-time constants (that is, their types have constant-value type
annotations), the Constant Value Checker attempts to execute the expression. This is independent of any optimizations
performed by the compiler and does not affect the code that is generated.

The Constant Value Checker statically executes operators that do not throw exceptions (e.g., +, -, <<, !=).

19.1.3 @StaticallyExecutable methods and the classpath
The Constant Value Checker statically executes methods annotated with @StaticallyExecutable, if the method has
already been compiled and is on the classpath.

A @StaticallyExecutable method must be @Pure (side-effect-free and deterministic).
Additionally, a @StaticallyExecutable method and any method it calls must be on the classpath for the

compiler, because they are reflectively called at compile-time to perform the constant value analysis. To use
@StaticallyExecutable on methods in your own code, you should first compile the code without the Constant
Value Checker and then add the location of the resulting .class files to the classpath. For example, the command-line
arguments to the Checker Framework might include:

-processor org.checkerframework.common.value.ValueChecker
-Astubs=statically-executable.astub
-classpath $CLASSPATH:MY_PROJECT/build/

19.2 Warnings
If the option -AreportEvalWarns options is used, the Constant Value Checker issues a warning if it cannot load and
run, at compile time, a method marked as @StaticallyExecutable. If it issues such a warning, then the return value
of the method will be @UnknownVal instead of being able to be resolved to a specific value annotation. Some examples
of these:

• [class.find.failed] Failed to find class named Test.
The checker could not find the class specified for resolving a @StaticallyExecutable method. Typically this
is caused by not providing the path of a class-file needed to the classpath.

• [method.find.failed] Failed to find a method named foo with argument types [@IntVal(3)
int].

120

../api/org/checkerframework/common/value/qual/StaticallyExecutable.html
../api/org/checkerframework/common/value/qual/StaticallyExecutable.html
../api/org/checkerframework/dataflow/qual/Pure.html

...
if (i > 5) {

// i now has type: @IntRange(from=5, to=Integer.MAX_VALUE)
i = i + 1;
// If i started out as Integer.MAX_VALUE, then i is now Integer.MIN_VALUE.
// i’s type is now @IntRange(from=Integer.MIN_VALUE, to=Integer.MAX_VALUE).
// When ignoring overflow, i’s type is now @IntRange(from=6, to=Integer.MAX_VALUE).

}

Figure 19.5: With the -AignoreRangeOverflow command-line option, the Constant Value Checker ignores overflow
for range types, which gives smaller ranges to range types.

The checker could not find the method foo(int) specified for resolving a @StaticallyExecutable method,
but could find the class. This is usually due to providing an outdated version of the class-file that does not contain
the method that was annotated as @StaticallyExecutable.

• [method.evaluation.exception] Failed to evaluate method public static int Test.foo(int)
because it threw an exception: java.lang.ArithmeticException: / by zero.
An exception was thrown when trying to statically execute the method. In this case it was a divide-by-zero
exception. If the arguments to the method each only had one value in their annotations then this exception will
always occur when the program is actually run as well. If there are multiple possible values then the exception
might not be thrown on every execution, depending on the run-time values.

There are some other situations in which the Constant Value Checker produces a warning message:

• [too.many.values.given] The maximum number of arguments permitted is 10.
The Constant Value Checker only tracks up to 10 possible values for an expression. If you write an annotation
with more values than will be tracked, the annotation is replaced with @IntRange, @ArrayLen, @ArrayLenRange,
or @UnknownVal.

19.3 Unsoundly ignoring overflow
The Constant Value Checker takes Java’s overflow rules into account when computing the possible values of expres-
sions. The -AignoreRangeOverflow command-line option makes it ignore the possibility of overflow for range
annotations @IntRange and @ArrayLenRange. Figure 19.5 gives an example of behavior with and without the
-AignoreRangeOverflow command-line option.

As with any unsound behavior in the Checker Framework, this option reduces the number of warnings and errors
produced, and may reduce the number of @IntRange qualifiers that you need to write in the source code. However, it
is possible that at run time, an expression might evaluate to a value that is not in its @IntRange qualifier. You should
either accept that possibility, or verify the lack of overflow using some other tool or manual analysis.

121

../api/org/checkerframework/common/value/qual/IntRange.html
../api/org/checkerframework/common/value/qual/ArrayLenRange.html

Chapter 20

Aliasing Checker

The Aliasing Checker identifies expressions that definitely have no aliases.
Two expressions are aliased when they have the same non-primitive value; that is, they are references to the identical

Java object in the heap. Another way of saying this is that two expressions, exprA and exprB, are aliases of each other
when exprA==exprB at the same program point.

Assigning to a variable or field typically creates an alias. For example, after the statement a = b;, the variables a
and b are aliased.

Knowing that an expression is not aliased permits more accurate reasoning about how side effects modify the
expression’s value.

To run the Aliasing Checker, supply the -processor org.checkerframework.common.aliasing.AliasingChecker
command-line option to javac. However, a user rarely runs the Aliasing Checker directly. This type system is mainly
intended to be used together with other type systems. For example, the SPARTA information flow type-checker
(Section 23.8) uses the Aliasing Checker to improve its type refinement — if an expression has no aliases, a more
refined type can often be inferred, otherwise the type-checker makes conservative assumptions.

20.1 Aliasing annotations
There are two possible types for an expression:

@MaybeAliased is the type of an expression that might have an alias. This is the default, so every unannotated type
is @MaybeAliased. (This includes the type of null.)

@Unique is the type of an expression that has no aliases.
The @Unique annotation is only allowed at local variables, method parameters, constructor results, and method
returns. A constructor’s result should be annotated with @Unique only if the constructor’s body does not creates
an alias to the constructed object.

There are also two annotations, which are currently trusted instead of verified, that can be used on formal parameters
(including the receiver parameter, this):

@MaybeAliased

@Unique

Figure 20.1: Type hierarchy for the Aliasing type system.

122

../api/org/checkerframework/common/aliasing/qual/MaybeAliased.html
../api/org/checkerframework/common/aliasing/qual/Unique.html

@NonLeaked identifies a formal parameter that is not leaked nor returned by the method body. For example, the
formal parameter of the String copy constructor, String(String s), is @NonLeaked because the body of the
method only makes a copy of the parameter.

@LeakedToResult is used when the parameter may be returned, but it is not otherwise leaked. For example,
the receiver parameter of StringBuffer.append(StringBuffer this, String s) is @LeakedToResult,
because the method returns the updated receiver.

20.2 Leaking contexts
This section lists the expressions that create aliases. These are also called “leaking contexts”.

Assignments After an assignment, the left-hand side and the right-hand side are typically aliased. (The only coun-
terexample is when the right-hand side is a fresh expression; see Section 20.4.)

@Unique Object u = ...;
Object o = u; // (not.unique) type-checking error!

If this example type-checked, then u and o would be aliased. For this example to type-check, either the @Unique
annotation on the type of u, or the o = u; assignment, must be removed.

Method calls and returns (pseudo-assignments) Passing an argument to a method is a “pseudo-assignment” because
it effectively assigns the argument to the formal parameter. Return statements are also pseudo-assignments. As
with assignments, the left-hand side and right-hand side of pseudo-assignments are typically aliased.
Here is an example for argument-passing:

void foo(Object o) { ... }

@Unique Object u = ...;
foo(u); // type-checking error, because foo may create an alias of the passed argument

Passing a non-aliased reference to a method does not necessarily create an alias. However, the body of the
method might create an alias or leak the reference. Thus, the Aliasing Checker always treats a method call as
creating aliases for each argument unless the corresponding formal parameter is marked as @@NonLeaked or
@@LeakedToResult.
Here is an example for a return statement:

Object id(@Unique Object p) {
return p; // (not.unique) type-checking error!

}

If this code type-checked, then it would be possible for clients to write code like this:

@Unique Object u = ...;
Object o = id(u);

after which there is an alias to u even though it is declared as @Unique.
However, it is permitted to write

Object id(@LeakedToResult Object p) {
return p;

}

after which the following code type-checks:

@Unique Object u = ...;
id(u); // method call result is not used
Object o1 = ...;
Object o2 = id(o1); // argument is not @Unique

Throws A thrown exception can be captured by a catch block, which creates an alias of the thrown exception.

123

../api/org/checkerframework/common/aliasing/qual/NonLeaked.html
../api/org/checkerframework/common/aliasing/qual/LeakedToResult.html
../api/org/checkerframework/common/aliasing/qual/NonLeaked.html
../api/org/checkerframework/common/aliasing/qual/LeakedToResult.html

void foo() {
@Unique Exception uex = new Exception();
try {

throw uex; // (not.unique) type-checking error!
} catch (Exception ex) {

// uex and ex refer to the same object here.
}

}

Array initializers Array initializers assign the elements in the initializers to corresponding indexes in the array,
therefore expressions in an array initializer are leaked.

void foo() {
@Unique Object o = new Object();
Object[] ar = new Object[] { o }; // (not.unique) type-checking error!
// The expressions o and ar[0] are now aliased.

}

20.3 Restrictions on where @Unique may be written
The @Unique qualifier may not be written on locations such as fields, array elements, and type parameters.

As an example of why @Unique may not be written on a field’s type, consider the following code:

class MyClass {
@Unique Object field;
void foo() {

MyClass myClass2 = this;
// this.field is now an alias of myClass2.field

}
}

That code must not type-check, because field is declared as @Unique but has an alias. The Aliasing Checker
solves the problem by forbidding the @Unique qualifier on subcomponents of a structure, such as fields. Other solutions
might be possible; they would be more complicated but would permit more code to type-check.

@Unique may not be written on a type parameter for similar reasons. The assignment

List<@Unique Object> l1 = ...;
List<@Unique Object> l2 = l1;

must be forbidden because it would alias l1.get(0) with l2.get(0) even though both have type @Unique. The
Aliasing Checker forbids this code by rejecting the type List<@Unique Object>.

20.4 Aliasing type refinement
Type refinement enables a type checker to treat an expression as a subtype of its declared type. For example, even if you
declare a local variable as @MaybeAliased (or don’t write anything, since @MaybeAliased is the default), sometimes
the Aliasing Checker can determine that it is actually @Unique. For more details, see Section 25.4.

The Aliasing Checker treats type refinement in the usual way, except that at (pseudo-)assignments the right-hand-
side (RHS) may lose its type refinement, before the left-hand-side (LHS) is type-refined. The RHS always loses its
type refinement (it is widened to @MaybeAliased, and its declared type must have been @MaybeAliased) except in the
following cases:

124

// Annotations on the StringBuffer class, used in the examples below.
// class StringBuffer {
// @Unique StringBuffer();
// StringBuffer append(@LeakedToResult StringBuffer this, @NonLeaked String s);
// }

void foo() {
StringBuffer sb = new StringBuffer(); // sb is refined to @Unique.

StringBuffer sb2 = sb; // sb loses its refinement.
// Both sb and sb2 have aliases and because of that have type @MaybeAliased.

}

void bar() {
StringBuffer sb = new StringBuffer(); // sb is refined to @Unique.

sb.append("someString");
// sb stays @Unique, as no aliases are created.

StringBuffer sb2 = sb.append("someString");
// sb is leaked and becomes @MaybeAliased.

// Both sb and sb2 have aliases and because of that have type @MaybeAliased.
}

Figure 20.2: Example of Aliasing Checker’s type refinement rules.

• The RHS is a fresh expression — an expression that returns a different value each time it is evaluated. In practice,
this is only method/constructor calls with @Unique return type. A variable/field is not fresh because it can return
the same value when evaluated twice.

• The LHS is a @NonLeaked formal parameter and the RHS is an argument in a method call or constructor
invocation.

• The LHS is a @LeakedToResult formal parameter, the RHS is an argument in a method call or constructor
invocation, and the method’s return value is discarded — that is, the method call or constructor invocation is
written syntactically as a statement rather than as a part of a larger expression or statement.

A consequence of the above rules is that most method calls are treated conservatively. If a variable with declared
type @MaybeAliased has been refined to @Unique and is used as an argument of a method call, it usually loses its
@Unique refined type.

Figure 20.2 gives an example of the Aliasing Checker’s type refinement rules.

125

Chapter 21

Reflection resolution

A call to Method.invoke might reflectively invoke any method. That method might place requirements on its formal
parameters, and it might return any value. To reflect these facts, the annotated JDK contains conservative annotations
for Method.invoke. These conservative library annotations often cause a checker to issue false positive warnings when
type-checking code that uses reflection.

If you supply the -AresolveReflection command-line option, the Checker Framework attempts to resolve
reflection. At each call to Method.invoke or Constructor.newInstance, the Checker Framework first soundly
estimates which methods might be invoked at runtime. When type-checking the call, the Checker Framework uses a
library annotation that indicates the parameter and return types of the possibly-invoked methods.

If the estimate of invoked methods is small, these types are precise and the checker issues fewer false positive
warnings. If the estimate of invoked methods is large, these types are no better than the conservative library annotations.

Reflection resolution is disabled by default, because it increases the time to type-check a program. You should enable
reflection resolution with the -AresolveReflection command-line option if, for some call site of Method.invoke or
Constructor.newInstance in your program:

1. the conservative library annotations on Method.invoke or Constructor.newInstance cause false positive
warnings,

2. the set of possibly-invoked methods or constructors can be known at compile time, and
3. the reflectively invoked methods/constructors are on the class path at compile time.

Reflection resolution does not change your source code or generated code. In particular, it does not replace the
Method.invoke or Constructor.newInstance calls.

The command-line option -AresolveReflection=debug outputs verbose information about the reflection resolu-
tion process.

Section 21.1 first describes the MethodVal and ClassVal Checkers, which reflection resolution uses internally. Then,
Section 21.2 gives examples of reflection resolution.

21.1 MethodVal and ClassVal Checkers
The implementation of reflection resolution internally uses the ClassVal Checker (Section 21.1.1) and the MethodVal
Checker (Section 21.1.2). They are very similar to the Constant Value Checker (Section 19) in that their annotations
estimate the run-time value of an expression.

In some cases, you may need to write annotations such as @ClassVal, @MethodVal, @StringVal, and @ArrayLen
to aid in reflection resolution. Often, though, these annotations can be inferred (Section 21.1.3).

21.1.1 ClassVal Checker
The ClassVal Checker defines the following annotations:

126

https://docs.oracle.com/javase/8/docs/api/java/lang/reflect/Method.html#invoke-java.lang.Object-java.lang.Object...-
../api/org/checkerframework/common/value/qual/StringVal.html
../api/org/checkerframework/common/value/qual/ArrayLen.html

@UnknownClass

@ClassValBottom

@ClassVal("java.lang.String")

@ClassBound({"java.lang.String","com.example.MyClass"})

@ClassBound("java.lang.String") @ClassVal({"java.lang.String","com.example.MyClass"})

Figure 21.1: Partial type hierarchy for the ClassVal type system. The type qualifiers in gray (@UnknownClass and
@ClassValBottom) should never be written in source code; they are used internally by the type system.

@ClassVal(String[] value) If an expression has @ClassVal type with a single argument, then its exact
run-time value is known at compile time. For example, @ClassVal("java.util.HashMap") indicates that the
Class object represents the java.util.HashMap class.
If multiple arguments are given, then the expression’s run-time value is known to be in that set.
The arguments are binary names (JLS §13.1).

@ClassBound(String[] value) If an expression has @ClassBound type, then its run-time value is known to
be upper-bounded by that type. For example, @ClassBound("java.util.HashMap") indicates that the Class
object represents java.util.HashMap or a subclass of it.
If multiple arguments are given, then the run-time value is equal to or a subclass of some class in that set.
The arguments are binary names (JLS §13.1).

@UnknownClass Indicates that there is no compile-time information about the run-time value of the class — or that
the Java type is not Class. This is the default qualifier, and it may not be written in source code.

@ClassValBottom Type given to the null literal. It may not be written in source code.

Subtyping rules

Figure 21.1 shows part of the type hierarchy of the ClassVal type system. @ClassVal(A) is a subtype of @ClassVal(B)
if A is a subset of B. @ClassBound(A) is a subtype of @ClassBound(B) if A is a subset of B. @ClassVal(A) is a
subtype of @ClassBound(B) if A is a subset of B.

21.1.2 MethodVal Checker
The MethodVal Checker defines the following annotations:

@MethodVal(String[] className, String[] methodName, int[] params) Indicates that an ex-
pression of type Method or Constructor has a run-time value in a given set. If the set has size n, then each of
@MethodVal’s arguments is an array of size n, and the ith method in the set is represented by { className[i],
methodName[i], params[i] }. For a constructor, the method name is “<init>”.
Consider the following example:

@MethodVal(className={"java.util.HashMap", "java.util.HashMap"},
methodName={"containsKey", "containsValue"},
params={1, 1})

127

../api/org/checkerframework/common/reflection/qual/ClassVal.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html#jls-13.1
../api/org/checkerframework/common/reflection/qual/ClassBound.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html#jls-13.1
../api/org/checkerframework/common/reflection/qual/UnknownClass.html
../api/org/checkerframework/common/reflection/qual/ClassValBottom.html
../api/org/checkerframework/common/reflection/qual/MethodVal.html

@UnknownMethod

@MethodValBottom

@MethodVal(className={"java.lang.String", "java.lang.String"},methodName={"toString","equals"},params={0,1})

@MethodVal(className="java.lang.String",methodName="equals",params=1)

Figure 21.2: Partial type hierarchy for the MethodVal type system. The type qualifiers in gray (@UnknownMethod and
@MethodValBottom) should never be written in source code; they are used internally by the type system.

This @MethodVal annotation indicates that the Method is either HashMap.containsKey with 1 formal parameter
or HashMap.containsValue with 1 formal parameter.
The @MethodVal type qualifier indicates the number of parameters that the method takes, but not their type. This
means that the Checker Framework’s reflection resolution cannot distinguish among overloaded methods.

@UnknownMethod Indicates that there is no compile-time information about the run-time value of the method — or
that the Java type is not Method or Constructor. This is the default qualifier, and it may not be written in source
code.

@MethodValBottom Type given to the null literal. It may not be written in source code.

Subtyping rules

Figure 21.2 shows part of the type hierarchy of the MethodVal type system. @MethodVal(classname=CA, methodname=MA,
params=PA) is a subtype of @MethodVal(classname=CB, methodname=MB, params=PB) if

∀indexesi∃an index j : CA[i] =CB[j],MA[i] = MA[j],andPA[i] = PB[j]

where CA, MA, and PA are lists of equal size and CB, MB, and PB are lists of equal size.

21.1.3 MethodVal and ClassVal inference
The developer rarely has to write @ClassVal or @MethodVal annotations, because the Checker Framework infers them
according to Figure 21.3. Most readers can skip this section, which explains the inference rules.

The ClassVal Checker infers the exact class name (@ClassVal) for a Class literal (C.class), and for a static method
call (e.g., Class.forName(arg), ClassLoader.loadClass(arg), ...) if the argument is a statically computable
expression. In contrast, it infers an upper bound (@ClassBound) for instance method calls (e.g., obj.getClass()).

The MethodVal Checker infers @MethodVal annotations for Method and Constructor types that have been created
using a method call to Java’s Reflection API:

• Class.getMethod(String name, Class<?>... paramTypes)
• Class.getConstructor(Class<?>... paramTypes)

Note that an exact class name is necessary to precisely resolve reflectively-invoked constructors since a constructor
in a subclass does not override a constructor in its superclass. This means that the MethodVal Checker does not infer a
@MethodVal annotation for Class.getConstructor if the type of that class is @ClassBound. In contrast, either an
exact class name or a bound is adequate to resolve reflectively-invoked methods because of the subtyping rules for
overridden methods.

128

../api/org/checkerframework/common/reflection/qual/UnknownMethod.html
../api/org/checkerframework/common/reflection/qual/MethodValBottom.html

bn is the binary name of C
C.class : @ClassVal(bn)

s : @StringVal(ν)
Class.forName(s) : @ClassVal(ν)

e : τ bn is the binary name of τ

e.getClass() : @ClassBound(bn)

(e : @ClassBound(ν) ∨ e : @ClassVal(ν))
s : @StringVal(µ) p : @ArrayLen(π)

e.getMethod(s,p) : @MethodVal(cn=ν,mn=µ,np=π)

e : @ClassVal(ν) p : @ArrayLen(π)

e.getConstructor(p) : @MethodVal(cn=ν,mn = "<init>",np = π)

Figure 21.3: Example inference rules for @ClassVal, @ClassBound, and @MethodVal. Additional rules exist for
expressions with similar semantics but that call methods with different names or signatures.

21.2 Reflection resolution example
Consider the following example, in which the Nullness Checker employs reflection resolution to avoid issuing a false
positive warning.

public class LocationInfo {
@NonNull Location getCurrentLocation() { ... }

}

public class Example {
LocationInfo privateLocation = ... ;
String getCurrentCity() throws Exception {

Method getCurrentLocationObj = LocationInfo.class.getMethod("getCurrentLocation");
Location currentLocation = (Location) getCurrentLocationObj.invoke(privateLocation);
return currentLocation.nameOfCity();

}
}

When reflection resolution is not enabled, the Nullness Checker uses conservative annotations on the Method.invoke
method signature:

@Nullable Object invoke(@NonNull Object recv, @NonNull Object ... args)
This causes the Nullness Checker to issue the following warning even though currentLocation cannot be null.

error: [dereference.of.nullable] dereference of possibly-null reference currentLocation
return currentLocation.nameOfCity();

^
1 error

When reflection resolution is enabled, the MethodVal Checker infers that the @MethodVal annotation for
getCurrentLocationObj is:

@MethodVal(className="LocationInfo", methodName="getCurrentLocation", params=0)
Based on this @MethodVal annotation, the reflection resolver determines that the reflective method call represents

a call to getCurrentLocation in class LocationInfo. The reflection resolver uses this information to provide the
following precise procedure summary to the Nullness Checker, for this call site only:

129

@NonNull Object invoke(@NonNull Object recv, @Nullable Object ... args)
Using this more precise signature, the Nullness Checker does not issue the false positive warning shown above.

130

Chapter 22

Subtyping Checker

The Subtyping Checker enforces only subtyping rules. It operates over annotations specified by a user on the command
line. Thus, users can create a simple type-checker without writing any code beyond definitions of the type qualifier
annotations.

The Subtyping Checker can accommodate all of the type system enhancements that can be declaratively specified
(see Chapter 30). This includes type introduction rules (implicit annotations, e.g., literals are implicitly considered
@NonNull) via the @ImplicitFor meta-annotation, and other features such as flow-sensitive type qualifier inference
(Section 25.4) and qualifier polymorphism (Section 24.2).

The Subtyping Checker is also useful to type system designers who wish to experiment with a checker before writing
code; the Subtyping Checker demonstrates the functionality that a checker inherits from the Checker Framework.

If you need typestate analysis, then you can extend a typestate checker, much as you would extend the Subtyping
Checker if you do not need typestate analysis. For more details (including a definition of “typestate”), see Chapter 23.1.
See Section 32.7.1 for a simpler alternative.

For type systems that require special checks (e.g., warning about dereferences of possibly-null values), you will
need to write code and extend the framework as discussed in Chapter 30.

22.1 Using the Subtyping Checker
The Subtyping Checker is used in the same way as other checkers (using the -processor
org.checkerframework.common.subtyping.SubtypingChecker option; see Chapter 2), except that it re-
quires an additional annotation processor argument via the standard “-A” switch. One of the two following arguments
must be used with the Subtyping Checker:

• Provide the fully-qualified class name(s) of the annotation(s) in the custom type system through the -Aquals
option, using a comma-no-space-separated notation:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \

-processor org.checkerframework.common.subtyping.SubtypingChecker \
-Aquals=myPackage.qual.MyQual,myPackage.qual.OtherQual MyFile.java ...

The annotations listed in -Aquals must be accessible to the compiler during compilation in the classpath. In other
words, they must already be compiled (and, typically, be on the javac classpath) before you run the Subtyping
Checker with javac. It is not sufficient to supply their source files on the command line.

• Provide the fully-qualified paths to a set of directories that contain the annotations in the custom type system
through the -AqualDirs option, using a colon-no-space-separated notation. For example:
javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \

-processor org.checkerframework.common.subtyping.SubtypingChecker \
-AqualDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin MyFile.java

131

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/framework/qual/ImplicitFor.html

Note that in these two examples, the compiled class file of the myPackage.qual.MyQual and myPackage.qual.OtherQual
annotations must exist in either the myProject/bin directory or the myLibrary/bin directory. The following
placement of the class files will work with the above commands:
.../myProject/bin/myPackage/qual/MyQual.class
.../myLibrary/bin/myPackage/qual/OtherQual.class

The two options can be used at the same time to provide groups of annotations from directories, and individually
named annotations.

To suppress a warning issued by the Subtyping Checker, use a @SuppressWarnings annotation, with the argument
being the unqualified, uncapitalized name of any of the annotations passed to -Aquals. This will suppress all warnings,
regardless of which of the annotations is involved in the warning. (As a matter of style, you should choose one of the
annotations as your @SuppressWarnings key and stick with it for that entire type hierarchy.)

22.2 Subtyping Checker example
Consider a hypothetical Encrypted type qualifier, which denotes that the representation of an object (such as a String,
CharSequence, or byte[]) is encrypted. To use the Subtyping Checker for the Encrypted type system, follow three
steps.

1. Define two annotations for the Encrypted and PossiblyUnencrypted qualifiers:
package myPackage.qual;

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

/**
* Denotes that the representation of an object is encrypted.
*/

@SubtypeOf(PossiblyUnencrypted.class)
@ImplicitFor(literal={LiteralKind.NULL})
@DefaultFor({TypeUseLocation.LOWER_BOUND})
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface Encrypted {}
package myPackage.qual;

import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
import org.checkerframework.framework.qual.SubtypeOf;
import java.lang.annotation.ElementType;
import java.lang.annotation.Target;

/**
* Denotes that the representation of an object might not be encrypted.
*/

@DefaultQualifierInHierarchy
@SubtypeOf({})
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface PossiblyUnencrypted {}
Note that all custom annotations must have the @Target(ElementType.TYPE_USE) meta-annotation. See
Section 30.4.1.
Don’t forget to compile these classes:

$ javac myPackage/qual/Encrypted.java myPackage/qual/PossiblyUnencrypted.java

132

https://docs.oracle.com/javase/8/docs/api/java/lang/SuppressWarnings.html

The resulting .class files should either be on your classpath, or on the processor path (set via the -processorpath
command-line option to javac).

2. Write @Encrypted annotations in your program (say, in file YourProgram.java):
import myPackage.qual.Encrypted;

...

public @Encrypted String encrypt(String text) {
// ...

}

// Only send encrypted data!
public void sendOverInternet(@Encrypted String msg) {

// ...
}

void sendText() {
// ...
@Encrypted String ciphertext = encrypt(plaintext);
sendOverInternet(ciphertext);
// ...

}

void sendPassword() {
String password = getUserPassword();
sendOverInternet(password);

}
You may also need to add @SuppressWarnings annotations to the encrypt and decrypt methods. Analyzing
them is beyond the capability of any realistic type system.

3. Invoke the compiler with the Subtyping Checker, specifying the @Encrypted annotation using the -Aquals
option. You should add the Encrypted classfile to the processor classpath:

javac -processorpath myqualpath -processor org.checkerframework.common.subtyping.SubtypingChecker -Aquals=myPackage.qual.Encrypted,myPackage.qual.PossiblyUnencrypted YourProgram.java

YourProgram.java:42: incompatible types.
found : @myPackage.qual.PossiblyUnencrypted java.lang.String
required: @myPackage.qual.Encrypted java.lang.String

sendOverInternet(password);
^

4. You can also provide the fully-qualified paths to a set of directories that contain the qualifiers using the
-AqualDirs option, and add the directories to the boot classpath, for example:

javac -classpath /full/path/to/myProject/bin:/full/path/to/myLibrary/bin \
-processor org.checkerframework.common.subtyping.SubtypingChecker \
-AqualDirs=/full/path/to/myProject/bin:/full/path/to/myLibrary/bin YourProgram.java

Note that in these two examples, the compiled class file of the myPackage.qual.Encrypted and
myPackage.qual.PossiblyUnencrypted annotations must exist in either the myProject/bin directory or
the myLibrary/bin directory. The following placement of the class files will work with the above commands:
.../myProject/bin/myPackage/qual/Encrypted.class
.../myProject/bin/myPackage/qual/PossiblyUnencrypted.class

Also, see the example project in the docs/examples/subtyping-extension directory.

133

@MyType @NotMyType

@MyTypeUnknown

@MyTypeBottom

Figure 22.1: Type system for a type alias or typedef type system. The type system designer may choose to omit some
of these types, but this is the general case. The type system designer’s choice of defaults affects the interpretation of
unannotated code, which affects the guarantees given for unannotated code.

22.3 Type aliases and typedefs
A type alias or typedef is a type that shares the same representation as another type but is conceptually distinct from it.
For example, some strings in your program may be street addresses; others may be passwords; and so on. You wish to
indicate, for each string, which one it is, and to avoid mixing up the different types of strings. Likewise, you could
distinguish integers that are offsets from those that are absolute values.

Creating a new type makes your code easier to understand by conveying the intended use of each variable. It also
prevents errors that come from using the wrong type or from mixing incompatible types in an operation.

If you want to create a type alias or typedef, you have multiple options: a regular Java subtype, the Units Checker
(Chapter 17, page 111), the Fake Enum Checker (Chapter 9, page 78), or the Subtyping Checker.

A Java subtype is easy to create and does not require a tool such as the Checker Framework; for instance,
you would declare class Address extends String. There are a number of limitations to this “pseudo-typedef”,
however [Goe06]. Primitive types and final types (including String) cannot be extended. Equality and identity tests
can return incorrect results when a wrapper object is used. Existing return types in code would need to be changed,
which is easy with an annotation but disruptive to change the Java type. Therefore, it is best to avoid the pseudo-typedef
antipattern.

The Units Checker (Chapter 17, page 111) is useful for the particular case of units of measurement, such as
kilometers verses miles.

The Fake Enum Checker (Chapter 9, page 78) builds in a set of assumptions. If those fit your use case, then
it’s easiest to use the Fake Enum Checker (though you can achieve them using the Subtyping Checker). The Fake
Enum Checker forbids mixing of fenums of different types, or fenums and unannotated types. For instance, binary
operations other than string concatenations are forbidden, such as NORTH+1, NORTH+MONDAY, and NORTH==MONDAY.
However, NORTH+SOUTH is permitted.

By default, the Subtyping Checker does not forbid any operations.
If you choose to use the Subtyping Checker, then you have an additional design choice to make about the type

system. In the general case, your type system will look something like Figure 22.1.
References whose type is @MyType are known to store only values from your new type. There is no such guarantee

for @MyTypeUnknown and @NotMyType, but those types mean different things. An expression of type @NotMyType is
guaranteed never to evaluate to a value of your new type. An expression of type @MyTypeUnknown may evaluate to any
value — including values of your new type and values not of your new type. (@MyTypeBottom is the type of null and
is also used for dead code and erroneous situations; it can be ignored for this discussion.)

A key choice for the type system designer is which type is the default. That is, if a programmer does not write
@MyType on a given type use, should that type use be interpreted as @MyTypeUnknown or as @NotMyType?

• If unannotated types are interpreted as @NotMyType, then the type system enforces very strong separation between
your new type and all other types. Values of your type will never mix with values of other types. If you don’t see
@MyType written explicitly on a type, you will know that it does not contain values of your type.
• If unannotated types are interpreted as @MyTypeUnknown, then a generic, unannotated type may contain a value

of your new type. In this case, @NotMyType does not need to exist, and @MyTypeBottom may or may not exist in

134

your type system.

A downside of the stronger guarantee that comes from using @NotMyType as the default is the need to write
additional annotations. For example, if @NotMyType is the default, this code does not typecheck:

void method(Object o) { ... }
<U> void use(List<U> list) {

method(list.get(0));
}

Because (implicit) upper bounds are interpreted as the top type (see Section 24.1.2), this is interpreted as

void method(@NotMyType Object o) { ... }
<@U extends @MyTypeUnknown Object> void use(List<U> list) {

// type error: list.get(0) has type @MyTypeUnknown, method expects @NotMyType
method(list.get(0));

}

To make the code type-check, it is necessary to write an explicit annotation, either to restrict use’s argument or to
expand method’s parameter type.

135

Chapter 23

Third-party checkers

The Checker Framework has been used to build other checkers that are not distributed together with the framework.
This chapter mentions just a few of them. They are listed in chronological order; older ones appear first and newer ones
appear last.

They are externally-maintained, so if you have problems or questions, you should contact their maintainers rather
than the Checker Framework maintainers.

If you want a reference to your checker included in this chapter, send us a link and a short description.

23.1 Typestate checkers
In a regular type system, a variable has the same type throughout its scope. In a typestate system, a variable’s type can
change as operations are performed on it.

The most common example of typestate is for a File object. Assume a file can be in two states, @Open and @Closed.
Calling the close() method changes the file’s state. Any subsequent attempt to read, write, or close the file will lead to
a run-time error. It would be better for the type system to warn about such problems, or guarantee their absence, at
compile time.

Just as you can extend the Subtyping Checker to create a type-checker, you can extend a typestate checker to create
a type-checker that supports typestate analysis. An extensible typestate analysis by Adam Warski that builds on the
Checker Framework is available at http://www.warski.org/typestate.html.

23.1.1 Comparison to flow-sensitive type refinement
The Checker Framework’s flow-sensitive type refinement (Section 25.4) implements a form of typestate analysis. For
example, after code that tests a variable against null, the Nullness Checker (Chapter 3) treats the variable’s type as
@NonNull T, for some T.

For many type systems, flow-sensitive type refinement is sufficient. But sometimes, you need full typestate analysis.
This section compares the two. (Unused variables (Section 25.7) also have similarities with typestate analysis and can
occasionally substitute for it. For brevity, this discussion omits them.)

A typestate analysis is easier for a user to create or extend. Flow-sensitive type refinement is built into the Checker
Framework and is optionally extended by each checker. Modifying the rules requires writing Java code in your checker.
By contrast, it is possible to write a simple typestate checker declaratively, by writing annotations on the methods (such
as close()) that change a reference’s typestate.

A typestate analysis can change a reference’s type to something that is not consistent with its original definition.
For example, suppose that a programmer decides that the @Open and @Closed qualifiers are incomparable — neither
is a subtype of the other. A typestate analysis can specify that the close() operation converts an @Open File into a
@Closed File. By contrast, flow-sensitive type refinement can only give a new type that is a subtype of the declared

136

http://www.warski.org/typestate.html

type — for flow-sensitive type refinement to be effective, @Closed would need to be a child of @Open in the qualifier
hierarchy (and close() would need to be treated specially by the checker).

23.2 Units and dimensions checker
A checker for units and dimensions is available at https://www.lexspoon.org/expannots/.

Unlike the Units Checker that is distributed with the Checker Framework (see Section 17), this checker includes
dynamic checks and permits annotation arguments that are Java expressions. This added flexibility, however, requires
that you use a special version both of the Checker Framework and of the javac compiler.

23.3 Thread locality checker
Loci [WPM+09], a checker for thread locality, is available at http://www.it.uu.se/research/upmarc/loci/.

23.4 Safety-Critical Java checker
A checker for Safety-Critical Java (SCJ, JSR 302) [TPV10] is available at http://sss.cs.purdue.edu/projects/
oscj/checker/checker.html. Developer resources are available at the project page https://code.google.com/
archive/p/scj-jsr302/.

23.5 Generic Universe Types checker
A checker for Generic Universe Types [DEM11], a lightweight ownership type system, is available from https:
//ece.uwaterloo.ca/~wdietl/ownership/.

23.6 EnerJ checker
A checker for EnerJ [SDF+11], an extension to Java that exposes hardware faults in a safe, principled manner to save
energy with only slight sacrifices to the quality of service, is available from http://sampa.cs.washington.edu/
research/approximation/enerj.html.

23.7 CheckLT taint checker
CheckLT uses taint tracking to detect illegal information flows, such as unsanitized data that could result in a SQL
injection attack. CheckLT is available from http://checklt.github.io/.

23.8 SPARTA information flow type-checker for Android
SPARTA is a security toolset aimed at preventing malware from appearing in an app store. SPARTA provides
an information-flow type-checker that is customized to Android but can also be applied to other domains. The
SPARTA toolset is available from https://checkerframework.org/sparta/. The paper “Collaborative verification
of information flow for a high-assurance app store” appeared in CCS 2014.

137

https://www.lexspoon.org/expannots/
http://www.it.uu.se/research/upmarc/loci/
http://sss.cs.purdue.edu/projects/oscj/checker/checker.html
http://sss.cs.purdue.edu/projects/oscj/checker/checker.html
https://code.google.com/archive/p/scj-jsr302/
https://code.google.com/archive/p/scj-jsr302/
https://ece.uwaterloo.ca/~wdietl/ownership/
https://ece.uwaterloo.ca/~wdietl/ownership/
http://sampa.cs.washington.edu/research/approximation/enerj.html
http://sampa.cs.washington.edu/research/approximation/enerj.html
http://checklt.github.io/
https://checkerframework.org/sparta/
http://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
http://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf

23.9 Immutability checkers: IGJ, OIGJ, and Javari
Javari [TE05], IGJ [ZPA+07], and OIGJ [ZPL+10] are type systems that enforce immutability constraints. Type-
checkers for all three type systems were distributed with the Checker Framework through release 1.9.13 (dated 1 April
2016). If you wish to use them, install Checker Framework version 1.9.13.

They were removed from the main distribution on June 1, 2016 because the implementations were not being
maintained as the Checker Framework evolved. The type systems are valuable, and some people found the type-
checkers useful. However, we wanted to focus on distributing checkers that are currently being maintained.

23.10 Read Checker for CERT FIO08-J
CERT rule FIO08-J describes a rule for the correct handling of characters/bytes read from a stream.

The Read Checker enforces this rule. It is available from https://github.com/opprop/ReadChecker.

23.11 SQL checker that supports multiple dialects
jOOQ is a database API that lets you build typesafe SQL queries. jOOQ version 3.0.9 and later ships with a SQL
checker that provides even more safety: it ensures ensure that you don’t use SQL features that are not supported
by your database implementation. You can learn about the SQL checker at https://blog.jooq.org/2016/05/09/
jsr-308-and-the-checker-framework-add-even-more-typesafety-to-jooq-3-9/.

23.12 Glacier: Class immutability
Glacier [CNA+17] enforces transitive class immutability in Java. According to its webpage:

• Transitive: if a class is immutable, then every field must be immutable. This means that all reachable state from
an immutable object’s fields is immutable.

• Class: the immutability of an object depends only on its class’s immutability declaration.
• Immutability: state in an object is not changable through any reference to the object.

138

https://checkerframework.org/releases/1.9.13/
https://www.securecoding.cert.org/confluence/display/java/FIO08-J.+Distinguish+between+characters+or+bytes+read+from+a+stream+and+-1
https://github.com/opprop/ReadChecker
http://www.jooq.org/
https://blog.jooq.org/2016/05/09/jsr-308-and-the-checker-framework-add-even-more-typesafety-to-jooq-3-9/
https://blog.jooq.org/2016/05/09/jsr-308-and-the-checker-framework-add-even-more-typesafety-to-jooq-3-9/
http://mcoblenz.github.io/Glacier/

Chapter 24

Generics and polymorphism

This chapter describes support for Java generics (also known as “parametric polymorphism”) and polymorphism over
type qualifiers.

Section 24.2 describes support for polymorphism over type qualifiers.

24.1 Generics (parametric polymorphism or type polymorphism)
The Checker Framework fully supports type-qualified Java generic types and methods (also known in the research
literature as “parametric polymorphism”). When instantiating a generic type, clients supply the qualifier along with the
type argument, as in List<@NonNull String>.

24.1.1 Raw types
Before running any pluggable type-checker, we recommend that you eliminate raw types from your code (e.g., your code
should use List<...> as opposed to List). Your code should compile without warnings when using the standard Java
compiler and the -Xlint:unchecked -Xlint:rawtypes command-line options. Using generics helps prevent type
errors just as using a pluggable type-checker does, and makes the Checker Framework’s warnings easier to understand.

If your code uses raw types, then the Checker Framework will do its best to infer the Java type parameters and the
type qualifiers. If it infers imprecise types that lead to type-checking warnings elsewhere, then you have two options.
You can convert the raw types such as List to parameterized types such as List<String>, or you can supply the
-AignoreRawTypeArguments command-line option. That option causes the Checker Framework to ignore all subtype
tests for type arguments that were inferred for a raw type.

24.1.2 Restricting instantiation of a generic class
When you define a generic class in Java, the extends clause of the generic type parameter (known as the “upper bound”)
requires that the corresponding type argument must be a subtype of the bound. For example, given the definition
class G<T extends Number> {...}, the upper bound is Number and a client can instantiate it as G<Number> or
G<Integer> but not G<Date>.

You can write a type qualifier on the extends clause to make the upper bound a qualified type. For example, you
can declare that a generic list class can hold only non-null values:

class MyList<T extends @NonNull Object> {...}

MyList<@NonNull String> m1; // OK
MyList<@Nullable String> m2; // error

139

That is, in the above example, all arguments that replace T in MyList<T> must be subtypes of @NonNull Object.
Conceptually, each generic type parameter has two bounds — a lower bound and an upper bound — and at

instantiation, the type argument must be within the bounds. Java only allows you to specify the upper bound; the lower
bound is implicitly the bottom type void. The Checker Framework gives you more power: you can specify both an
upper and lower bound for type parameters and wildcards. For the upper bound, write a type qualifier on the extends
clause, and for the lower bound, write a type qualifier on the type variable.

class MyList<@LowerBound T extends @UpperBound Object> { ... }

For a concrete example, recall the type system of the Regex Checker (see Figure 11.1, page 85) in which @Regex(0)
:> @Regex(1) :> @Regex(2) :> @Regex(3) :>

class MyRegexes<@Regex(5) T extends @Regex(1) String> { ... }

MyRegexes<@Regex(0) String> mu; // error - @Regex(0) is not a subtype of @Regex(1)
MyRegexes<@Regex(1) String> m1; // OK
MyRegexes<@Regex(3) String> m3; // OK
MyRegexes<@Regex(5) String> m5; // OK
MyRegexes<@Regex(6) String> m6; // error - @Regex(6) is not a supertype of @Regex(5)

The above declaration states that the upper bound of the type variable is @Regex(1) String and the lower bound
is @Regex(5) void. That is, arguments that replace T in MyList<T> must be subtypes of @Regex(1) String and
supertypes of @Regex(5) void. Since void cannot be used to instantiate a generic class, MyList may be instantiated
with @Regex(1) String through @Regex(5) String.

To specify an exact bound, place the same annotation on both bounds. For example:

class MyListOfNonNulls<@NonNull T extends @NonNull Object> { ... }
class MyListOfNullables<@Nullable T extends @Nullable Object> { ... }

MyListOfNonNulls<@NonNull Number> v1; // OK
MyListOfNonNulls<@Nullable Number> v2; // error
MyListOfNullables<@NonNull Number> v4; // error
MyListOfNullables<@Nullable Number> v3; // OK

It is an error if the lower bound is not a subtype of the upper bound.
class MyClass<@Nullable T extends @NonNull Object> // error: @Nullable is not a supertype of @NonNull

Defaults

If the extends clause is omitted, then the upper bound defaults to @TopType Object. If no type annotation is
written on the type parameter name, then the lower bound defaults to @BottomType void. If the extends clause is
written but contains no type qualifier, then the normal defaulting rules apply to the type in the extends clause (see
Section 25.3.2).

These rules mean that even though in Java the following two declarations are equivalent:

class MyClass<T>
class MyClass<T extends Object>

they may specify different type qualifiers on the upper bound, depending on the type system’s defaulting rules.

140

24.1.3 Type annotations on a use of a generic type variable
A type annotation on a use of a generic type variable overrides/ignores any type qualifier (in the same type hierarchy) on
the corresponding actual type argument. For example, suppose that T is a formal type parameter. Then using @Nullable
T within the scope of T applies the type qualifier @Nullable to the (unqualified) Java type of T. This feature is only
rarely used.

Here is an example of applying a type annotation to a generic type variable:

class MyClass2<T> {
...
@Nullable T myField = null;
...

}

The type annotation does not restrict how MyClass2 may be instantiated. In other words, both MyClass2<@NonNull
String> and MyClass2<@Nullable String> are legal, and in both cases @Nullable T means @Nullable String.
In MyClass2<@Interned String>, @Nullable T means @Nullable @Interned String.

24.1.4 Annotations on wildcards
At an instantiation of a generic type, a Java wildcard indicates that some constraints are known on the type argument,
but the type argument is not known exactly. For example, you can indicate that the type parameter for variable ls is
some unknown subtype of CharSequence:

List<? extends CharSequence> ls;
ls = new ArrayList<String>(); // OK
ls = new ArrayList<Integer>(); // error: Integer is not a subtype of CharSequence

For more details about wildcards, see the Java tutorial on wildcards or JLS §4.5.1.
You can write a type annotation on the bound of a wildcard:

List<? extends @NonNull CharSequence> ls;
ls = new ArrayList<@NonNull String>(); // OK
ls = new ArrayList<@Nullable String>(); // error: @Nullable is not a subtype of @NonNull

Conceptually, every wildcard has two bounds — an upper bound and a lower bound. Java only permits you to write
the upper bound (with <? extends SomeType>) or the lower bound (with <? super OtherType>), but not both; the
unspecified bound is implicitly the top type Object or the bottom type void. The Checker Framework is more flexible:
it lets you simultaneously write annotations on both the top and the bottom type. To annotate the implicit bound, write
the type annotation before the ?. For example:

List<@LowerBound ? extends @UpperBound CharSequence> lo;
List<@UpperBound ? super @NonNull Number> ls;

For an unbounded wildcard (<?>, with neither bound specified), the annotation in front of a wildcard applies to both
bounds. The following three declarations are equivalent (except that you cannot write the bottom type void; note that
Void does not denote the bottom type):

List<@NonNull ?> lnn;
List<@NonNull ? extends @NonNull Object> lnn;
List<@NonNull ? super @NonNull void> lnn;

Note that the annotation in front of a type parameter always applies to its lower bound, because type parameters can
only be written with extends and never super.

The defaulting rules for wildcards also differ from those of type parameters (see Section 25.3.4).

141

https://docs.oracle.com/javase/tutorial/java/generics/wildcards.html
https://docs.oracle.com/javase/specs/jls/se8/html/jls-4.html#jls-4.5.1
https://docs.oracle.com/javase/8/docs/api/java/lang/Void.html

24.1.5 Examples of qualifiers on a type parameter
Recall that @Nullable X is a supertype of @NonNull X , for any X. Most of the following types mean different things:

class MyList1<@Nullable T> { ... }
class MyList1a<@Nullable T extends @Nullable Object> { ... } // same as MyList1
class MyList2<@NonNull T extends @NonNull Object> { ... }
class MyList2a<T extends @NonNull Object> { ... } // same as MyList2
class MyList3<T extends @Nullable Object> { ... }

MyList1 and MyList1a must be instantiated with a nullable type. The implementation of MyList1 must be able to
consume (store) a null value and produce (retrieve) a null value.

MyList2 and MyList2a must be instantiated with non-null type. The implementation of MyList2 has to account
for only non-null values — it does not have to account for consuming or producing null.

MyList3 may be instantiated either way: with a nullable type or a non-null type. The implementation of MyList3
must consider that it may be instantiated either way — flexible enough to support either instantiation, yet rigorous
enough to impose the correct constraints of the specific instantiation. It must also itself comply with the constraints of
the potential instantiations.

One way to express the difference among MyList1, MyList2, and MyList3 is by comparing what expressions are
legal in the implementation of the list — that is, what expressions may appear in the ellipsis in the declarations above,
such as inside a method’s body. Suppose each class has, in the ellipsis, these declarations:

T t;
@Nullable T nble; // Section "Type annotations on a use of a generic type variable", below,
@NonNull T nn; // further explains the meaning of "@Nullable T" and "@NonNull T".
void add(T arg) { }
T get(int i) { }

Then the following expressions would be legal, inside a given implementation — that is, also within the ellipses. (Compil-
able source code appears as file checker-framework/checker/tests/nullness/generics/GenericsExample.java.)

MyList1 MyList2 MyList3
t = null; OK error error
t = nble; OK error error
nble = null; OK OK OK
nn = null; error error error
t = this.get(0); OK OK OK
nble = this.get(0); OK OK OK
nn = this.get(0); error OK error
this.add(t); OK OK OK
this.add(nble); OK error error
this.add(nn); OK OK OK

The differences are more significant when the qualifier hierarchy is more complicated than just @Nullable and
@NonNull.

24.1.6 Covariant type parameters
Java types are invariant in their type parameter. This means that A<X> is a subtype of B<Y> only if X is identical to Y. For
example, ArrayList<Number> is a subtype of List<Number>, but neither ArrayList<Integer> nor List<Integer>
is a subtype of List<Number>. (If they were, there would be a loophole in the Java type system.) For the same
reason, type parameter annotations are treated invariantly. For example, List<@Nullable String> is not a subtype of
List<String>.

When a type parameter is used in a read-only way — that is, when values of that type are read but are never
assigned — then it is safe for the type to be covariant in the type parameter. Use the @Covariant annotation to indicate

142

../api/org/checkerframework/framework/qual/Covariant.html

this. When a type parameter is covariant, two instantiations of the class with different type arguments have the same
subtyping relationship as the type arguments do.

For example, consider Iterator. Its elements can be read but not written, so Iterator<@Nullable String> can
be a subtype of Iterator<String> without introducing a hole in the type system. Therefore, its type parameter is
annotated with @Covariant. The first type parameter of Map.Entry is also covariant. Another example would be the
type parameter of a hypothetical class ImmutableList.

The @Covariant annotation is trusted but not checked. If you incorrectly specify as covariant a type parameter
that can be written (say, the class performs a set operation or some other mutation on an object of that type), then you
have created an unsoundness in the type system. For example, it would be incorrect to annotate the type parameter of
ListIterator as covariant, because ListIterator supports a set operation.

24.1.7 Method type argument inference and type qualifiers
Sometimes method type argument inference does not interact well with type qualifiers. In such situations, you might
need to provide explicit method type arguments, for which the syntax is as follows:

Collections.<@MyTypeAnnotation Object>sort(l, c);

This uses Java’s existing syntax for specifying a method call’s type arguments.

24.1.8 The Bottom type
Many type systems have a *Bottom type that is used only for the null value, dead code, and some erroneous situations.
A programmer should rarely write the bottom type.

One use is on a lower bound, to indicate that any type qualifier is permitted. A lower-bounded wildcard indicates
that a consumer method can accept a collection containing any Java type above some Java type, and you can add the
bottom type qualifier as well:

public static void addNumbers(List<? super @SignednessBottom Integer> list) { ... }

24.2 Qualifier polymorphism
The Checker Framework supports type qualifier polymorphism for methods, which permits a single method to have
multiple different qualified type signatures. This is similar to Java’s generics, but is used in situations where you cannot
use Java generics. If you can use generics, you typically do not need to use a polymorphic qualifier such as @PolyNull.

To use a polymorphic qualifier, just write it on a type. For example, you can write @PolyNull anywhere in a method
that you would write @NonNull or @Nullable. A polymorphic qualifier can be used in a method signature or body. It
may not be used on a class or field.

A method written using a polymorphic qualifier conceptually has multiple versions, somewhat like the generics
feature of Java or a template in C++. In each version, each instance of the polymorphic qualifier has been replaced by
the same other qualifier from the hierarchy. See the examples below in Section 24.2.1.

The method body must type-check with all signatures. A method call is type-correct if it type-checks under any one
of the signatures. If a call matches multiple signatures, then the compiler uses the most specific matching signature for
the purpose of type-checking. This is the same as Java’s rule for resolving overloaded methods.

To define a polymorphic qualifier, mark the definition with @PolymorphicQualifier. For example, @PolyNull is
a polymorphic type qualifier for the Nullness type system:

import java.lang.annotation.ElementType;
import java.lang.annotation.Target;
import org.checkerframework.framework.qual.PolymorphicQualifier;

@PolymorphicQualifier

143

../api/org/checkerframework/framework/qual/Covariant.html
../api/org/checkerframework/framework/qual/PolymorphicQualifier.html
../api/org/checkerframework/checker/nullness/qual/PolyNull.html

@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface PolyNull { }

See Section 24.2.3 for a way you can sometimes avoid defining a new polymorphic qualifier.

24.2.1 Examples of using polymorphic qualifiers
As an example of the use of @PolyNull, method Class.cast returns null if and only if its argument is null:

@PolyNull T cast(@PolyNull Object obj) { ... }

This is like writing:

@NonNull T cast(@NonNull Object obj) { ... }
@Nullable T cast(@Nullable Object obj) { ... }

except that the latter is not legal Java, since it defines two methods with the same Java signature.
As another example, consider

// Returns null if either argument is null.
@PolyNull T max(@PolyNull T x, @PolyNull T y);

which is like writing

@NonNull T max(@NonNull T x, @NonNull T y);
@Nullable T max(@Nullable T x, @Nullable T y);

At a call site, the most specific applicable signature is selected.
Another way of thinking about which one of the two max variants is selected is that the nullness annotations of (the

declared types of) both arguments are unified to a type that is a supertype of both, also known as the least upper bound
or lub. If both arguments are @NonNull, their unification (lub) is @NonNull, and the method return type is @NonNull.
But if even one of the arguments is @Nullable, then the unification (lub) is @Nullable, and so is the return type.

24.2.2 Relationship to subtyping and generics
Qualifier polymorphism has the same purpose and plays the same role as Java’s generics. You use them in the same
cases, such as:

• A method operates on collections with different types of elements.
• Two different arguments have the same type, without constraining them to be one specific type.
• A method returns a value of the same type as its argument.

If a method is written using Java generics, it usually does not need qualifier polymorphism. If you can use Java’s
generics, then that is often better. On the other hand, if you have legacy code that is not written generically, and you
cannot change it to use generics, then you can use qualifier polymorphism to achieve a similar effect, with respect to
type qualifiers only. The Java compiler still treats the base Java types non-generically.

In some cases, you don’t need qualifier polymorphism because subtyping already provides the needed functionality.
String is a supertype of @Interned String, so a method toUpperCase that is declared to take a String parameter
can also be called on an @Interned String argument.

144

https://docs.oracle.com/javase/8/docs/api/java/lang/Class.html#cast-java.lang.Object-

24.2.3 The @PolyAll qualifier applies to every type system
Each type system has its own polymorphic type qualifier. If some method is qualifier-polymorphic over every type
qualifier hierarchy, then you can use @PolyAll. This is better than trying to write every @Poly* qualifier on that
method.

For example, a method that only performs == on array elements will work no matter what the array’s element types
are:

/**
* Searches for the first occurrence of the given element in the array,
* testing for equality using == (not the equals method).
*/

public static int indexOfEq(@PolyAll Object[] a, @Nullable Object elt) {
for (int i=0; i<a.length; i++) {

if (elt == a[i]) {
return i;

}
}
return -1;

}

24.2.4 Using multiple polymorphic qualifiers in a method signature
Usually, it does not make sense to write only a single instance of a polymorphic qualifier in a method definition: if you
write one instance of (say) @PolyNull, then you should use at least two. (Section 24.2.5 describes some exceptions to
this rule: times when it makes sense to write a single polymorphic qualifier in a signature.)

For example, there is no point to writing

void m(@PolyNull Object obj)

which expands to

void m(@NonNull Object obj)
void m(@Nullable Object obj)

This is no different (in terms of which calls to the method will type-check) than writing just

void m(@Nullable Object obj)

The main benefit of polymorphic qualifiers comes when one is used multiple times in a method, since then each
instance turns into the same type qualifier. Most frequently, the polymorphic qualifier appears on at least one formal
parameter and also on the return type. It can also be useful to have polymorphic qualifiers on (only) multiple formal
parameters, especially if the method side-effects one of its arguments. For example, consider

void moveBetweenStacks(Stack<@PolyNull Object> s1, Stack<@PolyNull Object> s2) {
s1.push(s2.pop());

}

In this particular example, it would be cleaner to rewrite your code to use Java generics, if you can do so:

<T> void moveBetweenStacks(Stack<T> s1, Stack<T> s2) {
s1.push(s2.pop());

}

It is unusual, but permitted, to write just one polymorphic qualifier, on a return type. This is just like it is unusual,
but permitted, to write just one occurrence of a generic type parameter, on a return type. An example of such a method
is Collections.emptyList().

145

../api/org/checkerframework/framework/qual/PolyAll.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html#emptyList--

24.2.5 Using a single polymorphic qualifier in a method signature
As explained in Section 24.2.4, you will usually use a polymorphic qualifier multiple times in a signature. This section
describes situations when it makes sense to write just one polymorphic qualifier in a method signature. Some of these
situations can be avoided by writing a generic method, but in legacy code it may not be possible for you to change a
method to be generic.

Using a single polymorphic qualifier on an element type

It can make sense to use a polymorphic qualifier just once, on an array or generic element type.
For example, consider a routine that returns the index, in an array, of a given element:

public static int indexOf(@PolyNull Object[] a, @Nullable Object elt) { ... }

If @PolyNull were replaced with either @Nullable or @NonNull, then one of these safe client calls would be
rejected:

@Nullable Object[] a1;
@NonNull Object[] a2;

indexOf(a1, someObject);
indexOf(a2, someObject);

Of course, it would be better style to use a generic method, as in either of these signatures:

public static <T extends @Nullable Object> int indexOf(T[] a, @Nullable Object elt) { ... }
public static <T extends @Nullable Object> int indexOf(T[] a, T elt) { ... }

This example uses arrays, but analogous examples exist that use collections.

Using a single polymorphic qualifier to indicate all arguments are legal

A single @PolyAll annotation can indicate that any possible value is permitted to be passed. For example:

boolean eq(@PolyAll Object other) {
return this == other;

}

The @PolyAll annotation applies to all type systems. It would be infeasible to write the top qualifier for every possible
type system and to update this method’s annotation whenever a new type system is defined.

By contrast, a declaration of eq without @PolyAll:

boolean eq(Object other) {
return this == other;

}

would reject some calls, in type systems where the default type qualifier applied to Object is not the top type.
A related use of a single polymorphic qualifier is to override a generic type. For example, the annotation on

Comparable.compareTo() is:

public interface Comparable<T extends @NonNull Object> {
@Pure int compareTo(@PolyAll @NonNull T a1);

}

which indicates that, for every type system other than the nullness type system, every value is permitted as an argument,
regardless of how the Comparable type was instantiated. For example, this call is legal:

146

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html#compareTo-T-

Comparable<@MyBottom String> cble;
@MyTop String s;
...
cble.compareTo(s);

147

Chapter 25

Advanced type system features

This chapter describes features that are automatically supported by every checker written with the Checker Framework.
You may wish to skim or skip this chapter on first reading. After you have used a checker for a little while and want
to be able to express more sophisticated and useful types, or to understand more about how the Checker Framework
works, you can return to it.

25.1 Invariant array types
Java’s type system is unsound with respect to arrays. That is, the Java type-checker approves code that is unsafe and
will cause a run-time crash. Technically, the problem is that Java has “covariant array types”, such as treating String[]
as a subtype of Object[]. Consider the following example:

String[] strings = new String[] {"hello"};
Object[] objects = strings;
objects[0] = new Object();
String myString = strs[0];

The above code puts an Object in the array strings and thence in myString, even though myString = new
Object() should be, and is, rejected by the Java type system. Java prevents corruption of the JVM by doing a
costly run-time check at every array assignment; nonetheless, it is undesirable to learn about a type error only via a
run-time crash rather than at compile time.

When you pass the -AinvariantArrays command-line option, the Checker Framework is stricter than Java, in
the sense that it treats arrays invariantly rather than covariantly. This means that a type system built upon the Checker
Framework is sound: you get a compile-time guarantee without the need for any run-time checks. But it also means that
the Checker Framework rejects code that is similar to what Java unsoundly accepts. The guarantee and the compile-time
checks are about your extended type system. The Checker Framework does not reject the example code above, which
contains no type annotations.

Java’s covariant array typing is sound if the array is used in a read-only fashion: that is, if the array’s elements are
accessed but the array is not modified. However, facts about read-only usage are not built into any of the type-checkers.
Therefore, when using type systems along with -AinvariantArrays, you will need to suppress any warnings that are
false positives because the array is treated in a read-only way.

25.2 Context-sensitive type inference for array constructors
When you write an expression, the Checker Framework gives it the most precise possible type, depending on the
particular expression or value. For example, when using the Regex Checker (Chapter 11, page 84), the string "hello"

148

is given type @Regex String because it is a legal regular expression (whether it is meant to be used as one or not) and
the string "(foo" is given the type @Unqualified String because it is not a legal regular expression.

Array constructors work differently. When you create an array with the array constructor syntax, such as the
right-hand side of this assignment:

String[] myStrings = {"hello"};

then the expression does not get the most precise possible type, because doing so could cause inconvenience. Rather, its
type is determined by the context in which it is used: the left-hand side if it is in an assignment, the declared formal
parameter type if it is in a method call, etc.

In particular, if the expression {"hello"} were given the type @Regex String[], then the assignment would be
illegal! But the Checker Framework gives the type String[] based on the assignment context, so the code type-checks.

If you prefer a specific type for a constructed array, you can indicate that either in the context (change the declaration
of myStrings) or in a new construct (change the expression to new @Regex String[] {"hello"}).

25.3 The effective qualifier on a type (defaults and inference)
A checker sometimes treats a type as having a slightly different qualifier than what is written on the type — especially if
the programmer wrote no qualifier at all. Most readers can skip this section on first reading, because you will probably
find the system simply “does what you mean”, without forcing you to write too many qualifiers in your program. In
particular, qualifiers in method bodies are extremely rare.

Most of this section is applicable only to source code that is being checked by a checker. When the compiler reads
a .class file that was checked by a checker, the .class file contains the explicit or defaulted annotations from the
source code and no defaulting is necessary. When the compiler reads a .class file that was not checked by a checker,
the .class file contains only explicit annotations and defaulting might be necessary; see Section 25.3.5 for these rules.

The following steps determine the effective qualifier on a type — the qualifier that the checkers treat as being
present.

1. If a type qualifier is present in the source code, that qualifier is used.
2. The type system adds implicit qualifiers. This happens whether or not the programmer has written an explicit

type qualifier.
Here are some examples of implicit qualifiers:

• In the Nullness type system (see Chapter 3, page 25), enum values, string literals, and method receivers are
always non-null.
• In the Interning type system (see Chapter 6, page 54), string literals and enum values are always interned.

If the type has an implicit qualifier, then it is an error to write an explicit qualifier that is equal to (redundant with)
or a supertype of (weaker than) the implicit qualifier. A programmer may strengthen (write a subtype of) an
implicit qualifier, however.
Implicit qualifiers arise from two sources:

built-in Implicit qualifiers can be built into a type system (Section 30.7), in which case the type system’s
documentation explains all of the type system’s implicit qualifiers. Both of the above examples are built
into the Nullness type system.

programmer-declared A programmer may introduce an implicit annotation on each use of class C by writing a
qualifier on the declaration of class C. If MyClass is declared as class @MyAnno MyClass {...}, then
each occurrence of MyClass in the source code is treated as if it were @MyAnno MyClass.

3. If there is no explicit or implicit qualifier on a type, then a default qualifier is applied; see Section 25.3.1.
At this point (after step 3), every type has a qualifier.

4. The type system may refine a qualified type on a local variable — that is, treat it as a subtype of how it was
declared or defaulted. This refinement is always sound and has the effect of eliminating false positive error
messages. See Section 25.4.

149

25.3.1 Default qualifier for unannotated types
A type system designer, or an end-user programmer, can cause unannotated references to be treated as if they had a
default annotation.

There are several defaulting mechanisms, for convenience and flexibility. When determining the default qualifier for
a use of a type, the following rules are used in order, until one applies. (Some of these currently do not work in stub
files.)

• Use the innermost user-written @DefaultQualifier, as explained in this section.
• Use the default specified by the type system designer (Section 30.4.4); this is usually CLIMB-to-top (Sec-

tion 25.3.2).
• Use @Unqualified, which the framework inserts to avoid ambiguity and simplify the programming interface for

type system designers. Users do not have to worry about this detail, but type system implementers can rely on the
fact that some qualifier is present.

The end-user programmer specifies a default qualifier by writing the @DefaultQualifier annotation on a package,
class, method, or variable declaration. The argument to @DefaultQualifier is the Class name of an annotation.
The optional second argument indicates where the default applies. If the second argument is omitted, the specified
annotation is the default in all locations. See the Javadoc of DefaultQualifier for details.

For example, using the Nullness type system (Chapter 3):

import org.checkerframework.framework.qual.*; // for DefaultQualifier[s]
import org.checkerframework.checker.nullness.qual.NonNull;

@DefaultQualifier(NonNull.class)
class MyClass {

public boolean compile(File myFile) { // myFile has type "@NonNull File"
if (!myFile.exists()) // no warning: myFile is non-null

return false;
@Nullable File srcPath = ...; // must annotate to specify "@Nullable File"
...
if (srcPath.exists()) // warning: srcPath might be null

...
}

@DefaultQualifier(Tainted.class)
public boolean isJavaFile(File myfile) { // myFile has type "@Tainted File"

...
}

}

If you wish to write multiple @DefaultQualifier annotations at a single location, use @DefaultQualifiers
instead. For example:

@DefaultQualifiers({
@DefaultQualifier(NonNull.class),
@DefaultQualifier(Tainted.class)

})

If @DefaultQualifier[s] is placed on a package (via the package-info.java file), then it applies to the given
package and all subpackages.

Recall that an annotation on a class definition indicates an implicit qualifier (Section 25.3) that can only be
strengthened, not weakened. This can lead to unexpected results if the default qualifier applies to a class definition.

150

../api/org/checkerframework/framework/qual/Unqualified.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/framework/qual/DefaultQualifier.html
../api/org/checkerframework/framework/qual/DefaultQualifiers.html

Thus, you may want to put explicit qualifiers on class declarations (which prevents the default from taking effect), or
exclude class declarations from defaulting.

When a programmer omits an extends clause at a declaration of a type parameter, the default still applies to the
implicit upper bound. For example, consider these two declarations:

class C<T> { ... }
class C<T extends Object> { ... } // identical to previous line

The two declarations are treated identically by Java, and the default qualifier applies to the Object upper bound whether
it is implicit or explicit. (The @NonNull default annotation applies only to the upper bound in the extends clause, not
to the lower bound in the inexpressible implicit super void clause.)

25.3.2 Defaulting rules and CLIMB-to-top
Each type system defines a default qualifier. For example, the default qualifier for the Nullness Checker is @NonNull.
That means that when a user writes a type such as Date, the Nullness Checker interprets it as @NonNull Date.

The type system applies that default qualifier to most but not all types. In particular, unless otherwise stated, every
type system uses the CLIMB-to-top rule. This rule states that the top qualifier in the hierarchy is applied to the CLIMB
locations: Casts, Locals, Instanceof, and (some) iMplicit Bounds. For example, when the user writes a type such as
Date in such a location, the Nullness Checker interprets it as @Nullable Date (because @Nullable is the top qualifier
in the hierarchy, see Figure 3.1).

The CLIMB-to-top rule is used only for unannotated source code that is being processed by a checker. For
unannotated libraries (code read by the compiler in .class or .jar form), the checker uses conservative defaults
(Section 25.3.5).

The rest of this section explains the rationale and implementation of CLIMB-to-top.
Here is the rationale for CLIMB-to-top:

• Local variables are defaulted to top because type refinement (Section 25.4) is applied to local variables. If a
local variable starts as the top type, then the Checker Framework refines it to the best (most specific) possible
type based on assignments to it. As a result, a programmer rarely writes an explicit annotation on any of those
locations.
Variables defaulted to top include local variables, resource variables in the try-with-resources construct, variables
in for statements, and catch arguments (known as exception parameters in the Java Language Specification).
Exception parameters need to have the top type because exceptions of arbitrary qualified types can be thrown and
the Checker Framework does not provide runtime checks.

• Cast and instanceof types are not really defaulted to top. Rather, they are given the same type as their argument,
which is the most specific possible type. That would also have been the effect if they were given the top type and
then flow-sensitively refined to the type of their argument.

• Implicit upper bounds are defaulted to top to allow them to be instantiated in any way. If a user declared
class C<T> { ... }, then we assume that the user intended to allow any instantiation of the class, and
the declaration is interpreted as class C<T extends @Nullable Object> { ... } rather than as class
C<T extends @NonNull Object> { ... }. The latter would forbid instantiations such as C<@Nullable
String>, or would require rewriting of code. On the other hand, if a user writes an explicit bound such as class
C<T extends D> { ... }, then the user intends some restriction on instantiation and can write a qualifier on
the upper bound as desired.
This rule means that the upper bound of class C<T> is defaulted differently than the upper bound of class
C<T extends Object>. It would be more confusing for “Object” to be defaulted differently in class C<T
extends Object> and in an instantiation C<Object>, and for the upper bounds to be defaulted differently in
class C<T extends Object> and class C<T extends Date>.

• Implicit lower bounds are defaulted to the bottom type, again to allow maximal instantiation. Note that Java does
not allow a programmer to express both the upper and lower bounds of a type, but the Checker Framework allows
the programmer to specify either or both; see Section 24.1.2.

151

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html

Here is how the CLIMB-to-top rule is expressed for the Nullness Checker:

@DefaultQualifierInHierarchy
@DefaultFor({ TypeUseLocation.EXCEPTION_PARAMETER })
public @interface NonNull { }

public @interface Nullable { }

As mentioned above, the exception parameters are always non-null, so @DefaultFor({ TypeUseLocation.EXCEPTION_PARAMETER
}) on @NonNull overrides the CLIMB-to-top rule.

A type system designer can specify defaults that differ from the CLIMB-to-top rule. In addition, a user may choose
a different rule for defaults using the @DefaultQualifier annotation; see Section 25.3.1.

25.3.3 Inherited defaults
In certain situations, it would be convenient for an annotation on a superclass member to be automatically inherited by
subclasses that override it. This feature would reduce both annotation effort and program comprehensibility. In general,
a program is read more often than it is edited/annotated, so the Checker Framework does not currently support this
feature.

Currently, a user can determine the annotation on a parameter or return value by looking at a single file. If
annotations could be inherited from supertypes, then a user would have to examine all supertypes, and do computations
over them, to understand the meaning of an unannotated type in a given file.

Computation is necessary because different annotations might be inherited from a supertype and an interface, or
from two interfaces. For return types, the inherited type should be the least upper bound of all annotations on overridden
implementations in supertypes. For method parameters, the inherited type should be the greatest lower bound of all
annotations on overridden implementations in supertypes. In each case, an error would be thrown if no such annotations
existed.

In the future, this feature may be added optionally, and each type-checker implementation can enable it if desired.

25.3.4 Inherited wildcard annotations
If a wildcard is unbounded and has no annotation (e.g. List<?>), the annotations on the wildcard’s bounds are copied
from the type parameter to which the wildcard is an argument.

For example, the two wildcards in the declarations below are equivalent.

class MyList<@Nullable T extends @Nullable Object> {}

MyList<?> listOfNullables;
MyList<@Nullable ? extends @Nullable Object> listOfNullables;

The Checker Framework copies these annotations because wildcards must be within the bounds of their corre-
sponding type parameter. By contrast, if the bounds of a wildcard were defaulted differently from the bounds of
its corresponding type parameter, then there would be many false positive type.argument.type.incompatible
warnings

Here is another example of two equivalent wildcard declarations:

class MyList<@Regex(5) T extends @Regex(1) Object> {}

MyList<?> listOfRegexes;
MyList<@Regex(5) ? extends @Regex(1) Object> listOfRegexes;

Note, this copying of annotations for a wildcard’s bounds applies only to unbounded wildcards. The two wildcards
in the following example are equivalent.

152

../api/org/checkerframework/framework/qual/DefaultQualifier.html

class MyList<@NonNull T extends @Nullable Object> {}

MyList<? extends Object> listOfNonNulls;
MyList<@NonNull ? extends @NonNull Object> listOfNonNulls2;

Note, the upper bound of the wildcard ? extends Object is defaulted to @NonNull using the CLIMB-to-top rule
(see Section 25.3.2). Also note that the MyList class declaration could have been more succinctly written as: class
MyList<T extends @Nullable Object> where the lower bound is implicitly the bottom annotation: @NonNull.

25.3.5 Default qualifiers for .class files (conservative library defaults)
(Note: Currently, the conservative library defaults presented in this section are off by default and can be turned on
by supplying the -AuseDefaultsForUncheckedcode=bytecode command-line option. In a future release, they will be
turned on by default and it will be possible to turn them off by supplying a -AuseDefaultsForUncheckedCode=-bytecode
command-line option.)

The defaulting rules presented so far apply to source code that is read by the compiler. When the compiler reads a
.class file, different defaulting rules apply.

If the checker was run during the compiler execution that created the .class file, then there is no need for defaults:
the .class file has an explicit qualifier at each type use. (Furthermore, unless warnings were suppressed, those
qualifiers are guaranteed to be correct.) When you are performing pluggable type-checking, it is best to ensure that the
compiler only reads such .class files. Section 29.4 discusses how to create annotated libraries.

If the checker was not run during the compiler execution that created the .class file, then the .class file contains
only the type qualifiers that the programmer wrote explicitly. (Furthermore, there is no guarantee that these qualifiers
are correct, since they have not been checked.) In this case, each checker decides what qualifier to use for the locations
where the programmer did not write an annotation. Unless otherwise noted, the choice is:

• For method parameters and lower bounds, use the bottom qualifier (see Section 30.4.7).
• For method return values, fields, and upper bounds, use the top qualifier (see Section 30.4.7).

These choices are conservative. They are likely to cause many false-positive type-checking errors, which will help
you to know which library methods need annotations. You can then write those library annotations (see Chapter 29) or
alternately suppress the warnings (see Chapter 26).

For example, an unannotated method

String concatenate(String p1, String p2)

in a classfile would be interpreted as

@Top String concatenate(@Bottom String p1, @Bottom String p2)

There is no single possible default that is sound for fields. In the rare circumstance that there is a mutable public
field in an unannotated library, the Checker Framework may fail to warn about code that can misbehave at run time.
The Checker Framework developers are working to improve handling of mutable public fields in unannotated libraries.

25.4 Automatic type refinement (flow-sensitive type qualifier inference)
The checkers soundly treat local variables and expressions within a method body as having a subtype of their declared
or defaulted (Section 25.3.1) type. This functionality reduces your burden of annotating types in your program and
eliminates some false positive warnings, but it never introduces unsoundness nor causes an error to be missed. This
functionality works within a method, but you still need to annotate method signatures (parameter and return type) and
field types.

By default all checkers automatically incorporate type refinement. Most of the time, users don’t have to think
about, and may not even notice, type refinement. (And most readers can skip reading this section of the manual, except

153

possibly the examples in Section 25.4.1.) The checkers simply do the right thing even when a programmer omits an
annotation on a local variable, or when a programmer writes an unnecessarily general type in a declaration.

The functionality has a variety of names: automatic type refinement, flow-sensitive type qualifier inference, local
type inference, and sometimes just “flow”.

If you find examples where you think a value should be inferred to have (or not have) a given annotation, but the
checker does not do so, please submit a bug report (see Section 33.2) that includes a small piece of Java code that
reproduces the problem.

25.4.1 Type refinement examples
Suppose you write

@Nullable String myVar;
...
if (myVar != null) {

myVar.hashCode();
}

The Nullness Checker issues a warning whenever a method such as hashCode() is called on a possibly-null value,
which may result in a null pointer exception. However, the Nullness Checker does not issue a warning for the call
myVar.hashCode() in the code above. Within the body of the if test, the type of myVar is @NonNull String, even
though myVar is declared as @Nullable String.

Here is another example:

@Nullable String myVar;
... // myVar has type @Nullable String
myVar = "hello";
... // myVar has type @NonNull String
myVar.hashCode();
...
myVar = myMap.get(someKey);
... // myVar has type @Nullable String

The Nullness Checker does not issue a warning for the call myVar.hashCode() above because after the assignment, the
type-checker treats myVar as having type @NonNull String, which is more precise than the programmer-written type.

Flow-sensitive type refinement applies to every checker, including new checkers that you write. Here is an example
for the Regex Checker (Chapter 11, page 84):

void m2(@Unannotated String s) {
s = RegexUtil.asRegex(s, 2); // asRegex throws error if arg is not a regex

// with the given number of capturing groups
... // s now has type "@Regex(2) String"

}

As a further example, consider this code, along with comments indicating whether the Nullness Checker (Chapter 3)
issues a warning. Note that the same expression may yield a warning or not depending on its context.

// Requires an argument of type @NonNull String
void parse(@NonNull String toParse) { ... }

// Argument does NOT have a @NonNull type
void lex(@Nullable String toLex) {

parse(toLex); // warning: toLex might be null

154

if (toLex != null) {
parse(toLex); // no warning: toLex is known to be non-null

}
parse(toLex); // warning: toLex might be null
toLex = new String(...);
parse(toLex); // no warning: toLex is known to be non-null

}

This example shows the general rules for when the Nullness Checker (Chapter 3) can automatically determine that
certain variables are non-null, even if they were explicitly or by default annotated as nullable. The checker treats a
variable or expression as @NonNull:

• starting at the time that it is either assigned a non-null value or checked against null (e.g., via an assertion, if
statement, or being dereferenced)

• until it might be re-assigned (e.g., via an assignment that might affect this variable, or via a method call that
might affect this variable).

The inference indicates when a variable can be treated as having a subtype of its declared type — for instance, when
an otherwise nullable type can be treated as a @NonNull one. The inference never treats a variable as a supertype of its
declared type (e.g., an expression with declared type @NonNull type is never inferred to be treated as possibly-null).

25.4.2 Types that are not refined
Array element types and generic arguments are never changed by type refinement. Changing these components of
a type never yields a subtype of the declared type. For example, List<Number> is not a subtype of List<Object>.
Similarly, the Checker Framework does not treat Number[] as a subtype of Object[]. For details, see Section 24.1.6
and Section 25.1.

25.4.3 Run-time tests and type refinement
Some type systems support a run-time test that the Checker Framework can use to refine types within the scope of a
conditional such as if, after an assert statement, etc.

Whether a type system supports such a run-time test depends on whether the type system is computing properties of
data itself, or properties of provenance (the source of the data). An example of a property about data is whether a string
is a regular expression. An example of a property about provenance is units of measure: there is no way to look at the
representation of a number and determine whether it is intended to represent kilometers or miles.

Type systems that support a run-time test are:

• Nullness Checker for null pointer errors (see Chapter 3, page 25)
• Map Key Checker to track which values are keys in a map (see Chapter 4, page 49)
• Optional Checker for errors in using the Optional type (see Chapter 5, page 52)
• Lock Checker for concurrency and lock errors (see Chapter 7, page 58)
• Index Checker for array accesses (see Chapter 8, page 69)
• Regex Checker to prevent use of syntactically invalid regular expressions (see Chapter 11, page 84)
• Format String Checker to ensure that format strings have the right number and type of % directives (see Chapter 12,

page 87)
• Internationalization Format String Checker to ensure that i18n format strings have the right number and type of
{} directives (see Chapter 13, page 94)

Type systems that do not currently support a run-time test, but could do so with some additional implementation
work, are

• Interning Checker for errors in equality testing and interning (see Chapter 6, page 54)

155

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html

• Property File Checker to ensure that valid keys are used for property files and resource bundles (see Chapter 14,
page 100)

• Internationalization Checker to ensure that code is properly internationalized (see Chapter 14.2, page 101)
• Signature String Checker to ensure that the string representation of a type is properly used, for example in
Class.forName (see Chapter 15, page 103).

• Constant Value Checker to determine whether an expression’s value can be known at compile time (see Chapter 19,
page 118)

Type systems that cannot support a run-time test are:

• Initialization Checker to ensure all fields are set in the constructor (see Chapter 3.8, page 35)
• Fake Enum Checker to allow type-safe fake enum patterns and type aliases or typedefs (see Chapter 9, page 78)
• Tainting Checker for trust and security errors (see Chapter 10, page 82)
• GUI Effect Checker to ensure that non-GUI threads do not access the UI, which would crash the application (see

Chapter 16, page 106)
• Units Checker to ensure operations are performed on correct units of measurement (see Chapter 17, page 111)
• Signedness Checker to ensure unsigned and signed values are not mixed (see Chapter 18, page 115)
• Aliasing Checker to identify whether expressions have aliases (see Chapter 20, page 122)
• Subtyping Checker for customized checking without writing any code (see Chapter 22, page 131)

25.4.4 Fields and flow-sensitive analysis
Flow sensitivity analysis infers the type of fields in some restricted cases:

• A final initialized field: Type inference is performed for final fields that are initialized to a compile-time constant
at the declaration site; so the type of protocol is @NonNull String in the following declaration:

public final String protocol = "https";

Such an inferred type may leak to the public interface of the class. If you wish to override such behavior, you can
explicitly insert the desired annotation, e.g.,

public final @Nullable String protocol = "https";

• Within method bodies: Type inference is performed for fields in the context of method bodies, like local variables.
Consider the following example, where updatedAt is a nullable field:

class DBObject {
@Nullable Date updatedAt;

void m() {
// updatedAt is @Nullable, so warning about .getTime()
... updatedAt.getTime() ... // warning about possible NullPointerException

if (updatedAt == null) {
updatedAt = new Date();

}

// updatedAt is now @NonNull, so .getTime() call is OK
... updatedAt.getTime() ...

}
}

Here the call to persistData() invalidates the inferred non-null type of updatedAt.
A method call may invalidate inferences about field types; see Section 25.4.5.

156

25.4.5 Side effects, determinism, purity, and flow-sensitive analysis
Side effect analysis is important for helping a checker reason about the values of expressions.

As described above, a checker can use a refined type for an expression from the time when the checker infers that
the value has that refined type, until the checker can no longer support that inference.

• The refined type begins at a test (such as if (myvar != null) ...) or an assignment. If the assignment occurs
within a method body, you can write a postcondition annotation such as @EnsuresNonNull.
• The refined type ends at an assignment or possible assignment. Any method call has the potential to side-effect

any field, so calling a method typically causes the checker to discard its knowledge of the refined type. This is
undesirable if the method doesn’t actually re-assign the field.

There are three annotations, collectively called purity annotations, that you can use to help express what effects a
method call does not have. Usually, you only need to use @SideEffectFree.

@SideEffectFree indicates that the method has no externally-visible side effects.
@Deterministic indicates that if the method is called multiple times with identical arguments, then it returns the

identical result according to == (not just according to equals()).
@Pure indicates that the method is both @SideEffectFree and @Deterministic.

The Javadoc of the annotations describes their semantics and how they are checked. This manual section gives
examples and supplementary information.

For example, consider the following declarations and uses:

@Nullable Object myField;

int computeValue() { ... }

void m() {
...
if (myField != null) {

int result = computeValue();
myField.toString();

}
}

Ordinarily, the Nullness Checker would issue a warning regarding the toString() call, because the receiver myField
might be null, according to the @Nullable annotation on the declaration of myField. Even though the code checked
the value of myField, the call to computeValue might have re-set myField to null. If you change the declaration of
computeValue to

@SideEffectFree
int computeValue() { ... }

then the Nullness Checker issues no warnings, because it can reason that the second occurrence of myField has the
same (non-null) value as the one in the test.

As a more complex example, consider the following declaration and uses:

@Nullable Object getField(Object arg) { ... }

void m() {
...
if (x.getField(y) != null) {

x.getField(y).toString();
}

}

157

../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/Pure.html

Ordinarily, the Nullness Checker would issue a warning regarding the toString() call, because the receiver
x.getField(y) might be null, according to the @Nullable annotation in the declaration of getField. If you change
the declaration of getField to

@Pure
@Nullable Object getField(Object arg) { ... }

then the Nullness Checker issues no warnings, because it can reason that the two invocations x.getField(y) have the
same value, and therefore that x.getField(y) is non-null within the then branch of the if statement.

If you supply the command-line option -AsuggestPureMethods, then the Checker Framework will suggest
methods that can be marked as @SideEffectFree, @Deterministic, or @Pure.

Currently, purity annotations are trusted. Purity annotations on called methods affect type-checking of client code.
However, you can make a mistake by writing @SideEffectFree on the declaration of a method that is not actually
side-effect-free or by writing @Deterministic on the declaration of a method that is not actually deterministic. To
enable checking of the annotations, supply the command-line option -AcheckPurityAnnotations. It is not enabled
by default because of a high false positive rate. In the future, after a new purity-checking analysis is implemented, the
Checker Framework will default to checking purity annotations.

It can be tedious to annotate library methods with purity annotations such as @SideEffectFree. If you supply
the command-line option -AassumeSideEffectFree, then the Checker Framework will unsoundly assume that every
called method is side-effect-free. This can make flow-sensitive type refinement much more effective, since method calls
will not cause the analysis to discard information that it has learned. However, this option can mask real errors. It is
most appropriate when you are starting out annotating a project, or if you are using the Checker Framework to find
some bugs but not to give a guarantee that no more errors exist of the given type.

A common error is:
MyClass.java:1465: error: int hashCode() in MyClass cannot override int hashCode(Object this) in java.lang.Object;
attempting to use an incompatible purity declaration

public int hashCode() {
^

found : []
required: [SIDE_EFFECT_FREE, DETERMINISTIC]

The reason for the error is that the Object class is annotated as:

class Object {
...
@Pure int hashCode() { ... }

}

(where @Pure means both @SideEffectFree and @Deterministic). Every overriding definition, including those in
your program, must use be at least as strong a specification; in particular, every overriding definition must be annotated
as @Pure.

You can fix the definition by adding @Pure to your method definition. Alternately, you can suppress the warning.
You can suppress each such warning individually using @SuppressWarnings("purity.invalid.overriding"), or
you can use the -AsuppressWarnings=purity.invalid.overriding command-line argument to suppress all such
warnings. In the future, the Checker Framework will support inheriting annotations from superclass definitions.

The @TerminatesExecution annotation indicates that a given method never returns. This can enable the flow-
sensitive type refinement to be more precise.

25.4.6 Assertions
If your code contains an assert statement, then your code could behave in two different ways at run time, depending
on whether assertions are enabled or disabled via the -ea or -da command-line options to java.

By default, the Checker Framework outputs warnings about any error that could happen at run time, whether
assertions are enabled or disabled.

158

../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/dataflow/qual/Deterministic.html
../api/org/checkerframework/dataflow/qual/TerminatesExecution.html

If you supply the -AassumeAssertionsAreEnabled command-line option, then the Checker Framework assumes
assertions are enabled. If you supply the -AassumeAssertionsAreDisabled command-line option, then the Checker
Framework assumes assertions are disabled. You may not supply both command-line options. It is uncommon to supply
either one.

These command-line arguments have no effect on processing of assert statements whose message contains the
text @AssumeAssertion; see Section 26.2.

25.5 Writing Java expressions as annotation arguments
Sometimes, it is necessary to write a Java expression as the argument to an annotation. The annotations that take a Java
expression as an argument include:

• @RequiresQualifier
• @EnsuresQualifier
• @EnsuresQualifierIf
• @RequiresNonNull
• @EnsuresNonNull
• @EnsuresNonNullIf
• @KeyFor
• @I18nFormatFor
• @EnsuresLockHeld
• @EnsuresLockHeldIf
• @GuardedBy
• @Holding

The set of permitted expressions is a subset of all Java expressions:

• the receiver object, this. You can write this to annotate any variable or declaration where you could write this
in code. Notably, it cannot be used in annotations on declarations of static fields or methods. For a field, this is
the field’s receiver, i.e. its container. For a local variable, it is the method’s receiver.

• the receiver object as seen from the superclass, super. This can be used to refer to fields shadowed in the subclass
(although shadowing fields is discouraged in Java).
• <self>, i.e. the value of the annotated reference (non-primitive) variable. Currently only defined for the
@GuardedBy type system. For example, @GuardedBy("<self>") Object o indicates that the value referenced
by o is guarded by the intrinsic (monitor) lock of the value referenced by o.

• a formal parameter, represented as # followed by the one-based parameter index. For example: #1, #3. It is not
permitted to write #0 to refer to the receiver object; use this instead. (A side note: The formal parameter syntax
#1 is less natural in source code than writing the formal parameter name. This syntax is necessary for separate
compilation, when an annotated method has already been compiled into a .class file and a client of that method
is later compiled. In the .class file, no formal parameter name information is available, so it is necessary to use
a number to indicate a formal parameter.)

• a local variable. This is not applicable for method annotations, but is applicable to type annotations such as
@KeyFor. Write the variable name. For example: myLocalVar.
• a static variable. Write the class name and the variable, as in System.out.
• a field of any expression. For example: next, this.next, #1.next. You may optionally omit a leading “this.”,

just as in Java. Thus, this.next and next are equivalent.
• an array access. For example: this.myArray[i], vals[#1].
• literals: string, integer, long, null, class literals.
• a method invocation on any expression. This even works for overloaded methods and methods with type

parameters. For example: m1(x, y.z, #2), a.m2("hello").
One unusual feature of the Checker Framework’s Java expressions is that a method call is allowed to have side
effects. Other tools forbid methods with side effects (and doing so is necessary if a specification is going to

159

../api/org/checkerframework/framework/qual/RequiresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifierIf.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNullIf.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html
../api/org/checkerframework/checker/i18nformatter/qual/I18nFormatFor.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeld.html
../api/org/checkerframework/checker/lock/qual/EnsuresLockHeldIf.html
../api/org/checkerframework/checker/lock/qual/GuardedBy.html
../api/org/checkerframework/checker/lock/qual/Holding.html
../api/org/checkerframework/checker/nullness/qual/KeyFor.html

be checked at run time via assertions). The Checker Framework enables you to state more facts. For example,
consider the annotation on java.io.BufferedReader.ready():

@EnsuresNonNullIf(expression="readLine()", result=true)
@Pure public boolean ready() throws IOException { ... }

This states that if readLine() is called immediately after ready() returns true, then readLine() returns a
non-null value. Currently, the Checker Framework cannot prove all contracts about method calls, so you may
need to suppress some warnings.

Limitations: The following Java expressions may not currently be written:

• Some literals: floats, doubles, and chars.
• String concatenation expressions.
• Mathematical operators (plus, minus, division, ...).
• Comparisons (equality, less than, etc.).

Additionally, it is not possible to write quantification over all array components (e.g. to express that all array
elements are non-null). There is no such Java expression, but it would be useful when writing specifications.

25.6 Field invariants
Sometimes a field declared in a superclass has a more precise type in a subclass. To express this fact, write
@FieldInvariant on the subclass. It specifies the field’s type in the class on which this annotation is written.
The field must be declared in a superclass and must be final.

For example,

class Person {
final @Nullable String nickname;
public Person(@Nullable String nickname) {

this.nickname = nickname;
}

}

// A rapper always has a nickname.
@FieldInvariant(qualifier = NonNull.class, field = "nickname")
class Rapper extends Person {

public Rapper(String nickname) {
super(nickname);

}
void method() {

... nickname.length() ... // legal, nickname is non-null in this class.
}

}

A field invariant annotation can refer to more than one field. For example, @FieldInvariant(qualifier = NonNull.class,
field = {fieldA, fieldB}) means that fieldA and fieldB are both non-null in the class upon which the an-
notation is written. A field invariant annotation can also apply different qualifiers to different fields. For example,
@FieldInvariant(qualifier = {NonNull.class, Untainted.class}, field = {fieldA, fieldB}) means
that fieldA is non-null and fieldB is untainted.

This annotation is inherited: if a superclass is annotated with @FieldInvariant, its subclasses have the same
annotation. If a subclass has its own @FieldInvariant, then it must include the fields in the superclass annotation
and those fields’ annotations must be a subtype (or equal) to the annotations for those fields in the the superclass
@FieldInvariant.

160

../api/org/checkerframework/framework/qual/FieldInvariant.html

Currently, the @FieldInvariant annotation is trusted rather than checked. In other words, the @FieldInvariant
annotation introduces a loophole in the type system, which requires verification by other means such as manual
examination.

25.7 Unused fields
In an inheritance hierarchy, subclasses often introduce new methods and fields. For example, a Marsupial (and its
subclasses such as Kangaroo) might have a variable pouchSize indicating the size of the animal’s pouch. The field
does not exist in superclasses such as Mammal and Animal, so Java issues a compile-time error if a program tries to
access myMammal.pouchSize.

If you cannot use subtypes in your program, you can enforce similar requirements using type qualifiers. For fields,
use the @Unused annotation (Section 25.7.1), which enforces that a field or method may only be accessed from a
receiver expression with a given annotation (or one of its subtypes). For methods, annotate the receiver parameter this;
then a method call type-checks only if the actual receiver is of the specified type.

Also see the discussion of typestate checkers, in Chapter 23.1.

25.7.1 @Unused annotation
A Java subtype can have more fields than its supertype. For example:

class Animal { }
class Mammal extends Animal { ... }
class Marsupial extends Mammal {

int pouchSize; // pouch capacity, in cubic centimeters
...

}

You can simulate the same effect for type qualifiers: the @Unused annotation on a field declares that the field may
not be accessed via a receiver of the given qualified type (or any supertype). For example:

class Animal {
@Unused(when=Mammal.class)
int pouchSize; // pouch capacity, in cubic centimeters
...

}
@interface Mammal { }
@interface Marsupial { }

@Marsupial Animal joey = ...;
... joey.pouchSize ... // OK
@Mammal Animal mae = ...;
... mae.pouchSize ... // compile-time error

The above class declaration is like writing

class @Mammal-Animal { ... }
class @Marsupial-Animal {

int pouchSize; // pouch capacity, in cubic centimeters
...

}

161

../api/org/checkerframework/framework/qual/Unused.html

Chapter 26

Suppressing warnings

When the Checker Framework reports a warning, it’s best to fix the underlying problem, by changing the code or its
annotations. For each warning, follow the methodology in Section 2.4.6 to correct the underlying problem.

This section describes what to do if the methodology of Section 2.4.6 indicates that you need to suppress the
warning. You won’t change your code, but you will prevent the Checker Framework from reporting this particular
warning to you.

You may wish to suppress checker warnings because of unannotated libraries or un-annotated portions of your
own code, because of application invariants that are beyond the capabilities of the type system, because of checker
limitations, because you are interested in only some of the guarantees provided by a checker, or for other reasons.
Suppressing a warning is similar to writing a cast in a Java program: the programmer knows more about the type than
the type system does and uses the warning suppression or cast to convey that information to the type system.

You can suppress a warning message in a single variable initializer, method, or class by using the following
mechanisms:

• the @SuppressWarnings annotation (Section 26.1), or
• the @AssumeAssertion string in an assert message (Section 26.2).

You can suppress warnings throughout the codebase by using the following mechanisms:

• the -AsuppressWarnings command-line option (Section 26.3),
• the -AskipUses and -AonlyUses command-line options (Section 26.4),
• the -AskipDefs and -AonlyDefs command-line options (Section 26.5),
• the -AuseDefaultsForUncheckedCode=source command-line option (Section 29.4),
• the -Alint command-line option enables/disables optional checks (Section 26.6), or
• not running the annotation processor (Section 26.7).

Some type checkers can suppress warnings via

• checker-specific mechanisms (Section 26.8).

The rest of this chapter explains these mechanisms in turn.

26.1 @SuppressWarnings annotation
You can suppress specific errors and warnings by use of the @SuppressWarnings annotation, for example
@SuppressWarnings("interning") or @SuppressWarnings("nullness"). Section 26.1.1 explains the syntax
of the argument string.

A @SuppressWarnings annotation may be placed on program declarations such as a local variable declaration, a
method, or a class. It suppresses all warnings related to the given checker, for that program element. Section 26.1.2
discusses where the annotation may be written in source code.

Section 26.1.3 gives best practices for writing @SuppressWarnings annotations.

162

https://docs.oracle.com/javase/8/docs/api/java/lang/SuppressWarnings.html

26.1.1 @SuppressWarnings syntax
The @SuppressWarnings annotation takes a string argument.

The most common usage is @SuppressWarnings("checkername"), as in @SuppressWarnings("interning")
or @SuppressWarnings("nullness"). The argument checkername is in lower case and is derived from the way you in-
voke the checker. For example, if you invoke a checker as javac -processor MyNiftyChecker ..., then you would
suppress its error messages with @SuppressWarnings("mynifty"). (An exception is the Subtyping Checker, for
which you use the annotation name; see Section 22.1). While not recommended, using @SuppressWarnings("all")
will suppress all warnings for all checkers.

The @SuppressWarnings argument string can also be of the form checkername:messagekey or messagekey, in
which case only errors/warnings relating to the given message key are suppressed. For example, cast.unsafe is the
messagekey for warnings about an unsafe cast, and cast.redundant is the messagekey for warnings about a redundant
cast.

Each warning from the compiler gives the most specific suppression key that can be used to suppress that warning.
An example is dereference.of.nullable in
MyFile.java:107: error: [dereference.of.nullable] dereference of possibly-null reference myList

myList.add(elt);
^

With the -AshowSuppressWarningKeys command-line option, the compiler lists every key that would suppress the
warning, not just the most specific one.

26.1.2 Where @SuppressWarnings can be written
@SuppressWarnings is a declaration annotation, so it may be placed on program declarations such as a local variable
declaration, a method, or a class. It cannot be used on statements, expressions, or types.

Always write a @SuppressWarnings annotation on the smallest possible scope. To reduce the scope of a
@SuppressWarnings annotation, it is sometimes desirable to refactor the code. You might extract an expression
into a local variable, so that warnings can be suppressed just for that local variable’s initializer expression. Likewise,
you might extract some code into a separate method.

As an example, consider suppressing a warning at a cast that you know is safe. Here is an example that uses the
Tainting Checker (Section 10); assume that expr has compile-time (declared) type @Tainted String, but you know
that the run-time value of expr is untainted.
@SuppressWarnings("tainting:cast.unsafe") // expr is untainted because ... [explanation goes here]
@Untainted String myvar = expr;

It would have been illegal to write
@Untainted String myvar;
...
@SuppressWarnings("tainting:cast.unsafe") // expr is untainted because ...
myvar = expr;

This does not work because Java does not permit annotations (such as @SuppressWarnings) on assignments or other
statements or expressions.

26.1.3 Good practices when suppressing warnings
Suppress warnings in the smallest possible scope

If a particular expression causes a false positive warning, you should extract that expression into a local variable and
place a @SuppressWarnings annotation on the variable declaration, rather than suppressing warnings for a larger
expression or an entire method body. See Section 26.1.2.

163

Use a specific argument to @SuppressWarnings

It is best to use the most specific possible message key to suppress just a specific error that you know to be a false
positive. The checker outputs this message key when it issues an error. If you use a broader @SuppressWarnings
annotation, then it may mask other errors that you needed to know about.

The example of Section 26.1.2 could have been written as any one of the following, with the last one being the best
style:

@SuppressWarnings("tainting") // suppresses all tainting-related warnings
@SuppressWarnings("tainting:cast") // suppresses tainting warnings about casts
@SuppressWarnings("tainting:cast.unsafe") // suppresses tainting warnings about unsafe casts

Justify why the warning is a false positive

A @SuppressWarnings annotation asserts that the programmer knows that the code is actually correct or safe (that is,
no undesired behavior will occur), even though the type system is unable to prove that the code is correct or safe.

Whenever you write a @SuppressWarnings annotation, you should also write, typically on the same line, a code
comment explaining why the code is actually correct. In some cases you might also justify why the code cannot be
rewritten in a simpler way that would be amenable to type-checking. Also make it clear what error is being suppressed;
this is particularly important when the @SuppressWarnings is on a method declaration and the suppressed warning
might be anywhere in the method body.

This documentation will help you and others to understand the reason for the @SuppressWarnings annotation. It
will also help you audit your code to verify all the warning suppressions. (The code is correct only if the checker issues
no warnings and each @SuppressWarnings is correct.)

Here are some terse examples from plume-lib:

@SuppressWarnings("purity") // side effect to local state of type BitSet
@SuppressWarnings("cast") // cast is redundant (except when checking nullness)
@SuppressWarnings("interning") // FbType.FREE is interned but is not annotated
@SuppressWarnings("interning") // equality testing optimization
@SuppressWarnings("nullness") // used portion of array is non-null
@SuppressWarnings("nullness") // oi.factory is a static method, so null first argument is OK

26.2 @AssumeAssertion string in an assert message
You can suppress a warning by asserting that some property is true, and placing the string
@AssumeAssertion(warningkey) in the assertion message.

For example, in this code:

while (c != Object.class) {
...
c = c.getSuperclass();
assert c != null

: "@AssumeAssertion(nullness): c was not Object, so its superclass is not null";
}

the Nullness Checker assumes that c is non-null from the assert statement forward (including on the next iteration
through the loop).

The assert expression must be an expression that would affect flow-sensitive type qualifier refinement (Sec-
tion 25.4), if the expression appeared in a conditional test. Each type system has its own rules about what type
refinement it performs.

164

https://mernst.github.io/plume-lib/

The warning key is exactly as in the @SuppressWarnings annotation (Section 26.1). The same good practices
apply as for @SuppressWarnings annotations, such as writing a comment justifying why the assumption is safe
(Section 26.1.3).

The -AassumeAssertionsAreEnabled and -AassumeAssertionsAreDisabled command-line options (Sec-
tion 25.4.6) do not affect processing of assert statements that have @AssumeAssertion in their message. Writing
@AssumeAssertion means that the assertion would succeed if it were executed, and the Checker Framework makes
use of that information regardless of the -AassumeAssertionsAreEnabled and -AassumeAssertionsAreDisabled
command-line options.

26.2.1 Suppressing warnings and defensive programming
This section explains the distinction between two different uses for assertions (and for related methods like JUnit’s
Assert.assertNotNull).

Assertions are commonly used for two distinct purposes: documenting how the program works and debugging the
program when it does not work correctly. By default, the Checker Framework assumes that each assertion is used for
debugging: the assertion might fail at run time, and the programmer wishes to be informed at compile time about such
possible run-time errors. On the other hand, if you write the @AssumeAssertion string in the assert message, then
the Checker Framework assumes that you have used some other technique to verify that the assertion can never fail at
run time, so the checker assumes the assertion passes and does not issue a warning.

Distinguishing the purpose of each assertion is important for precise type-checking. Suppose that a programmer
encounters a failing test, adds an assertion to aid debugging, and fixes the test. The programmer leaves the assertion
in the program if the programmer is worried that the program might fail in a similar way in the future. The Checker
Framework should not assume that the assertion succeeds — doing so would defeat the very purpose of the Checker
Framework, which is to detect errors at compile time and prevent them from occurring at run time.

On the other hand, assertions sometimes document facts that a programmer has independently verified to be true, and
the Checker Framework can leverage these assertions in order to avoid issuing false positive warnings. The programmer
marks such assertions with the @AssumeAssertion string in the assert message. Only do so if you are sure that the
assertion always succeeds at run time.

Sometimes methods such as NullnessUtil.castNonNull are used instead of assertions. Just as for assertions,
you can treat them as debugging aids or as documentation. If you know that a particular codebase uses a nullness-
checking method not for defensive programming but to indicate facts that are guaranteed to be true (that is, these
assertions will never fail at run time), then you can suppress warnings related to it. Annotate its definition just as
NullnessUtil.castNonNull is annotated (see the source code for the Checker Framework). Also, be sure to document
the intention in the method’s Javadoc, so that programmers do not accidentally misuse it for defensive programming.

If you are annotating a codebase that already contains precondition checks, such as:

public String get(String key, String def) {
checkNotNull(key, "key"); // NOI18N
...

}

then you should mark the appropriate parameter as @NonNull (which is the default). This will prevent the checker from
issuing a warning about the checkNotNull call.

26.3 -AsuppressWarnings command-line option
Supplying the -AsuppressWarnings command-line option is equivalent to writing a @SuppressWarnings annotation
on every class that the compiler type-checks. The argument to -AsuppressWarnings is a comma-separated list of
warning suppression keys, as in -AsuppressWarnings=purity,uninitialized.

When possible, it is better to write a @SuppressWarnings annotation with a smaller scope, rather than using the
-AsuppressWarnings command-line option.

165

../api/org/checkerframework/checker/nullness/NullnessUtil.html#castNonNull-T-
../api/org/checkerframework/checker/nullness/NullnessUtil.html#castNonNull-T-

26.4 -AskipUses and -AonlyUses command-line options
You can suppress all errors and warnings at all uses of a given class, or suppress all errors and warnings except those
at uses of a given class. (The class itself is still type-checked, unless you also use the -AskipDefs or -AonlyDefs
command-line option, see 26.5).

Set the -AskipUses command-line option to a regular expression that matches class names (not file names) for
which warnings and errors should be suppressed. Or, set the -AonlyUses command-line option to a regular expression
that matches class names (not file names) for which warnings and errors should be emitted; warnings about uses of all
other classes will be suppressed.

For example, suppose that you use “-AskipUses=^java\.” on the command line (with appropriate quoting) when
invoking javac. Then the checkers will suppress all warnings related to classes whose fully-qualified name starts with
java., such as all warnings relating to invalid arguments and all warnings relating to incorrect use of the return value.

To suppress all errors and warnings related to multiple classes, you can use the regular expression alternative
operator “|”, as in “-AskipUses="java\.lang\.|java\.util\."” to suppress all warnings related to uses of classes
belong to the java.lang or java.util packages. (Depending on your shell or other tool, you might need to change or
remove the quoting.)

You can supply both -AskipUses and -AonlyUses, in which case the -AskipUses argument takes precedence,
and -AonlyUses does further filtering but does not add anything that -AskipUses removed.

Warning: Use the -AonlyUses command-line option with care, because it can have unexpected results. For example,
if the given regular expression does not match classes in the JDK, then the Checker Framework will suppress every
warning that involves a JDK class such as Object or String. The meaning of -AonlyUses may be refined in the
future. Oftentimes -AskipUses is more useful.

26.5 -AskipDefs and -AonlyDefs command-line options
You can suppress all errors and warnings in the definition of a given class, or suppress all errors and warnings except
those in the definition of a given class. (Uses of the class are still type-checked, unless you also use the -AskipUses or
-AonlyUses command-line option, see 26.4.)

Set the -AskipDefs command-line option to a regular expression that matches class names (not file names) in
whose definition warnings and errors should be suppressed. Or, set the -AonlyDefs command-line option to a regular
expression that matches class names (not file names) whose definitions should be type-checked.

For example, if you use “-AskipDefs=^mypackage\.” on the command line (with appropriate quoting) when
invoking javac, then the definitions of classes whose fully-qualified name starts with mypackage. will not be checked.

If you supply both -AskipDefs and -AonlyDefs, then -AskipDefs takes precedence.
Another way not to type-check a file is not to pass it on the compiler command-line: the Checker Framework

type-checks only files that are passed to the compiler on the command line, and does not type-check any file that is not
passed to the compiler. The -AskipDefs and -AonlyDefs command-line options are intended for situations in which
the build system is hard to understand or change. In such a situation, a programmer may find it easier to supply an extra
command-line argument, than to change the set of files that is compiled.

A common scenario for using the arguments is when you are starting out by type-checking only part of a legacy
codebase. After you have verified the most important parts, you can incrementally check more classes until you are
type-checking the whole thing.

26.6 -Alint command-line option
The -Alint option enables or disables optional checks, analogously to javac’s -Xlint option. Each of the distributed
checkers supports at least the following lint options:

• cast:unsafe (default: on) warn about unsafe casts that are not checked at run time, as in ((@NonNull String)
myref). Such casts are generally not necessary when flow-sensitive local type refinement is enabled.

166

• cast:redundant (default: on) warn about redundant casts that are guaranteed to succeed at run time, as in
((@NonNull String) "m"). Such casts are not necessary, because the target expression of the cast already has
the given type qualifier.

• cast Enable or disable all cast-related warnings.
• all Enable or disable all lint warnings, including checker-specific ones if any. Examples include
redundantNullComparison for the Nullness Checker (see Section 3.1) and dotequals for the Interning
Checker (see Section 6.3). This option does not enable/disable the checker’s standard checks, just its optional
ones.

• none The inverse of all: disable or enable all lint warnings, including checker-specific ones if any.

To activate a lint option, write -Alint= followed by a comma-delimited list of check names. If the option is preceded
by a hyphen (-), the warning is disabled. For example, to disable all lint options except redundant casts, you can pass
-Alint=-all,cast:redundant on the command line.

Only the last -Alint option is used; all previous -Alint options are silently ignored. In particular, this means that
-Alint=all -Alint=cast:redundant is not equivalent to -Alint=-all,cast:redundant.

26.7 Don’t run the processor
You can compile parts of your code without use of the -processor switch to javac. No checking is done during such
compilations, so no warnings are issued related to pluggable type-checking.

You can direct your build system to avoid compiling certain parts of your code. For example, the -Dmaven.test.skip=true
command-line argument tells Maven not to compile (or run) the tests.

26.8 Checker-specific mechanisms
Finally, some checkers have special rules. For example, the Nullness checker (Chapter 3) uses the special castNonNull
method to suppress warnings (Section 3.4.1). This manual also explains special mechanisms for suppressing warnings
issued by the Fenum Checker (Section 9.4) and the Units Checker (Section 17.5).

167

Chapter 27

Handling legacy code

Section 2.4.2 describes a methodology for applying annotations to legacy code. This chapter tells you what to do if, for
some reason, you cannot change your code in such a way as to eliminate a checker warning.

Also recall that you can convert checker errors into warnings via the -Awarns command-line option; see Sec-
tion 2.2.3.

27.1 Checking partially-annotated programs: handling unannotated code
Sometimes, you wish to type-check only part of your program. You might focus on the most mission-critical or
error-prone part of your code. When you start to use a checker, you may not wish to annotate your entire program right
away. You may not have enough knowledge to annotate poorly-documented libraries that your program uses.

If annotated code uses unannotated code, then the checker may issue warnings. For example, the Nullness Checker
(Chapter 3) will warn whenever an unannotated method result is used in a non-null context:

@NonNull myvar = unannotated_method(); // WARNING: unannotated_method may return null

If the call can return null, you should fix the bug in your program by removing the @NonNull annotation in your
own program.

If the library call never returns null, there are several ways to eliminate the compiler warnings.

1. Annotate unannotated_method in full. This approach provides the strongest guarantees, but may require you to
annotate additional methods that unannotated_method calls. See Chapter 29 for a discussion of how to annotate
libraries for which you have no source code.

2. Annotate only the signature of unannotated_method, and suppress warnings in its body. Two ways to suppress
the warnings are via a @SuppressWarnings annotation or by not running the checker on that file (see Chapter 26).

3. Suppress all warnings related to uses of unannotated_method via the skipUses processor option (see Sec-
tion 26.4). Since this can suppress more warnings than you may expect, it is usually better to annotate at least the
method’s signature. If you choose the boundary between the annotated and unannotated code wisely, then you
only have to annotate the signatures of a limited number of classes/methods (e.g., the public interface to a library
or package).

Chapter 29 discusses adding annotations to signatures when you do not have source code available. Chapter 26
discusses suppressing warnings.

27.1.1 Declaration annotations
When a declaration annotation is an alias for a type annotation, then the Checker Framework may move the annotation
before replacing it by the canonical version. (If the declaration annotation is in an org.checkerframework package, it is
not moved.)

168

../api/org/checkerframework/checker/nullness/qual/NonNull.html

For example,

import android.support.annotation.NonNull;
...
@NonNull Object [] returnsArray();

is treated as if the programmer had written

import org.checkerframework.checker.nullness.qual.NonNull;
...
Object @NonNull [] returnsArray();

because Android’s @NonNull annotation is a declaration annotation, which is understood to apply to the top-level return
type of the annotated method.

When possible, you should use type annotations rather than declaration annotations.

169

Chapter 28

Type inference

There are two different tasks that are commonly called “type inference”:

1. Type inference during type-checking: The type-checker fills in an appropriate type where the programmer didn’t
write one, but does not change the source code. See Section 28.1.

2. Type inference to annotate a program: As a separate step before type-checking, a type inference tool inserts type
qualifiers into the source code. See Section 28.2.

Each variety has its own advantages, discussed below. Advantages of all varieties of type inference include:

• Less work for the programmer.
• The tool chooses the most general type, whereas a programmer might accidentally write a more-specific,

less-generally-useful annotation.

28.1 Local type inference during type-checking
During type-checking, if certain variables have no type qualifier, the type-checker determines whether there is some
type qualifier that would permit the program to type-check. If so, the type-checker uses that type qualifier, but does
not change the source code. Each time the type-checker runs, it re-infers the type qualifier for that variable. If no type
qualifier exists that permits the program to type-check, the type-checker issues a warning.

Local type inference is built into the Checker Framework. Every checker automatically uses it. As a result, a
programmer typically does not have to write any qualifiers inside the body of a method. However, it primarily works
within a method, not across method boundaries. The source code must already contain annotations for method signatures
(arguments and return values) and fields.

Advantages of this variety of type inference include:

• If the type qualifier is obvious to the programmer, then omitting it can reduce annotation clutter in the program.
• If the code changes, then there is no old annotation that might need to be updated.
• Within-method type inference occurs automatically. The programmer doesn’t have to do anything to take

advantage of it.

For more details about local type inference during type-checking, also known as “flow-sensitive local type refine-
ment”, see Section 25.4.

28.2 Type inference to annotate a program
As a separate step before type-checking, a type inference tool takes the program as input, and outputs a set of type
qualifiers that would make the program type-check. (If no such set exists, for example because the program is not

170

type-correct, then the inference tool does its best but makes no guarantees.) These qualifiers are inserted into the source
code or the class file. They can be viewed and adjusted by the programmer, and can be used by tools such as the
type-checker.

Advantages of this variety of type inference include:

• The inference may be more precise by taking account of the entire program rather than just reasoning one method
at a time.

• The program source code contains documentation in the form of type qualifiers, which can aid programmer
understanding and may make type-checking warnings more comprehensible.

28.2.1 Type inference tools
This section lists tools that take a program and output a set of annotations for it. It first lists tools that work only for a
single type system (but may do a more accurate job for that type system) then lists general tools that work for any type
system.

Type inference for specific type systems

Section 3.3.7 lists several tools that infer annotations for the Nullness Checker.
If you run the Checker Framework with the -AsuggestPureMethods command-line option, it will suggest methods

that can be marked as @SideEffectFree, @Deterministic, or @Pure; see Section 25.4.5.

Type inference for any type system

By supplying the -Ainfer command-line option, any type-checker can infer annotations. See Section 28.3.
Cascade [VPEJ14] is an Eclipse plugin that implements interactive type qualifier inference. Cascade is interactive

rather than fully-automated: it makes it easier for a developer to insert annotations. Cascade starts with an unannotated
program and runs a type-checker. For each warning it suggests multiple fixes, the developer chooses a fix, and Cascade
applies it. Cascade works with any checker built on the Checker Framework. You can find installation instructions and
a video tutorial at https://github.com/reprogrammer/cascade.

28.3 Whole-program inference
Whole-program inference is an interprocedural inference that infers types for fields, method parameters, and method
return types that do not have a user-written annotation (for the given type system). The inferred types are inserted
into your program. The inferred type is the most specific type that is compatible with all the uses in the program. For
example, the inferred type for a field is the least upper bound of the types of all the expressions that are assigned into
the field.

To use whole-program inference, make sure that insert-annotations-to-source, from the Annotation
File Utilities project, is on your path (for example in the $PATH environment variable). Then, run the script
checker-framework/checker/bin/infer-and-annotate.sh. Its command-line arguments are:

1. Optional: Command-line arguments to insert-annotations-to-source.
2. Processor’s name.
3. Target program’s classpath. This argument is required; pass "" if it is empty.
4. Optional: Extra processor arguments which will be passed to the checker, if any. You may supply any number of

such arguments, or none. Each such argument must start with a hyphen.
5. Optional: Paths to .jaif files used as input in the inference process.
6. Paths to .java files in the program.

For example, to add annotations to the plume-lib project:

171

https://github.com/reprogrammer/cascade/
https://github.com/reprogrammer/cascade
https://checkerframework.org/annotation-file-utilities/#insert-annotations-to-source

git clone https://github.com/mernst/plume-lib.git
cd plume-lib
make jar
$CHECKERFRAMEWORK/checker/bin/infer-and-annotate.sh \

"LockChecker,NullnessChecker" java/plume.jar:java/lib/junit-4.12.jar \
-AprintErrorStack \
‘find java/src/plume/ -name "*.java"‘

View the results
git diff

You may need to wait a few minutes for the command to complete. You can ignore warnings that the command
outputs while trying different annotations in your code.

It is recommended that you run infer-and-annotate.sh on a copy of your code, so that you can see what changes
it made and so that it does not change your only copy. One way to do this is to work in a clone of your repository that
has no uncommitted changes.

Whole-program inference differs from type refinement (Section 25.4) in three ways. First, type refinement only
works within a method body. Second, type refinement always refines the current type, regardless of whether the value
already has an annotation in the source code. Third, whole-program inference can infer a subtype or a supertype of the
default type, by contrast with type refinement which always refines the current type to a subtype.

28.3.1 Whole-program inference ignores some code
Whole-program inference ignores code within the scope of a @SuppressWarnings annotation with an appropriate key
(Section 26.1). In particular, uses within the scope do not contribute to the inferred type, and declarations within the
scope are not changed. You should remove @SuppressWarnings annotations from the class declaration of any class
you wish to infer types for.

As noted below, whole-program inference requires invocations of your code, or assignments to your methods, to
generalize from. If a field is set via reflection (such as via injection), then whole-program inference would produce
an inaccurate result. There are two ways to make whole-program inference ignore such a field. (1) You probably
have an annotation such as @Inject or @Option that indicates such fields. Meta-annotate the declaration of the
Inject or Option annotation with @IgnoreInWholeProgramInference. (2) Annotate the field to be ignored with
@IgnoreInWholeProgramInference.

Whole-program inference, for a type-checker other than the Nullness Checker, ignores (pseudo-)assignments where
the right-hand-side is the null literal.

28.3.2 Manually checking whole-program inference results
As with any type inference tool, it is a good idea to manually examine the results.

• Whole-program inference can produce undesired results when your code has non-representative or erroneous
calls to a particular method or assignments to a particular field, as explained below. This is especially noticeable
when the arguments or assignments are literals.
• If an annotation is inferred for a use of type variables; it might be more appropriate for you to move those

annotations to the corresponding upper bounds of the type variable declaration.

Poor whole-program inference results due to non-representative uses

Whole-program inference determines a method parameter’s type annotation based on what arguments are passed to the
method, but not on how the parameter is used within the method body.

• If the program contains erroneous calls, the inferred annotations may reflect those errors.
Suppose you intend method m2 to be called with non-null arguments, but your program contains an error and one
of the calls to m2 passes null as the argument. Then the tool will infer that m2’s parameter has @Nullable type.
You should correct the bug and re-run inference.

172

https://docs.oracle.com/javaee/7/api/javax/inject/Inject.html
https://types.cs.washington.edu/plume-lib/api/plume/Option.html
../api/org/checkerframework/framework/qual/IgnoreInWholeProgramInference.html
../api/org/checkerframework/framework/qual/IgnoreInWholeProgramInference.html

• If the program uses (say) a method in a limited way, then the inferred annotations will be legal for the program as
currently written but may not be as general as possible and may not accommodate future program changes.
Here are some examples:

– Suppose that your program currently calls method m1 only with non-null arguments. The tool will infer that
m1’s parameter has @NonNull type. If you had intended the method to be able to take null as an argument
and you later add such a call, the type-checker will issue a warning because the automatically-inserted
@NonNull annotation is inconsistent with the new call.

– If your program (or test suite) passes only null as an argument, the inferred type will be the bottom type,
such as @GuardedByBottom.

– It is common for whole-program inference to infer @Interned and @Regex annotations on String variables
for which the analyzed code only uses a constant string.

In each case, you can correct the inferred results manually, or you can add tests that pass additional values then
re-run inference.

28.3.3 How whole-program inference works
This section explains how the infer-and-annotate.sh script works. If you merely want to run the script and you are
not encountering trouble, you can skip this section.

If you supply to javac the command-line option -Ainfer, then the checker outputs .jaif files with refined types
for fields and method signatures. The output .jaif files are located in the folder build/whole-program-inference,
relative to where you executed the javac command.

You can use the Annotation File Utilities (https://checkerframework.org/annotation-file-utilities/)
to insert these refined types in your program. Then, the next time that you run type-checking, there are likely to be
fewer type-checking warnings.

Note that a three-step process is required:

1. Run the checker with the -Ainfer command-line option to produce a .jaif file. Some type-checking errors
may result.

2. Insert the .jaif file’s annotations in the program.
3. Run the checker again. Fewer type-checking errors may result.

A good approach is to repeatedly run the above process until there are no more changes to the inference results (that is,
the .jaif file is unchanged between two runs). That is exactly what the infer-and-annotate.sh script does.

The infer-and-annotate.sh script insulates you from the clumsy multi-step process. The multi-step process is
required because type-checking is modular: it processes each class only once, independently. Modularity enables you to
run type-checking on only part of your program, and it makes type-checking fast. However, it has some disadvantages:

• The first run of the type-checker cannot take advantage of whole-program inference results because whole-
program inference is only complete at the end of type-checking, and modular type-checking does not revisit any
already-processed classes.

• The reason that multiple executions are required is that revisiting an already-processed class may result in a better
estimate.

173

https://checkerframework.org/annotation-file-utilities/

Chapter 29

Annotating libraries

When your code uses a library that is not currently being compiled, the Checker Framework looks up the library’s
annotations in its class files. Section 2.2.1 tells you how to use a version of a library that contains type annotations. If
your code uses a library that does not contain type annotations, then the type-checker has no way to know the library’s
behavior. The type-checker makes conservative assumptions about unannotated bytecode. (See Section 25.3.5 for
details, an example, and how to override this conservative behavior.) These conservative library annotations invariably
lead to checker warnings.

This chapter describes how to eliminate the warnings by adding annotations to the library. (Alternately, you can
instead suppress all warnings related to an unannotated library, or to part of your codebase, by use of the -AskipUses
or -AonlyUses command-line option; see Sections 26.4–26.5.)

You can write annotations for a library, and make them known to a checker, in two ways.

1. Write annotations in a copy of the library’s source code (for instance, in a fork of the library’s GitHub project).
In addition to writing annotations, adjust the build system to run pluggable-type-checking when compiling (see
Chapter 31, page 203).
Then, when doing pluggable type-checking, put the annotated library’s .jar file on the classpath, as explained in
Section 2.2.1.
With this compilation approach, the syntax of the library annotations is validated ahead of time. Thus, this
compilation approach is less error-prone, and the type-checker runs faster. You get correctness guarantees about
the library in addition to your code.
For instructions, see Section 29.2.

2. Write annotations in a “stub file”, if you do not have access to the source code.
Then, when doing pluggable type-checking, supply the “stub file” textually to the Checker Framework.
This approach does not require you to compile the library source code. A stub file is applicable to multiple
versions of a library, so the stub file does not need to be updated when a new version of the library is released,
unless the API has changed (such as defining a new method).
For instructions, see Section 29.5.

If you annotate a new library, please inform the Checker Framework developers so that your annotated library can
be distributed with the Checker Framework. Sharing your annotations is useful even if the library is only partially
annotated. However, as noted in Sections 2.4.2 and 29.1.4, you should annotate an entire class at a time. You may find
type inference tools (Chapter 28.2, page 170) helpful when getting started, but you should always examine their results.

29.1 Tips for annotating a library
Section 2.4 gives general tips for writing annotations. This section gives tips that are specific to annotating a third-party
library.

174

29.1.1 Don’t change the code
When you annotate a library, you should only add annotations and, when necessary, documentation of those annotations
in a Java comment (// or /*...*/).

Do not change the library’s code, which will change its behavior and make the annotated version inconsistent with
the unannotated version. (Sometimes it is acceptable to make a refactoring, such as extracting an expression into a new
local variable in order to annotate its type or suppress a warning.)

Do not change publicly-visible documentation, such as Javadoc comments. That also makes the annotated version
inconsistent with the unannotated version.

Do not change formatting and whitespace.
All of these changes increase the difference between upstream (the original version) and your annotated version.

This makes it harder for others to understand what you have done, and they make it harder to pull changes from upstream
into the annotated library.

29.1.2 Library annotations should reflect the specification, not the implementation
Publicly-visible annotations (including those on public method formal parameters and return types) should be based on
the documentation, typically the method’s Javadoc. In other words, your annotations should re-state facts that are in the
Javadoc documentation.

Do not add requirements or guarantees beyond what the library author has already committed to. If a project’s
Javadoc says nothing about nullness, then you should not assume that the specification forbids null, nor that it permits
it. (If the project’s Javadoc explicitly mentions null everywhere it is permitted, then you can assume it is forbidden
elsewhere, where the author omitted those statements.)

If a fact is not mentioned in the documentation, then it is usually an implementation detail. Clients should not
depend on implementation details, which are prone to change without notice. (In some cases, you can infer some facts
from the implementation, such as that null is permitted for a method’s parameter or return type if the implementation
explicitly passes null to the method or the method implementation returns null.)

If there is a fact that you think should be in the library’s documentation but was unintentionally omitted by its
authors, then please submit a bug report asking them to update the documentation to reflect this fact. After they do, you
can also express the fact as an annotation.

29.1.3 Report bugs upstream
While annotating the library, you may discover bugs or missing/wrong documentation. If you have a documentation
improvement or a bug fix, then open a pullrequest against the upstream version of the library. This will benefit all users
of the library. And, once the documentation is updated, you will be able to add annotations that are consistent with the
documentation.

29.1.4 Fully annotate the library, or indicate which parts you did not
If you do not annotate all the files in the library, then use @AnnotatedFor to indicate what files you have annotated.

Whenever you annotate any part of a file, fully annotate the file! That is, write annotations for all the methods
and fields, based on their documentation. If you don’t annotate the whole file, then other people won’t know whether
a particular method is unannotated because you didn’t get to it yet or because you decided that it didn’t need any
annotations.

29.1.5 Verify your annotations
Ideally, after you annotate a file, you should type-check the file to verify the correctness and completeness of your
annotations.

An alternative is to only annotate method signatures. The alternative is quicker but more error-prone, and there
is no difference from the point of view of clients, who can only see annotations on public methods and fields. When

175

../api/org/checkerframework/framework/qual/AnnotatedFor.html

you compile the library, the type-checker will probably issue warnings, but if you supply -Awarns, you don’t have to
suppress those warnings and the compiler will still produce .class files.

29.2 Creating an annotated library
This section describes how to create an annotated library.

1. See the the org.checkerframework.annotatedlib group in the Central Repository to find out whether an
annotated version of the library already exists.
If it exists, fork its repository in https://github.com/typetools/, tweak its buildfile to run an additional
checker, and add annotations for that checker.
If it does not already exist, fork the project (if its license permits forking). Add a note, perhaps in a README,
indicating how to obtain the corresponding upstream version (such as a git commit id); that will enable others to
see exactly what edits you have made.
Adjust the library’s build process, such as an Ant, Gradle, or Maven buildfile.

(a) Every time the build system runs the compiler, it should:
• pass the -AuseDefaultsForUncheckedCode=source,bytecode command-line option and
• run every pluggable type-checker for which any annotations exist, using -processor
TypeSystem1,TypeSystem2,TypeSystem3

(b) When the build system creates a .jar file, the resulting .jar file includes the contents of
checker-framework/checker/dist/checker-qual.jar.

You are not adding new build targets, but modifying existing targets. The reason to run every type-checker is
to verify the annotations you wrote, and to use appropriate defaults for all unannotated type uses. The reason
to include the contents of checker-qual.jar is so that the resulting .jar file can be used whether or not the
Checker Framework is being run.

2. Annotate some files.
When you annotate a file, annotate the whole thing, not just a few of its methods. Once the file is fully
annotated, add an @AnnotatedFor({"checkername"}) annotation to its class(es), or augment an existing
@AnnotatedFor annotation.

3. Build the library.
Because of the changes that you made in step 1, this will run pluggable type-checkers. If there are any compiler
warnings, fix them and re-compile.
Now you have a .jar file that you can use while type-checking and at run time.

4. Tell other people about your work so that they can benefit from it.

• Please inform the Checker Framework developers about your new annotated library by opening an issue.
This will let us add your annotations to a repository in https://github.com/typetools/ and upload a
compiled artifact to the Maven Central Repository.
• Encourage the library’s maintainers to accept your annotations into its main version control repository. This

will make the annotations easier to maintain, the library will obtain the correctness guarantees of pluggable
type-checking, and there will be no need for the Checker Framework to include an annotated version of the
library.
If the library maintainers do not accept the annotations, then periodically, such as when a new version of the
library is released, pull changes from upstream (the library’s main version control system) into your fork,
add annotations to any newly-added methods in classes that are annotated with @AnnotatedFor, rebuild to
create an updated .jar file, and inform the Checker Framework developers by opening an issue or issuing a
pull request.

176

https://github.com/typetools/
../api/org/checkerframework/framework/qual/AnnotatedFor.html
https://github.com/typetools/

29.3 Creating an annotated JDK
This section tells how to create an annotated JDK for a new type system. Section 33.2.1 tells how to improve annotations
for the JDK for an existing type system.

When you create a new checker, you need to also supply annotations for parts of the JDK, either as stub files
or as source code that will be compiled and its annotations inserted into the JDK. This section describes the latter
approach. It assumes that you have already followed the instructions for building the Checker Framework from source
(Section 33.3).

If you are adding annotations to an existing annotated JDK, then you only need to follow the last two steps.

1. Get Java 8 source code (must be version 8)

(a) Download JDK8 from Oracle
(b) Open the downloaded tar (tar -xvzf)
(c) Unzip the contained src.zip (resulting in folders: com/, java/, javax/, launcher/, org/)

2. Set up the Checker Framework (replace mychecker with the name of your checker)

(a) mkdir $JSR308/checker-framework/checker/jdk/mychecker/
cd $JSR308/checker-framework/checker/jdk/mychecker/
echo "include ../Makefile.jdk" > Makefile

(b) Add mychecker to $JSR308/checker-framework/checker/jdk/MakeFile in the definition of CHECKER_DIRS
and in the definition of ANNOTATED_CLASSES (don’t forget to add a closing parenthesis at the end of the
definition of ANNOTATED_CLASSES!).

3. For each file you want to annotate, copy the JDK version into the directory $JSR308/checker-framework/checker/jdk/mychecker/src/,
using the same directory structure as the JDK.
Whenever you add a file, fully annotate it, as described in Section 29.1.
If you are only annotating fields and method signatures (but not ensuring that method bodies type-check), then
you don’t need to suppress warnings, because the JDK is built using the -Awarns command-line option.

4. Build the annotated JDK: run ./gradlew buildJdk
You may receive a compilation error because your files use a part of the JDK that is not in the annotated JDK. If
the missing part is relatively small, please add it. If the missing part is large, then you can make small changes to
the JDK source code, such as commenting out a method body. (Use /* and */ on their own lines, so that the diffs
are minimal.)

29.4 Compiling partially-annotated libraries
If you completely annotate a library, then you can compile it using a pluggable type-checker, and include the resulting
.jar file on your classpath. You get a guarantee that the library contains no errors.

The rest of this section tells you how to compile a library if you partially annotate it: that is, you write annotations
for some of its classes but not others. (There is another type of partial annotation, which is when you annotate method
signatures but do not type-check the bodies. See Section 29.1.)

There are two concerns:

• Ignoring type-checking errors in unannotated parts of the library. Use the -AskipDefs or -AonlyDefs command-
line arguments; see Section 26.5.

• Putting conservative annotations in unannotated parts of the library. The checker needs to use normal defaulting
rules (Section 25.3.2) for code you have annotated and conservative defaulting rules (Section 25.3.5) for code
you have not yet annotated. This section describes how to do this. You use @AnnotatedFor to indicate which
classes you have annotated.

177

29.4.1 The -AuseDefaultsForUncheckedCode=source,bytecode command-line
argument

When compiling a library that is not fully annotated, use command-line argument
-AuseDefaultsForUncheckedCode=source,bytecode. This causes the checker to behave normally for classes with
a relevant @AnnotatedFor annotation. For classes without @AnnotatedFor, the checker uses unchecked code defaults
(see Section 25.3.5) for any type use with no explicit user-written annotation, and the checker issues no warnings.

The @AnnotatedFor annotation, written on a class, indicates that the class has been annotated for certain type
systems. For example, @AnnotatedFor({"nullness", "regex"}) means that the programmer has written an-
notations for the Nullness and Regular Expression type systems. If one of those two type-checkers is run, the
-AuseDefaultsForUncheckedCode=source,bytecode command-line argument has no effect and this class is treated
normally: unannotated types are defaulted using normal source-code defaults and type-checking warnings are issued.
@AnnotatedFor’s arguments are any string that may be passed to the -processor command-line argument: the fully-
qualified class name for the checker, or a shorthand for built-in checkers (see Section 2.2.5). Writing @AnnotatedFor
on a class doesn’t necessarily mean that you wrote any annotations, but that the user examined the source code and
verified that all appropriate annotations are present.

Whenever you compile a class using the Checker Framework, including when using the
-AuseDefaultsForUncheckedCode=source,bytecode command-line argument, the resulting .class files
are fully-annotated; each type use in the .class file has an explicit type qualifier for any checker that is run.

29.5 Using stub classes
A stub file contains “stub classes” that contain annotated signatures, but no method bodies. A checker uses the annotated
signatures at compile time, instead of or in addition to annotations that appear in the library.

Section 29.3 explains how you should choose between creating stub classes or creating an annotated library.
Section 29.5.3 describes how to create stub classes. Section 29.5.1 describes how to use stub classes. These sections
illustrate stub classes via the example of creating a @Interned-annotated version of java.lang.String. You don’t
need to repeat these steps to handle java.lang.String for the Interning Checker, but you might do something similar
for a different class and/or checker.

29.5.1 Using a stub file
The -Astubs argument causes the Checker Framework to read annotations from annotated stub classes in preference to
the unannotated original library classes. For example:
javac -processor org.checkerframework.checker.interning.InterningChecker -Astubs=String.astub:stubs MyFile.java MyOtherFile.java ...

Each stub path entry is a file or a directory; specifying a directory is equivalent to specifying every file in it whose
name ends with .astub. The stub path entries are delimited by File.pathSeparator (‘:’ for Linux and Mac, ‘;’ for
Windows).

A checker automatically reads the stub file jdk.astub, unless command-line option -Aignorejdkastub is sup-
plied. (The checker author should place jdk.astub in the same directory as the Checker class, i.e., the subclass
of BaseTypeVisitor.) Programmers should only use the -Astubs argument for additional stub files they create
themselves.

If a method appears in more than one stub file (or twice in the same stub file), then the annotations are merged. If
any of the methods have different annotations from the same hierarchy on the same type, then the annotation from the
last declaration is used.

If both bytecode and a stub file provide information for the same element, the stub file information is used.
In particular, an un-annotated type variable in a stub file is used instead of annotations on a type variable in
bytecode. This feature allows stub files to change the effective annotations in all possible situations. Use the
-AstubWarnIfOverwritesBytecode command-line option to get a warning whenever a stub file overwrites bytecode
annotations.

178

../api/org/checkerframework/framework/qual/AnnotatedFor.html
../api/org/checkerframework/framework/qual/AnnotatedFor.html
../api/org/checkerframework/checker/interning/qual/Interned.html

A file being compiled takes precedence over a stub file. If file A.java is being compiled, then any stub for class A is
ignored.

When a stub file is provided by the author of a checker, the stub file is used automatically, with no need for the user
to supply a command-line option.

29.5.2 Stub file format
Every Java file is a valid stub file. However, you can omit information that is not relevant to pluggable type-checking;
this makes the stub file smaller and easier for people to read and write.

As an illustration, a stub file for the Interning type system (Chapter 6) could be:

import org.checkerframework.checker.interning.qual.Interned;
package java.lang;
@Interned class Class<T> { }
class String {

@Interned String intern();
}

The stub file format is allowed to differ from Java source code in the following ways:

Method bodies: The stub class does not require method bodies for classes; any method body may be replaced by a
semicolon (;), as in an interface or abstract method declaration.

Method declarations: You only have to specify the methods that you need to annotate. Any method declaration may
be omitted, in which case the checker reads its annotations from library’s .class files. (If you are using a stub
class, then typically the library is unannotated.)

Declaration specifiers: Declaration specifiers (e.g., public, final, volatile) may be omitted.
Return types: The return type of a method does not need to match the real method. In particular, it is valid to use

java.lang.Object for every method. This simplifies the creation of stub files.
Import statements: Imports may appear at the beginning of the file or after any package declaration. The only

required import statements are the ones to import type annotations. Import statements for types are optional.
Multiple classes and packages: The stub file format permits having multiple classes and packages. The packages are

separated by a package statement: package my.package;. Each package declaration may occur only once; in
other words, all classes from a package must appear together.

29.5.3 Creating a stub file
Stub files are generally stored together with the checker implementation, in the same directory as the checker’s .java
source code.

If you have access to the Java source code

Every Java file is a stub file. If you have access to the Java file, then you can use the Java file as the stub file. Just add
annotations to the signatures, leaving the method bodies unchanged. The stub file parser silently ignores any annotations
that it cannot resolve to a type, so don’t forget the import statement.

Optionally (but highly recommended!), run the type-checker to verify that your annotations are correct. When you
run the type-checker on your annotations, there should not be any stub file that also contains annotations for the class. In
particular, if you are type-checking the JDK itself, then you should use the -Aignorejdkastub command-line option.

This approach retains the original documentation and source code, making it easier for a programmer to double-
check the annotations. It also enables creation of diffs, easing the process of upgrading when a library adds new
methods. And, the annotations are in a format that the library maintainers can even incorporate.

The downside of this approach is that the stub files are larger. This can slow down the Checker Framework, because
it parses the stub files each time it runs.

179

If you do not have access to the Java source code

If you do not have access to the library source code, then you can create a stub file from the class file (Section 29.5.3),
and then annotate it. The rest of this section describes this approach.

1. Create a stub file by running the stub class generator. (checker.jar must be on your classpath.)

cd nullness-stub
java -cp $JSR308/checker-framework/checker/dist/checker.jar org.checkerframework.framework.stub.StubGenerator java.lang.String > String.astub

Supply it with the fully-qualified name of the class for which you wish to generate a stub class. The stub class
generator prints the stub class to standard out, so you may wish to redirect its output to a file.

2. Add import statements for the annotations. So you would need to add the following import statement at the
beginning of the file:

import org.checkerframework.checker.interning.qual.*;

The stub file parser silently ignores any annotations that it cannot resolve to a type, so don’t forget the import
statement. Use the -AstubWarnIfNotFound command-line option to see warnings if an entry could not be found.

3. Add annotations to the stub class. For example, you might annotate the String.intern() method as follows:

@Interned String intern();

You may also remove irrelevant parts of the stub file; see Section 29.5.2.

29.5.4 Troubleshooting stub libraries
Type-checking does not yield the expected results

By default, the stub parser silently ignores annotations on unknown classes and methods. The stub parser also silently
ignores unknown annotations, so don’t forget to import any annotations.

Use command-line option -AstubWarnIfNotFound to warn whenever some element of a stub file cannot be found.
The @NoStubParserWarning annotation on a package or type in a stub file overrides the -AstubWarnIfNotFound

command-line option, and no warning will be issued.
Use command-line option -AstubWarnIfOverwritesBytecode to warn whenever some element of a stub file

overwrites annotations contained in bytecode.
Use command-line option -AstubDebug to output debugging messages while parsing stub files, including about

unknown classes, methods, and annotations. This overrides the @NoStubParserWarning annotation.

Problems parsing stub libraries

When using command-line option -AstubWarnIfNotFound, an error is issued if a stub file has a typo or the API
method does not exist.

Fix this error by removing the extra L in the method name:

StubParser: Method isLLowerCase(char) not found in type java.lang.Character

Fix this error by removing the method enableForgroundNdefPush(...) from the stub file, because it is not
defined in class android.nfc.NfcAdapter in the version of the library you are using:

StubParser: Method enableForegroundNdefPush(Activity,NdefPushCallback)
not found in type android.nfc.NfcAdapter

29.6 Troubleshooting/debugging annotated libraries
Sometimes, it may seem that a checker is treating a library as unannotated even though the library has annotations. The
compiler has two flags that may help you in determining whether library files are read, and if they are read whether the
library’s annotations are parsed.

180

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#intern--

-verbose Outputs info about compile phases — when the compiler reads/parses/attributes/writes any file. Also
outputs the classpath and sourcepath paths.

-XDTA:parser (which is equivalent to -XDTA:reader plus -XDTA:writer) Sets the internal debugJSR308 flag,
which outputs information about reading and writing.

181

Chapter 30

How to create a new checker

This chapter describes how to create a checker — a type-checking compiler plugin that detects bugs or verifies their
absence. After a programmer annotates a program, the checker plugin verifies that the code is consistent with the
annotations. If you only want to use a checker, you do not need to read this chapter. There is also a developer manual
for people who wish to edit the Checker Framework source code or make pull requests.

Writing a simple checker is easy! For example, here is a complete, useful type-checker:

import java.lang.annotation.Target;
import java.lang.annotation.ElementType;
import org.checkerframework.framework.qual.SubtypeOf;
import org.checkerframework.framework.qual.Unqualified;

@SubtypeOf(Unqualified.class)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface Encrypted {}

This checker is so short because it builds on the Subtyping Checker (Chapter 22). See Section 22.2 for more
details about this particular checker. When you wish to create a new checker, it is often easiest to begin by building it
declaratively on top of the Subtyping Checker, and then return to this chapter when you need more expressiveness or
power than the Subtyping Checker affords.

Three choices for creating your own checker are:

• Customizing an existing checker. Checkers that are designed for extension include the Subtyping Checker
(Chapter 22, page 131), the Fake Enumeration Checker (Chapter 9, page 78), the Units Checker (Chapter 17,
page 111), and a typestate checker (Chapter 23.1, page 136).

• Follow the instructions in this chapter to create a checker from scratch. This enables creation of checkers that are
more powerful than customizing an existing checker.

• Copy and then modify a different existing checker — whether one distributed with the Checker Framework or a
third-party one. This can be fast, or you can get tangled up if you don’t fully understand the subtleties of the
existing checker that you are modifying. Usually following the instructions in this chapter is easier. (If you are
going to copy a checker, one good choice to copy and modify is the Regex Checker (Chapter 11, page 84). A bad
choice is the Nullness Checker (Chapter 3, page 25), which is more sophisticated than anything you want to start
out building.)

You do not need all of the details in this chapter, at least at first. In addition to reading this chapter of the manual,
you may find it helpful to examine the implementations of the checkers that are distributed with the Checker Framework.
The Javadoc documentation of the framework and the checkers is in the distribution and is also available online at
https://checkerframework.org/api/.

If you write a new checker and wish to advertise it to the world, let us know so we can mention it in Chapter 23,
page 136 or even include it in the Checker Framework distribution.

182

https://checkerframework.org/api/

30.1 How checkers build on the Checker Framework
This table shows the relationship among tools that the Checker Framework builds on or that are built on the Checker
Framework. All of the tools support the Java 8 type annotation syntax. You use the Checker Framework to build
pluggable type systems, and the Annotation File Utilities to manipulate .java and .class files.

Subtyping
Checker

Nullness
Checker

Index
Checker

Tainting
Checker

. . . Your
Checker

Base Checker
(enforces subtyping rules)

Type
inference

Other
tools

Checker Framework
(enables creation of pluggable type-checkers)

Annotation File Utilities
(.java↔ .class files)

Type Annotations syntax and classfile format
(no built-in semantics)

The Base Checker (more precisely, the BaseTypeChecker) enforces the standard subtyping rules. The Subtyping
Checker is a simple use of the Base Checker that supports providing type qualifiers on the command line. You usually
want to build your checker on the Base Checker.

30.2 The parts of a checker
The Checker Framework provides abstract base classes (default implementations), and a specific checker overrides
as little or as much of the default implementations as necessary. To simplify checker implementations, by default
the Checker Framework automatically discovers the parts of a checker by looking for specific files. Thus, checker
implementations follow a very formulaic structure. To illustrate, a checker for MyProp must be laid out as follows:

myPackage/
| qual/ type qualifiers
| MyPropChecker.java [optional] interface to the compiler
| MyPropVisitor.java [optional] type rules
| MyPropAnnotatedTypeFactory.java [optional] type introduction and dataflow rules

Note that MyPropChecker.java is required unless you are building on the Subtyping Checker.
Sections 30.4–30.5 describe the individual components of a type system as written using the Checker Framework:

30.4 Type qualifiers and hierarchy. You define the annotations for the type system and the subtyping relationships
among qualified types (for instance, that @NonNull Object is a subtype of @Nullable Object).

30.5 Interface to the compiler. The compiler interface indicates which annotations are part of the type system, which
command-line options and @SuppressWarnings annotations the checker recognizes, etc.

30.6 Type rules. You specify the type system semantics (type rules), violation of which yields a type error. A type
system has two types of rules.

• Subtyping rules related to the type hierarchy, such as that every assignment satisfies a subtyping relationship.
Your checker automatically inherits these subtyping rules from the Base Checker (Chapter 22), so there is
nothing for you to do.
• Additional rules that are specific to your particular checker. For example, in the Nullness type system, only

references whose type is @NonNull may be dereferenced. You write these additional rules yourself.

30.7 Type introduction rules. For some types and expressions, a qualifier should be treated as implicitly present even
if a programmer did not explicitly write it. For example, in the Nullness type system every literal other than null
has a @NonNull type. Examples of literals include "some string" and java.util.Date.class.

30.8 Dataflow rules. These optional rules enhance flow-sensitive type qualifier inference (also known as local variable
type inference).

183

https://checkerframework.org/annotation-file-utilities/
https://checkerframework.org/jsr308/
../api/org/checkerframework/common/basetype/BaseTypeChecker.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html

30.3 Compiling and using a custom checker
You can place your checker’s source files wherever you like.

• Forking the Checker Framework repository and putting your files in parallel to existing checker implementations
is a particularly convenient choice. You must be able to compile the Checker Framework (Section 33.3).

• If you put your checker elsewhere, then when you compile your checker, the classpath must include
$CHECKERFRAMEWORK/checker/dist/checker.jar.

Once your custom checker is written, using it is very similar to using a built-in checker (Section 2.2): simply pass
the fully-qualified name of your BaseTypeChecker subclass to the -processor command-line option:

javac -processor mypackage.MyPropChecker SourceFile.java

Note that your custom checker’s .class files must be on the Java classpath. Invoking a custom checker that builds on
the Subtyping Checker is slightly different (Section 22.1).

30.3.1 Tips for creating a checker
To make your job easier, we recommend that you build your type-checker incrementally, testing at each phase rather
than trying to build the whole thing at once.

Here is a good way to proceed.

1. Before you start coding, first write the user manual. The manual explains the type system, what it guarantees,
how to use it, etc., from the point of view of a user. Writing the manual will help you flesh out your goals and the
concepts, which are easier to understand and change in text than in an implementation. Section 30.12 gives a
suggested structure for the manual chapter, which will help you avoid omitting any parts. Get feedback from
someone else at this point to ensure that your manual is comprehensible.
Once you have designed and documented the parts of your type system, you may also want to “play computer”,
manually type-checking some code according to the rules you defined. During manual checking, ask yourself
what reasoning you applied, what information you needed, and whether your written-down rules were sufficient.

2. Implement the type qualifiers and hierarchy (Section 30.4).
Write simple test cases that consist of only assignments, to test your type hierarchy. For instance, if your type
hierarchy consists of a supertype @UnknownSign and a subtype @NonNegative, then you could write a test case
such as:

void foo(@UnknownSign int us, @NonNegative int nn) {
@UnknownSign int a = us;
@UnknownSign int b = nn;
// :: error: assignment.type.incompatible
@NonNegative int c = us; // expected error on this line
@NonNegative int d = nn;

}

Type-check your test files using the Subtyping Checker (Chapter 22, page 131).
3. Write the checker class itself (Section 30.5).

Ensure that you can still type-check your test files and that the results are the same. You will not use the Subtyping
Checker any more; you will call the checker directly, as in

javac -processor mypackage.MyChecker File1.java File2.java ...

4. If your checker source code is in a clone of the Checker Framework repository, integrate your checker with the
Checker Framework’s Ant targets for testing (Section 30.10). This will make it much more convenient to run
tests, and to ensure that they are passing, as your work proceeds.

5. Annotate parts of the JDK, if relevant (Section 30.9).
Write test cases for at least some of the annotated JDK methods to ensure that the annotations are being properly
read by your checker.

184

6. Implement type rules, if any (Section 30.6). (Some type systems need JDK annotations but don’t have any
additional type rules.)
Before implementing type rules (or any other code in your type-checker), you are recommended to read the javadoc
for the utility routines in the org.checkerframework.javacutil package, especially AnnotationBuilder,
AnnotationUtils, ElementUtils, TreeUtils, TypeAnnotationUtils, and TypesUtils. Familiarity with
them will help you to know how to access needed information and avoid reimplementing existing functionality.
Write simple test cases to test the type rules, and ensure that the type-checker behaves as expected on those test
files. For example, if your type system forbids indexing an array by a possibly-negative value, then you would
write a test case such as:

void foo(String[] myarray, @UnknownSign int us, @NonNegative int nn) {
myarray[us]; // expected error on this line
myarray[nn];

}

7. Implement type introduction rules, if any (Section 30.7).
Test your type introduction rules. For example, if your type system sets the qualifier for manifest literal integers
and for array lengths, you would write a test case like the following:

void foo(String[] myarray) {
@NonNegative nn1 = -1; // expected error on this line
@NonNegative nn2 = 0;
@NonNegative nn3 = 1;
@NonNegative nn4 = myarray.length;

}

8. Optionally, implement dataflow refinement rules (Section 30.8).
Test them if you wrote any. For instance, if after an arithmetic comparison, your type system infers which
expressions are now known to be non-negative, you could write a test case such as:

void foo(@UnknownSign int us, @NonNegative int nn) {
@NonNegative nn2;
nn2 = us; // expected error on this line
if (us > j) {

nn2 = us;
}
if (us >= j) {

nn2 = us;
}
if (j < us) {

nn2 = us;
}
if (j <= us) {

nn2 = us;
}
nn = us; // expected error on this line

}

30.4 Annotations: Type qualifiers and hierarchy
A type system designer specifies the qualifiers in the type system (Section 30.4.1) and the type hierarchy that relates
them. The type hierarchy — the subtyping relationships among the qualifiers — can be defined either declaratively
via meta-annotations (Section 30.4.2), or procedurally through subclassing QualifierHierarchy or TypeHierarchy
(Section 30.4.3).

185

../api/org/checkerframework/javacutil/AnnotationBuilder.html
../api/org/checkerframework/javacutil/AnnotationUtils.html
../api/org/checkerframework/javacutil/ElementUtils.html
../api/org/checkerframework/javacutil/TreeUtils.html
../api/org/checkerframework/javacutil/TypeAnnotationUtils.html
../api/org/checkerframework/javacutil/TypesUtils.html
../api/org/checkerframework/framework/type/QualifierHierarchy.html
../api/org/checkerframework/framework/type/TypeHierarchy.html

30.4.1 Defining the type qualifiers
Type qualifiers are defined as Java annotations. In Java, an annotation is defined using the Java @interface keyword.
Here is how to define a two-qualifier hierarchy:

package mypackage.qual;
import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import org.checkerframework.framework.qual.DefaultQualifierInHierarchy;
import org.checkerframework.framework.qual.SubtypeOf;
/**
* The run-time value of the integer is unknown.
*
* @checker_framework.manual #nonnegative-checker Non-Negative Checker
*/

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf({})
@DefaultQualifierInHierarchy
public @interface UnknownSign {}

package mypackage.qual;
import java.lang.annotation.Documented;
import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import org.checkerframework.framework.qual.ImplicitFor;
import org.checkerframework.framework.qual.LiteralKind;
import org.checkerframework.framework.qual.SubtypeOf;
/**
* Indicates that the value is greater than or equal to zero.
*
* @checker_framework.manual #nonnegative-checker Non-Negative Checker
*/

@Documented
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf({UnknownSign.class})
@ImplicitFor(literals = LiteralKind.NULL)
public @interface NonNegative {}

The @SubtypeOf meta-annotation indicates the parent in the type hierarchy.
The @Target meta-annotation indicates where the annotation may be written. All type qualifiers that users can

write in source code should have the value ElementType.TYPE_USE and optionally with the additional value of
ElementType.TYPE_PARAMETER, but no other ElementType values.

The annotations should be placed within a directory called qual, and qual should be placed in the same directory
as your checker’s source file.

186

../api/org/checkerframework/framework/qual/SubtypeOf.html
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Target.html

For example, the Nullness Checker’s source file is located at .../nullness/NullnessChecker.java. The
@NonNull qualifier is defined in file .../nullness/qual/NonNull.java.

The Checker Framework automatically treats any annotation that is declared in the qual package as a type qualifier.
(See Section 30.5.1 for more details.)

Your type system should include a top qualifier and a bottom qualifier (Section 30.4.7). In most cases, the bottom
qualifier should be meta-annotated with @ImplicitFor(literals=LiteralKind.NULL).

You should also define a polymorphic qualifier @PolyMyTypeSystem (Section 24.2).
The Javadoc of every type qualifier should include an example use of the qualifier.

30.4.2 Declaratively defining the qualifier hierarchy
Declaratively, the type system designer uses two meta-annotations (written on the declaration of qualifier annotations)
to specify the qualifier hierarchy.

• @SubtypeOf denotes that a qualifier is a subtype of another qualifier or qualifiers, specified as an array of class
literals. For example, for any type T , @NonNull T is a subtype of @Nullable T :

@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf({ Nullable.class })
public @interface NonNull { }

@SubtypeOf accepts multiple annotation classes as an argument, permitting the type hierarchy to be an arbitrary
DAG.
All type qualifiers, except for polymorphic qualifiers (see below and also Section 24.2), need to be properly
annotated with SubtypeOf.
The top qualifier is annotated with @SubtypeOf({ }). The top qualifier is the qualifier that is a supertype of
all other qualifiers. For example, @Nullable is the top qualifier of the Nullness type system, hence is defined as:

@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@SubtypeOf({ })
public @interface Nullable { }

If the top qualifier of the hierarchy is the generic unqualified type (this is not recommended!), then its children will
use @SubtypeOf(Unqualified.class), but no @SubtypeOf({}) annotation on the top qualifier Unqualified
is necessary. For an example, see the Encrypted type system of Section 22.2.

• @PolymorphicQualifier denotes that a qualifier is a polymorphic qualifier. For example:

@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@PolymorphicQualifier
public @interface PolyNull { }

For a description of polymorphic qualifiers, see Section 24.2. A polymorphic qualifier needs no @SubtypeOf
meta-annotation and need not be mentioned in any other @SubtypeOf meta-annotation.

The declarative and procedural mechanisms for specifying the hierarchy can be used together. In particular, when
using the @SubtypeOf meta-annotation, further customizations may be performed procedurally (Section 30.4.3) by
overriding the isSubtype method in the checker class (Section 30.5). However, the declarative mechanism is sufficient
for most type systems.

30.4.3 Procedurally defining the qualifier hierarchy
While the declarative syntax suffices for many cases, more complex type hierarchies can be expressed by overriding,
in your subclass of BaseTypeVisitor, either createQualifierHierarchy or createTypeHierarchy (typically
only one of these needs to be overridden). For more details, see the Javadoc of those methods and of the classes
QualifierHierarchy and TypeHierarchy.

187

../api/org/checkerframework/framework/qual/SubtypeOf.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/framework/qual/SubtypeOf.html
../api/org/checkerframework/framework/qual/SubtypeOf.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/framework/qual/PolymorphicQualifier.html
../api/org/checkerframework/framework/qual/SubtypeOf.html
../api/org/checkerframework/framework/qual/SubtypeOf.html
../api/org/checkerframework/framework/qual/SubtypeOf.html
../api/org/checkerframework/framework/util/GraphQualifierHierarchy.html#isSubtype-java.util.Collection-java.util.Collection-
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#createQualifierHierarchy--
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#createTypeHierarchy--
../api/org/checkerframework/framework/type/QualifierHierarchy.html
../api/org/checkerframework/framework/type/TypeHierarchy.html

The QualifierHierarchy class represents the qualifier hierarchy (not the type hierarchy). A type-system de-
signer may subclass QualifierHierarchy to express customized qualifier relationships (e.g., relationships based on
annotation arguments).

The TypeHierarchy class represents the type hierarchy — that is, relationships between annotated types, rather
than merely type qualifiers, e.g., @NonNull Date is a subtype of @Nullable Date. The default TypeHierarchy uses
QualifierHierarchy to determine all subtyping relationships. The default TypeHierarchy handles generic type
arguments, array components, type variables, and wildcards in a similar manner to the Java standard subtype relationship
but with taking qualifiers into consideration. Some type systems may need to override that behavior. For instance, the
Java Language Specification specifies that two generic types are subtypes only if their type arguments are identical: for
example, List<Date> is not a subtype of List<Object>, or of any other generic List. (In the technical jargon, the
generic arguments are “invariant” or “novariant”.)

30.4.4 Defining a default annotation
A type system applies a default qualifier where the user has not written a qualifier (and no implicit qualifier is applicable),
as explained in Section 25.3.1.

The type system designer may specify a default annotation declaratively, using the @DefaultQualifierInHierarchy
meta-annotation. Note that the default will apply to any source code that the checker reads, including stub libraries, but
will not apply to compiled .class files that the checker reads.

Alternately, the type system designer may specify a default procedurally, by overriding the
GenericAnnotatedTypeFactory.addCheckedCodeDefaults method. You may do this even if you have
declaratively defined the qualifier hierarchy.

If the default qualifier in the type hierarchy requires a value, there are ways for the type system designer to specify a
default value both declaratively and procedurally, as well. To do so declaratively, append the string default value
where value is the actual value you want to be the default, after the declaration of the value in the qualifier file.
For instance, int value() default 0; would make value default to zero. Alternatively, the procedural method
described above can be used.

30.4.5 Relevant Java types
A checker can use the @RelevantJavaTypes annotation on the checker class to specify which Java types are relevant
to the checker. All irrelevant types without explicit annotations are defaulted to the top annotation.

30.4.6 Do not re-use type qualifiers
Every annotation should belong to only one type system. No annotation should be used by multiple type systems. This
is true even of annotations that are internal to the type system and are not intended to be written by the programmer.

Suppose that you have two type systems that both use the same type qualifier @A. In a client program, a use of
type T may require type qualifier @A for one type system but a different qualifier for the other type system. There is no
annotation that a programmer can write to make the program type-check under both type systems.

This also applies to type qualifiers that a programmer does not write, because the compiler outputs .class files that
contain an explicit type qualifier on every type — a defaulted or inferred type qualifier if the programmer didn’t write a
type qualifier explicitly.

30.4.7 Completeness of the type hierarchy
When you define a type system, its type hierarchy must be a complete lattice — that is, there must be a top type that is a
supertype of all other types, and there must be a bottom type that is a subtype of all other types. Furthermore, it is best
if the top type and bottom type are defined explicitly for the type system, rather than (say) reusing a qualifier from the
Checker Framework such as @Unqualified.

It is possible that a single type-checker checks multiple type hierarchies. An example is the Nullness Checker,
which has three separate type hierarchies, one each for nullness, initialization, and map keys. In this case, each type

188

../api/org/checkerframework/framework/type/QualifierHierarchy.html
../api/org/checkerframework/framework/type/QualifierHierarchy.html
../api/org/checkerframework/framework/type/TypeHierarchy.html
../api/org/checkerframework/framework/type/TypeHierarchy.html
../api/org/checkerframework/framework/type/QualifierHierarchy.html
../api/org/checkerframework/framework/type/TypeHierarchy.html
../api/org/checkerframework/framework/qual/DefaultQualifierInHierarchy.html
../api/org/checkerframework/framework/type/GenericAnnotatedTypeFactory.html#addCheckedCodeDefaults-org.checkerframework.framework.util.defaults.QualifierDefaults-
../api/org/checkerframework/framework/qual/RelevantJavaTypes.html

hierarchy would have its own top qualifier and its own bottom qualifier; they don’t all have to share a single top qualifier
or a single bottom qualifier.

Bottom qualifier Your type hierarchy must have a bottom qualifier — a qualifier that is a (direct or indirect) subtype
of every other qualifier.

Your type system must give null the bottom type. (The only exception is if the type system has special treat-
ment for null values, as the Nullness Checker does.) A way to do this is to meta-annotate your bottom type with
@ImplicitFor(literals=LiteralKind.NULL). This legal code will not type-check unless null has the bottom type:

<T> T f() {
return null;

}

Some type systems have a special bottom type that is used only for the null value, and for dead code and other
erroneous situations. In this case, users should only write the bottom qualifier on explicit bounds. In this case, the
definition of the bottom qualifier should be meta-annotated with:

@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
@TargetLocations({TypeUseLocation.EXPLICIT_LOWER_BOUND, TypeUseLocation.EXPLICIT_UPPER_BOUND})

Furthermore, by convention the name of such a qualifier ends with “Bottom”.
The hierarchy shown in Figure 3.3 lacks a bottom qualifier, but the actual implementation does contain a (non-user-

visible) bottom qualifier.

Top qualifier Your type hierarchy must have a top qualifier — a qualifier that is a (direct or indirect) supertype of
every other qualifier. Here is the reason. The default type for local variables is the top qualifier (that type is then
flow-sensitively refined depending on what values are stored in the local variable). If there is no single top qualifier,
then there is no unambiguous choice to make for local variables.

30.4.8 Annotations whose argument is a Java expression (dependent type annotations)
Sometimes, an annotation needs to refer to a Java expression. Section 25.5 gives examples of such annotations and also
explains what Java expressions can and cannot be referred to.

This section explains how to implement a dependent type annotation.
A “dependent type annotation” must have one attribute, value, that is an array of strings. The Checker Framework

verifies that the annotation’s arguments are valid expressions according to the rules of Section 25.5. If the expression is
not valid, an error is issued and the string in the annotation is changed to indicate that the expression is not valid.

The Checker Framework standardizes the expression strings. For example, a field f can be referred to as either
“f” or “this.f”. If the programmer writes “f”, the Checker Framework treats it as if the programmer had written
“this.f”. An advantage of this canonicalization is that comparisons, such as isSubtype, can be implemented as string
comparisons.

The Checker Framework viewpoint-adapts type annotations on method, constructor, and field declarations at uses
for those methods. For example, given the following class

class MyClass {
Object field = ...;
@Anno("this.field") Object field2 = ...;

}

and assuming the variable myClass is of type MyClass, then the type of myClass.field is viewpoint-adapted to
@Anno("myClass.field").

To use this built-in functionality, add a @JavaExpression annotation to any annotation element that should be inter-
preted as a Java expression. The type of the element must be an array of Strings. If your checker requires special handling

189

../api/org/checkerframework/framework/qual/JavaExpression.html

of Java expressions, your checker implementation should override GenericAnnotatedTypeFactory.createDependentTypesHelper
to return a subclass of DependentTypesHelper.

Given a specific expression in the program (of type Tree or Node), a checker may need to obtain its canonical string
representation. This enables the checker to create an dependent type annotation that refers to it, or to compare to the string
expression of an existing expression annotation. To obtain the string, first create a FlowExpressions.Receiver object
by calling internalReprOf(AnnotationProvider, ExpressionTree) or internalReprOf(AnnotationProvider,
Node). Then, call toString() on the FlowExpressions.Receiver object.

30.5 The checker class: Compiler interface
A checker’s entry point is a subclass of SourceChecker, and is usually a direct subclass of either BaseTypeChecker
or AggregateChecker. This entry point, which we call the checker class, serves two roles: an interface to the compiler
and a factory for constructing type-system classes.

Because the Checker Framework provides reasonable defaults, oftentimes the checker class has no work to do. Here
are the complete definitions of the checker classes for the Interning Checker and the Nullness Checker:

package my.package;
import org.checkerframework.common.basetype.BaseTypeChecker;
@SupportedLintOptions({"dotequals"})
public final class InterningChecker extends BaseTypeChecker { }

package my.package;
import org.checkerframework.common.basetype.BaseTypeChecker;
@SupportedLintOptions({"flow", "cast", "cast:redundant"})
public class NullnessChecker extends BaseTypeChecker { }

(The @SupportedLintOptions annotation is optional, and many checker classes do not have one.)
The checker class bridges between the compiler and the rest of the checker. It invokes the type-rule check visitor on

every Java source file being compiled, and provides a simple API, SourceChecker.report, to issue errors using the
compiler error reporting mechanism.

Also, the checker class follows the factory method pattern to construct the concrete classes (e.g., visitor, factory) and
annotation hierarchy representation. It is a convention that, for a type system named Foo, the compiler interface (checker),
the visitor, and the annotated type factory are named as FooChecker, FooVisitor, and FooAnnotatedTypeFactory.
BaseTypeChecker uses the convention to reflectively construct the components. Otherwise, the checker writer must
specify the component classes for construction.

A checker can customize the default error messages through a Properties-loadable text file named
messages.properties that appears in the same directory as the checker class. The property file keys are the
strings passed to report (like type.incompatible) and the values are the strings to be printed ("cannot assign
..."). The messages.properties file only need to mention the new messages that the checker defines. It is also
allowed to override messages defined in superclasses, but this is rarely needed. For more details about message keys,
see Section 26.1.3 (page 164).

30.5.1 Indicating supported annotations
A checker must indicate the annotations that it supports (make up its type hierarchy), including whether it supports the
polymorphic qualifier @PolyAll.

By default, a checker supports PolyAll, and all annotations located in a subdirectory called qual that’s located in the
same directory as the checker. Note that only annotations defined with the @Target(ElementType.TYPE_USE) meta-
annotation (and optionally with the additional value of ElementType.TYPE_PARAMETER, but no other ElementType
values) are automatically considered as supported annotations.

190

../api/org/checkerframework/framework/type/GenericAnnotatedTypeFactory.html#createDependentTypesHelper--
../api/org/checkerframework/dataflow/analysis/FlowExpressions.Receiver.html
../api/org/checkerframework/dataflow/analysis/FlowExpressions.html#internalReprOf-org.checkerframework.javacutil.AnnotationProvider-com.sun.source.tree.ExpressionTree-
../api/org/checkerframework/dataflow/analysis/FlowExpressions.html#internalReprOf-org.checkerframework.javacutil.AnnotationProvider-org.checkerframework.dataflow.cfg.node.Node-
../api/org/checkerframework/dataflow/analysis/FlowExpressions.html#internalReprOf-org.checkerframework.javacutil.AnnotationProvider-org.checkerframework.dataflow.cfg.node.Node-
../api/org/checkerframework/framework/source/SourceChecker.html
../api/org/checkerframework/common/basetype/BaseTypeChecker.html
../api/org/checkerframework/framework/source/AggregateChecker.html
../api/org/checkerframework/framework/source/SupportedLintOptions.html
../api/org/checkerframework/framework/source/SourceChecker.html#report-org.checkerframework.framework.source.Result-java.lang.Object-
../api/org/checkerframework/common/basetype/BaseTypeChecker.html
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html
../api/org/checkerframework/framework/source/SourceChecker.html#report-org.checkerframework.framework.source.Result-java.lang.Object-
../api/org/checkerframework/framework/qual/PolyAll.html

To indicate support for annotations that are located outside of the qual subdirectory, annotations that have other
ElementType values, or to indicate whether a checker supports the polymorphic qualifier @PolyAll, checker writers
can override the createSupportedTypeQualifiers method (see its Javadoc for details).

An aggregate checker (which extends AggregateChecker) does not need to specify its type qualifiers, but each of
its component checkers should do so.

30.5.2 Bundling multiple checkers
Sometimes, multiple checkers work together and should always be run together. There are two different ways to bundle
multiple checkers together, by creating either an “aggregate checker” or a “compound checker”.

1. An aggregate checker runs multiple independent, unrelated checkers. There is no communication or cooperation
among them.
The effect is the same as if a user passes multiple processors to the -processor command-line option.
For example, instead of a user having to run

javac -processor DistanceUnitChecker,VelocityUnitChecker,MassUnitChecker MyFile.java

the user can write

javac -processor MyUnitCheckers MyFile.java

if you define an aggregate checker class. Extend AggregateChecker and override the getSupportedTypeCheckers
method, like the following:

public class MyUnitCheckers extends AggregateChecker {
protected Collection<Class<? extends SourceChecker>> getSupportedCheckers() {

return Arrays.asList(DistanceUnitChecker.class,
VelocityUnitChecker.class,
MassUnitChecker.class);

}
}

An example of an aggregate checker is I18nChecker (see Chapter 14.2, page 101), which consists of I18nSubchecker
and LocalizableKeyChecker.

2. Use a compound checker to express dependencies among checkers. Suppose it only makes sense to run
MyChecker if MyHelperChecker has already been run; that might be the case if MyHelperChecker computes
some information that MyChecker needs to use.
Override MyChecker.getImmediateSubcheckerClasses to return a list of the checkers that MyChecker de-
pends on. Every one of them will be run before MyChecker is run. One of MyChecker’s subcheckers may itself
be a compound checker, and multiple checkers may declare a dependence on the same subchecker. The Checker
Framework will run each checker once, and in an order consistent with all the dependences.
A checker obtains information from its subcheckers (those that ran before it) by querying their AnnotatedTypeFactory
to determine the types of variables. Obtain the AnnotatedTypeFactory by calling getTypeFactoryOfSubchecker.

30.5.3 Providing command-line options
A checker can provide two kinds of command-line options: boolean flags and named string values (the standard
annotation processor options).

Boolean flags

To specify a simple boolean flag, add:

@SupportedLintOptions({"myflag"})

to your checker subclass. The value of the flag can be queried using

191

../api/org/checkerframework/framework/qual/PolyAll.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#createSupportedTypeQualifiers--
../api/org/checkerframework/framework/source/AggregateChecker.html
../api/org/checkerframework/framework/source/AggregateChecker.html
../api/org/checkerframework/checker/i18n/I18nChecker.html
../api/org/checkerframework/checker/i18n/I18nSubchecker.html
../api/org/checkerframework/checker/i18n/LocalizableKeyChecker.html
../api/org/checkerframework/common/basetype/BaseTypeChecker.html#getImmediateSubcheckerClasses--
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
../api/org/checkerframework/common/basetype/BaseTypeChecker.html#getTypeFactoryOfSubchecker-java.lang.Class-
../api/org/checkerframework/framework/source/SupportedLintOptions.html

checker.getLintOption("myflag", false)

The second argument sets the default value that should be returned.
To pass a flag on the command line, call javac as follows:

javac -processor MyChecker -Alint=myflag

Named string values

For more complicated options, one can use the standard @SupportedOptions annotation on the checker, as in:

@SupportedOptions({"myoption"})

The value of the option can be queried using

checker.getOption("myoption")

To pass an option on the command line, call javac as follows:

javac -processor MyChecker -Amyoption=p1,p2

The value is returned as a single string and you have to perform the required parsing of the option.

30.6 Visitor: Type rules
A type system’s rules define which operations on values of a particular type are forbidden. These rules must be defined
procedurally, not declaratively. Put them in a file MyCheckerVisitor.java that extends BaseTypeVisitor.

BaseTypeVisitor performs type-checking at each node of a source file’s AST. It uses the visitor design pattern to
traverse Java syntax trees as provided by Oracle’s Tree API, and it issues a warning (by calling SourceChecker.report)
whenever the type system is violated.

Most type-checkers override only a few methods in BaseTypeVisitor. A checker’s visitor overrides one method
in the base visitor for each special rule in the type qualifier system. The last line of the overridden version is “return
super.visitTreeType(node, p);”. If the method didn’t raise any error, the superclass implementation can
perform standard checks.

By default, BaseTypeVisitor performs subtyping checks that are similar to Java subtype rules, but taking the type
qualifiers into account. BaseTypeVisitor issues these errors:

• invalid assignment (type.incompatible) for an assignment from an expression type to an incompatible type. The
assignment may be a simple assignment, or pseudo-assignment like return expressions or argument passing in a
method invocation
In particular, in every assignment and pseudo-assignment, the left-hand side of the assignment is a supertype of
(or the same type as) the right-hand side. For example, this assignment is not permitted:

@Nullable Object myObject;
@NonNull Object myNonNullObject;
...
myNonNullObject = myObject; // invalid assignment

• invalid generic argument (type.argument.type.incompatible) when a type is bound to an incompatible generic
type variable

• invalid method invocation (method.invocation.invalid) when a method is invoked on an object whose type is
incompatible with the method receiver type

• invalid overriding parameter type (override.parameter.invalid) when a parameter in a method declaration is
incompatible with that parameter in the overridden method’s declaration

• invalid overriding return type (override.return.invalid) when a parameter in a method declaration is incompatible
with that parameter in the overridden method’s declaration
• invalid overriding receiver type (override.receiver.invalid) when a receiver in a method declaration is incompatible

with that receiver in the overridden method’s declaration

192

../api/org/checkerframework/framework/source/SupportedOptions.html
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/
../api/org/checkerframework/framework/source/SourceChecker.html#report-org.checkerframework.framework.source.Result-java.lang.Object-
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html

30.6.1 AST traversal
The Checker Framework needs to do its own traversal of the AST even though it operates as an ordinary annotation
processor [Dar06]. Java provides a visitor for Java code that is intended to be used by annotation processors, but that
visitor only visits the public elements of Java code, such as classes, fields, methods, and method arguments — it does
not visit code bodies or various other locations. The Checker Framework hardly uses the built-in visitor — as soon as
the built-in visitor starts to visit a class, then the Checker Framework’s visitor takes over and visits all of the class’s
source code.

Because there is no standard API for the AST of Java code1, the Checker Framework uses the javac implementation.
This is why the Checker Framework is not deeply integrated with Eclipse or IntelliJ IDEA, but runs as an external tool
(see Section 31.3).

30.6.2 Avoid hardcoding
It may be tempting to write a type-checking rule for method invocation, where your rule checks the name of the method
being called and then treats the method in a special way. This is sometimes necessary but is usually the wrong approach.
It is better to write annotations, in a stub file or annotated JDK (Chapter 29), and leave the work to the standard
type-checking rules.

30.7 Type factory: Implicit annotations (type introduction rules)
For some types and expressions, a qualifier should be treated as present even if a programmer did not explicitly write
it. For example, every literal (other than null) has a @NonNull type. Section 25.3 explains the meaning of implicit
qualifiers, such as that they cannot be overridden.

The implicit annotations may be specified declaratively (Section 30.7.1) and/or procedurally (Section 30.7.2). It is
easiest to specify them declaratively, when the declarative method is sufficiently expressive.

30.7.1 Declaratively specifying implicit annotations
The @ImplicitFor meta-annotation indicates implicit annotations. When written on a qualifier, ImplicitFor specifies
the trees (AST nodes) and types for which the framework should automatically add that qualifier.

In short, the types and trees can be specified via any combination of four fields in ImplicitFor.
For example, consider these (partial) definitions of the @Nullable and @NonNull type qualifiers:

@SubtypeOf({})
@ImplicitFor(literals = { LiteralKind.NULL },

typeNames = { java.lang.Void.class })
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface Nullable { }

@SubtypeOf({ Nullable.class })
@ImplicitFor(literals = { LiteralKind.STRING },

types = { TypeKind.PACKAGE, TypeKind.INT, TypeKind.BOOLEAN,
TypeKind.CHAR, TypeKind.DOUBLE, TypeKind.FLOAT,
TypeKind.LONG, TypeKind.SHORT, TypeKind.BYTE })

@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface NonNull {}

For more details, see the Javadoc for the ImplicitFor annotation, and the Javadoc for the javac classes that are
linked from it. You only need to understand a small amount about the javac AST, such as the Tree.Kind and TypeKind
enums. All the information you need is in the Javadoc, and Section 30.13 can help you get started.

1Actually, there is a standard API for Java ASTs — JSR 198 (Extension API for Integrated Development Environments) [Cro06]. If tools were
to implement it (which would just require writing wrappers or adapters), then the Checker Framework and similar tools could be portable among
different compilers and IDEs.

193

../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/framework/qual/ImplicitFor.html
../api/org/checkerframework/framework/qual/ImplicitFor.html
../api/org/checkerframework/framework/qual/ImplicitFor.html
../api/org/checkerframework/checker/nullness/qual/Nullable.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
../api/org/checkerframework/framework/qual/ImplicitFor.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source{}/tree/Tree.Kind.html?is-external=true
https://docs.oracle.com/javase/8/docs/api/javax/lang/model{}/type/TypeKind.html?is-external=true

30.7.2 Procedurally specifying implicit annotations
If the @ImplicitFor annotation is not sufficiently expressive, then you can write code to set implicit annotations. To
do so, create a subclass of AnnotatedTypeFactory and override its addComputedTypeAnnotations methods.

AnnotatedTypeFactory, when given a program expression, returns the expression’s type. This should include not
only the qualifiers that the programmer explicitly wrote in the source code, but also default and implicit annotations,
and flow-sensitive local type inference (see Section 25.3 for explanations of these concepts).

To add implicit annotations, you should override addComputedTypeAnnotations(Tree,AnnotatedTypeMirror)
(or addComputedTypeAnnotations(Tree,AnnotatedTypeMirror,boolean) if extending GenericAnnotatedTypeFactory)
and addComputedTypeAnnotations(Element,AnnotatedTypeMirror). The methods operate on AnnotatedTypeMirror,
which is the Checker Framework’s representation of an annotated type.

30.8 Dataflow: enhancing flow-sensitive type qualifier inference
By default, every checker performs flow-sensitive type refinement, also known as local type inference, as described in
Section 25.4.

This section of the manual explains how to enhance the Checker Framework’s built-in flow-sensitive type refinement.
Most commonly, you will inform the Checker Framework about a run-time test that gives information about the type
qualifiers in your type system. Section 25.4.3 (page 155) gives examples of type systems with and without run-time
tests.

The steps to customizing type refinement are:

1. §30.8.1 Determine which expressions will be refined.
2. §30.8.2 Create required class and configure its use.
3. §30.8.3 Override methods that handle Nodes of interest.
4. §30.8.4 Implement the refinement.

The Regex Checker’s dataflow customization for the RegexUtil.asRegex run-time check is used as an example
throughout the steps.

If needed, you can find more details about the implementation of flow-sensitive type refinement, and the control
flow graph (CFG) data structure that it uses, in the Dataflow Manual.

30.8.1 Determine expressions to refine the types of
A run-time check or run-time operation involves multiple expressions (arguments, results). Determine which expression
the customization will refine. This is usually specific to the type system and run-time test. There is no code to write in
this step; you are merely determining the design of your type refinement.

For the program operation op(a,b), you can refine the types in either or both of the following ways:

1. Change the result type of the entire expression op(a,b).
As an example (and as the running example of implementing a dataflow refinement), the RegexUtil.asRegex
method is declared as:
@Regex(0) String asRegex(String s, int groups) { ... }

This annotation is sound and conservative: it says that an expression such as RegexUtil.asRegex(myString,
myInt) has type @Regex(0) String. However, this annotation is imprecise. When the group argument is
known at compile time, a better estimate can be given. For example, RegexUtil.asRegex(myString, 2) has
type @Regex(2) String.

2. Change the type of some other expression, such as a or b.
As an example, consider an equality test in the Nullness type system:

@Nullable String s;
if (s != null) {

...

194

../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#addComputedTypeAnnotations-com.sun.source.tree.Tree-org.checkerframework.framework.type.AnnotatedTypeMirror-
../api/org/checkerframework/framework/type/GenericAnnotatedTypeFactory.html#addComputedTypeAnnotations-com.sun.source.tree.Tree-org.checkerframework.framework.type.AnnotatedTypeMirror-boolean-
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html#addComputedTypeAnnotations-javax.lang.model.element.Element-org.checkerframework.framework.type.AnnotatedTypeMirror-
../api/org/checkerframework/framework/type/AnnotatedTypeMirror.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/checker/regex/RegexUtil.html#asRegex-java.lang.String-
https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf

} else {
...

}

The type of s != null is always boolean. However, in the true branch, the type of s can be refined to @NonNull
String.

If you are refining the types of arguments or the result of a method call, then you may be able to implement your
flow-sensitive refinement rules by just writing @EnsuresQualifier and/or @EnsuresQualifierIf annotations. When
this is possible, it is the best approach.

Sections 30.8.2–30.8.4 explain how to create a transfer class when the @EnsuresQualifier and @EnsuresQualifierIf
annotations are insufficient.

30.8.2 Create required class
In the same directory as MyCheckerChecker.java, create a class named MyCheckerTransfer that extends
CFTransfer.

Leave the class body empty for now. Your class will add functionality by overriding methods of CFTransfer, which
performs the default Checker Framework type refinement.

As an example, the Regex Checker’s extended CFTransfer is RegexTransfer.
(If you disregard the instructions above and choose a different name or a different directory for your MyCheckerTransfer

class, you will also need to override the createFlowTransferFunction method in your type factory to return to
return a new instance of the class.)

(As a reminder, use of @EnsuresQualifier and @EnsuresQualifierIf may obviate the need for a transfer class.)

30.8.3 Override methods that handle Nodes of interest
Decide what source code syntax is relevant to the the run-time checks or run-time operations you are trying to support.
The CFG (control flow graph) represents source code as Node, a node in the abstract syntax tree of the program being
checked (see “Program representation” below).

In your extended CFTransfer override the visitor method that handles the Nodes relevant to your run-time check or
run-time operation. Leave the body of the overriding method empty for now.

For example, the Regex Checker refines the type of a run-time test method call. A method call is represented by a
MethodInvocationNode. Therefore, RegexTransfer overrides the visitMethodInvocation method:
public TransferResult<CFValue, CFStore> visitMethodInvocation(
MethodInvocationNode n, TransferInput<CFValue, CFStore> in) { ... }

Program representation

The Node subclasses can be found in the org.checkerframework.dataflow.cfg.node package. Some examples
are EqualToNode, LeftShiftNode, VariableDeclarationNode.

A Node is basically equivalent to a javac compiler Tree.
See Section 30.13 for more information about Trees. As an example, the statement String a = "";, is represented

as this abstract syntax tree:

VariableTree:
name: "a"
type:

IdentifierTree
name: String

initializer:
LiteralTree

value: ""

195

../api/org/checkerframework/framework/qual/EnsuresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifierIf.html
../api/org/checkerframework/framework/qual/EnsuresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifierIf.html
../api/org/checkerframework/framework/flow/CFTransfer.html
../api/org/checkerframework/framework/flow/CFTransfer.html
../api/org/checkerframework/checker/regex/RegexTransfer.html
../api/org/checkerframework/framework/qual/EnsuresQualifier.html
../api/org/checkerframework/framework/qual/EnsuresQualifierIf.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/framework/flow/CFTransfer.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/dataflow/cfg/node/MethodInvocationNode.html
../api/org/checkerframework/checker/regex/RegexTransfer.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/dataflow/cfg/node/EqualToNode.html
../api/org/checkerframework/dataflow/cfg/node/LeftShiftNode.html
../api/org/checkerframework/dataflow/cfg/node/VariableDeclarationNode.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source{}/tree/Tree.html?is-external=true
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source{}/tree/Tree.html?is-external=true

30.8.4 Implement the refinement
Each visitor method in CFAbstractTransfer returns a TransferResult. A TransferResult represents the refined
information that is known after an operation. It has two components: the result type for the Node being evaluated, and a
map from expressions in scope to estimates of their types (a Store). Each of these components is relevant to one of the
two cases in Section 30.8.1:

1. Changing the TransferResult’s result type changes the type that is returned by the AnnotatedTypeFactory
for the tree corresponding to the Node that was visited. (Remember that BaseTypeVisitor uses the
AnnotatedTypeFactory to look up the type of a Tree, and then performs checks on types of one or more
Trees.)
For example, When RegexTransfer evaluates a RegexUtils.asRegex invocation, it updates the TransferResult’s
result type. This changes the type of the RegexUtils.asRegex invocation when its Tree is looked up by the
AnnotatedTypeFactory. See below for details.

2. Updating the Store treats an expression as having a refined type for the remainder of the method or conditional
block. For example, when the Nullness Checker’s dataflow evaluates myvar != null, it updates the Store to
specify that the variable myvar should be treated as having type @NonNull for the rest of the then conditional
block. Not all kinds of expressions can be refined; currently method return values, local variables, fields, and
array values can be stored in the Store. Other kinds of expressions, like binary expressions or casts, cannot be
stored in the Store.

The rest of this section details implementing the visitor method RegexTransfer.visitMethodInvocation for
the RegexUtil.asRegex run-time test. You can find other examples of visitor methods in LockTransfer and
FormatterTransfer.

1. Determine if the visited Node is of interest
A visitor method is invoked for all instances of a given Node kind in the program. The visitor must inspect the Node
to determine if it is an instance of the desired run-time test or operation. For example, visitMethodInvocation
is called when dataflow processes any method invocation, but the RegexTransfer should only refine the result
of RegexUtils.asRegex invocations:
@Override
public TransferResult<CFValue, CFStore> visitMethodInvocation(...)
...
MethodAccessNode target = n.getTarget();
ExecutableElement method = target.getMethod();
Node receiver = target.getReceiver();
if (receiver instanceof ClassNameNode) {
String receiverName = ((ClassNameNode) receiver).getElement().toString();

// Is this a call to method RegexUtil.isRegex(s, groups)?
if (receiverName.equals("RegexUtil")

&& ElementUtils.matchesElement(method,
null, "isRegex", String.class, int.class)) {

...

2. Determine the refined type
Sometimes the refined type is dependent on the parts of the operation, such as arguments passed to it.
For example, the refined type of RegexUtils.asRegex is dependent on the integer argument to the method
call. The RegexTransfer uses this argument to build the resulting type @Regex(i), where i is the value of the
integer argument. For simplicity the below code only uses the value of the integer argument if the argument was
an integer literal. It could be extended to use the value of the argument if it was any compile-time constant or was
inferred at compile time by another analysis, such as the Constant Value Checker (Chapter 19, page 118).
AnnotationMirror regexAnnotation;
Node count = n.getArgument(1);
if (count instanceof IntegerLiteralNode) {
// argument is a literal integer
IntegerLiteralNode iln = (IntegerLiteralNode) count;

196

../api/org/checkerframework/framework/flow/CFAbstractTransfer.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source{}/tree/Tree.html?is-external=true
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source{}/tree/Tree.html?is-external=true
../api/org/checkerframework/checker/regex/RegexTransfer.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source{}/tree/Tree.html?is-external=true
../api/org/checkerframework/framework/type/AnnotatedTypeFactory.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/checker/lock/LockTransfer.html
../api/org/checkerframework/checker/formatter/FormatterTransfer.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/dataflow/cfg/node/Node.html
../api/org/checkerframework/checker/regex/RegexTransfer.html
../api/org/checkerframework/checker/regex/RegexTransfer.html

Integer groupCount = iln.getValue();
regexAnnotation = factory.createRegexAnnotation(groupCount);

} else {
// argument is not a literal integer; fall back to @Regex(), which is the same as @Regex(0)
regexAnnotation = AnnotationBuilder.fromClass(factory.getElementUtils(), Regex.class);

}

3. Return a TransferResult with the refined types
Recall that the type of an expression is refined by modifying the TransferResult returned by a visitor method.
Since the RegexTransfer is updating the type of the run-time test itself, it will update the result type and not the
Store.
A CFValue is created to hold the type inferred. CFValue is a wrapper class for values being inferred by dataflow:

CFValue newResultValue = analysis.createSingleAnnotationValue(regexAnnotation,
result.getResultValue().getType().getUnderlyingType());

Then, RegexTransfer’s visitMethodInvocation creates and returns a TransferResult using newResultValue
as the result type.
return new RegularTransferResult<>(newResultValue, result.getRegularStore());

As a result of this code, when the Regex Checker encounters a RegexUtils.asRegex method call, the checker
will refine the return type of the method if it can determine the value of the integer parameter at compile time.

30.8.5 Disabling flow-sensitive inference
In the uncommon case that you wish to disable the Checker Framework’s built-in flow inference in your checker (this is
different than choosing not to extend it as described in Section 30.8), put the following two lines at the beginning of the
constructor for your subtype of BaseAnnotatedTypeFactory:

// disable flow inference
super(checker, false);

30.9 Annotated JDK
You will need to supply annotations for relevant parts of the JDK; otherwise, your type-checker may produce spurious
warnings for code that uses the JDK. As described in Section 29, there are two general ways to supply an annotated
library: in Java files that will be compiled to .class files, or as stub files (partial Java source files).

It’s easier to start out with stub files. If you need to annotate many classes (say, more than 20 or so), then you should
create an annotated JDK.

To supply an annotated JDK that will be compiled, see Section 29.3.
To supply an annotated JDK as a stub file, create a file jdk.astub in the checker’s main source directory. It will be

automatically used by the checker. You can also supply .astub files in that directory for other libraries. You should list
those other libraries in a @StubFiles annotation on the checker’s main class, so that they will also be automatically
used.

30.10 Testing framework
The Checker Framework provides a convenient way to write tests for your checker. It is extensively documented in file
checker-framework/checker/tests/README.

If your checker’s source code is within a fork of the Checker Framework repository, then you can copy the testing
infrastructure used by some existing type system. Here are some of the tasks you will perform:

• Make sure all-tests tests the new checker.

197

../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/checker/regex/RegexTransfer.html
../api/org/checkerframework/dataflow/analysis/Store.html
../api/org/checkerframework/framework/flow/CFValue.html
../api/org/checkerframework/framework/flow/CFValue.html
../api/org/checkerframework/dataflow/analysis/TransferResult.html
../api/org/checkerframework/common/basetype/BaseAnnotatedTypeFactory.html
../api/org/checkerframework/framework/qual/StubFiles.html

30.11 Debugging options
The Checker Framework provides debugging options that can be helpful when writing a checker. These are provided
via the standard javac “-A” switch, which is used to pass options to an annotation processor.

30.11.1 Amount of detail in messages
• -AprintAllQualifiers: print all type qualifiers, including qualifiers like @Unqualified which are usually not

shown. (Use the @InvisibleQualifier meta-annotation on a qualifier to hide it.)
• -AprintVerboseGenerics: print more information about type parameters and wildcards when they appear in

warning messages. This produces a subset of the information than -AprintAllQualifiers does.
• -Adetailedmsgtext: Output error/warning messages in a stylized format that is easy for tools to parse. This is

useful for tools that run the Checker Framework and parse its output, such as IDE plugins. See the source code of
SourceChecker.java for details about the format.

• -AprintErrorStack: print a stack trace whenever an internal Checker Framework error occurs.
• -Anomsgtext: use message keys (such as “type.invalid”) rather than full message text when reporting errors

or warnings. This is used by the Checker Framework’s own tests, so they do not need to be changed if the English
message is updated.

30.11.2 Stub and JDK libraries
• -Aignorejdkastub: ignore the jdk.astub file in the checker directory. Files passed through the -Astubs

option are still processed. This is useful when experimenting with an alternative stub file.
• -Anocheckjdk: don’t issue an error if no annotated JDK can be found.
• -AstubDebug: Print debugging messages while processing stub files.

30.11.3 Progress tracing
• -Afilenames: print the name of each file before type-checking it.
• -Ashowchecks: print debugging information for each pseudo-assignment check (as performed by BaseTypeVisitor;

see Section 30.6).
• -AshowInferenceSteps: print debugging information about intermediate steps in method type argument

inference (as performed by DefaultTypeArgumentInference).

30.11.4 Saving the command-line arguments to a file
• -AoutputArgsToFile: This saves the final command-line parameters as passed to the compiler in a file. This

file can be used as a script (if the file is marked as executable on Unix, or if it includes a .bat extension on
Windows) to re-execute the same compilation command. Note that this argument cannot be included in a file
containing command-line arguments passed to the compiler using the @argfile syntax.
Example usage: -AoutputArgsToFile=$HOME/scriptfile

30.11.5 Visualizing the dataflow graph
• -Aflowdotdir=somedir: Specify directory for .dot files visualizing the CFG. Shorthand for
-Acfgviz=org.checkerframework.dataflow.cfg.DOTCFGVisualizer,outdir=somedir. The directory
must already exist.

• -Averbosecfg: Enable additional output in the CFG visualization. Equivalent to passing verbose to cfgviz,
e.g. as in -Acfgviz=MyVisualizer,verbose

• -Acfgviz=VizClassName[,opts,...]: Mechanism to visualize the control flow graph (CFG) of all the
methods and code fragments analyzed by the dataflow analysis (Section 30.8). The graph also contains information
about flow-sensitively refined types of various expressions at many program points.

198

../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
../api/org/checkerframework/framework/util/typeinference/DefaultTypeArgumentInference.html

The argument is a comma-separated sequence of values or key-value pairs. The first argument is the fully-
qualified name of the org.checkerframework.dataflow.cfg.CFGVisualizer implementation that should
be used. The remaining values or key-value pairs are passed to CFGVisualizer.init.

You can visualize .dot graph files with the Graphviz program. For example, to convert a .dot file to PDF:

dot -Tpdf -o myfile.pdf myfile.dot

30.11.6 Miscellaneous debugging options
• -AresourceStats: Whether to output resource statistics at JVM shutdown.

30.11.7 Examples
The following example demonstrates how these options are used:
$ javac -processor org.checkerframework.checker.interning.InterningChecker \

docs/examples/InternedExampleWithWarnings.java -Ashowchecks -Anomsgtext -Afilenames

[InterningChecker] InterningExampleWithWarnings.java
success (line 18): STRING_LITERAL "foo"

actual: DECLARED @org.checkerframework.checker.interning.qual.Interned java.lang.String
expected: DECLARED @org.checkerframework.checker.interning.qual.Interned java.lang.String

success (line 19): NEW_CLASS new String("bar")
actual: DECLARED java.lang.String

expected: DECLARED java.lang.String
docs/examples/InterningExampleWithWarnings.java:21: (not.interned)

if (foo == bar)
^

success (line 22): STRING_LITERAL "foo == bar"
actual: DECLARED @org.checkerframework.checker.interning.qual.Interned java.lang.String

expected: DECLARED java.lang.String
1 error

30.11.8 Using an external debugger
You can use any standard debugger to observe the execution of your checker. If using an IDE, it is recommended that
you add .../jsr308-langtools as a project, so you can step into its source code if needed.

You can also set up remote (or local) debugging using the following command as a template:

java -jar "$CHECKERFRAMEWORK/checker/dist/checker.jar" \
-J-Xdebug -J-Xrunjdwp:transport=dt_socket,server=y,suspend=y,address=5005 \
-processor org.checkerframework.checker.nullness.NullnessChecker \
src/sandbox/FileToCheck.java

30.12 Documenting the checker
This section describes how to write a chapter for this manual that describes a new type-checker. This is a prerequisite to
having your type-checker distributed with the Checker Framework, which is the best way for users to find it and for it
to be kept up to date with Checker Framework changes. Even if you do not want your checker distributed with the
Checker Framework, these guidelines may help you write better documentation.

When writing a chapter about a new type-checker, see the existing chapters for inspiration. (But recognize that the
existing chapters aren’t perfect: maybe they can be improved too.)

A chapter in the Checker Framework manual should generally have the following sections:

199

Chapter: Belly Rub Checker The text before the first section in the chapter should state the guarantee that the checker
provides and why it is important. It should give an overview of the concepts. It should state how to run the
checker.

Section: Belly Rub Annotations This section includes descriptions of the annotations with links to the Javadoc.
Separate type annotations from declaration annotations, and put any type annotations that a programmer may not
write (they are only used internally by the implementation) last within variety of annotation.
Draw a diagram of the type hierarchy. A textual description of the hierarchy is not sufficient; the diagram really
helps readers to understand the system. The diagram will appear in directory docs/manual/figures/; see its
README file for tips.
The Javadoc for the annotations deserves the same care as the manual chapter. Each annotation’s Javadoc
comment should use the @checker_framework.manual Javadoc taglet to refer to the chapter that describes the
checker; see ManualTaglet.

Section: What the Belly Rub Checker checks This section gives more details about when an error is issued, with
examples. This section may be omitted if the checker does not contain special type-checking rules — that is, if
the checker only enforces the usual Java subtyping rules.

Section: Examples Code examples.

Sometimes you can omit some of the above sections. Sometimes there are additional sections, such as tips on
suppressing warnings, comparisons to other tools, and run-time support.

You will create a new belly-rub-checker.tex file, then \input it at a logical place in manual.tex (not
necessarily as the last checker-related chapter). Also add two references to the checker’s chapter: one at the beginning
of chapter 1, and identical text in the appropriate part of Section 25.4.3 And add the file to docs/manual/Makefile.
Keep the lists appear in the same order as the manual chapters, to help us notice if anything is missing.

Every chapter and (sub)*section should have a label defined within the \section command. Section labels should
start with the checker name (as in \label{bellyrub-examples}) and not with “sec:”. Figure labels should start
with “fig-checkername” and not with “fig:”. These conventions are for the benefit of the Hevea program that produces
the HTML version of the manual. Use \begin{figure} for all figures, including those whose content is a table, in
order to have a single consistent numbering for all figures.

Don’t forget to write Javadoc for any annotations that the checker uses. That is part of the documentation and is
the first thing that many users may see. The documentation for any annotation should include an example use of the
annotation. Also ensure that the Javadoc links back to the manual, using the @checker_framework.manual custom
Javadoc tag.

30.13 javac implementation survival guide
Since this section of the manual was written, the useful “The Hitchhiker’s Guide to javac” has become available at
http://openjdk.java.net/groups/compiler/doc/hhgtjavac/index.html. See it first, and then refer to this
section. (This section of the manual should be revised, or parts eliminated, in light of that document.)

A checker built using the Checker Framework makes use of a few interfaces from the underlying compiler (Oracle’s
OpenJDK javac). This section describes those interfaces.

30.13.1 Checker access to compiler information
The compiler uses and exposes three hierarchies to model the Java source code and classfiles.

Types — Java Language Model API

A TypeMirror represents a Java type.
There is a TypeMirror interface to represent each type kind, e.g., PrimitiveType for primitive types,

ExecutableType for method types, and NullType for the type of the null literal.

200

../api/org/checkerframework/javacutil/dist/ManualTaglet.html
http://openjdk.java.net/groups/compiler/doc/hhgtjavac/index.html
https://docs.oracle.com/javase/8/docs/api/javax/lang/model{}/type/TypeMirror.html?is-external=true

TypeMirror does not represent annotated types though. A checker should use the Checker Framework types API,
AnnotatedTypeMirror, instead. AnnotatedTypeMirror parallels the TypeMirror API, but also present the type
annotations associated with the type.

The Checker Framework and the checkers use the types API extensively.

Elements — Java Language Model API

An Element represents a potentially-public declaration that can be accessed from elsewhere: classes, interfaces,
methods, constructors, and fields. Element represents elements found in both source code and bytecode.

There is an Element interface to represent each construct, e.g., TypeElement for class/interfaces, ExecutableElement
for methods/constructors, VariableElement for local variables and method parameters.

If you need to operate on the declaration level, always use elements rather than trees (see below). This allows the
code to work on both source and bytecode elements.

Example: retrieve declaration annotations, check variable modifiers (e.g., strictfp, synchronized)

Trees — Compiler Tree API

A Tree represents a syntactic unit in the source code, like a method declaration, statement, block, for loop, etc. Trees
only represent source code to be compiled (or found in -sourcepath); no tree is available for classes read from
bytecode.

There is a Tree interface for each Java source structure, e.g., ClassTree for class declaration, MethodInvocationTree
for a method invocation, and ForEachTree for an enhanced-for-loop statement.

You should limit your use of trees. A checker uses Trees mainly to traverse the source code and retrieve the
types/elements corresponding to them. Then, the checker performs any needed checks on the types/elements instead.

Using the APIs

The three APIs use some common idioms and conventions; knowing them will help you to create your checker.
Type-checking: Do not use instanceof to determine the class of the object, because you cannot necessarily predict

the run-time type of the object that implements an interface. Instead, use the getKind() method. The method returns
TypeKind, ElementKind, and Tree.Kind for the three interfaces, respectively.

Visitors and Scanners: The compiler and the Checker Framework use the visitor pattern extensively. For example,
visitors are used to traverse the source tree (BaseTypeVisitor extends TreePathScanner) and for type checking
(TreeAnnotator implements TreeVisitor).

Utility classes: Some useful methods appear in a utility class. The Oracle convention is that the utility class for
a Foo hierarchy is Foos (e.g., Types, Elements, and Trees). The Checker Framework uses a common Utils suffix
instead (e.g., TypesUtils, TreeUtils, ElementUtils), with one notable exception: AnnotatedTypes.

30.13.2 How a checker fits in the compiler as an annotation processor
The Checker Framework builds on the Annotation Processing API introduced in Java 6. A type annotation processor is
one that extends AbstractTypeProcessor; these get run on each class source file after the compiler confirms that the
class is valid Java code.

The most important methods of AbstractTypeProcessor are typeProcess and getSupportedSourceVersion.
The former class is where you would insert any sort of method call to walk the AST, and the latter just returns a constant
indicating that we are targeting version 8 of the compiler. Implementing these two methods should be enough for a
basic plugin; see the Javadoc for the class for other methods that you may find useful later on.

The Checker Framework uses Oracle’s Tree API to access a program’s AST. The Tree API is specific to the
Oracle OpenJDK, so the Checker Framework only works with the OpenJDK javac, not with Eclipse’s compiler ecj.
This also limits the tightness of the integration of the Checker Framework into other IDEs such as IntelliJ IDEA. An
implementation-neutral API would be preferable. In the future, the Checker Framework can be migrated to use the Java

201

../api/org/checkerframework/framework/type/AnnotatedTypeMirror.html
https://docs.oracle.com/javase/8/docs/api/javax/lang/model{}/element/Element.html?is-external=true
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source{}/tree/Tree.html?is-external=true
https://docs.oracle.com/javase/8/docs/api/javax/lang/model{}/type/TypeKind.html?is-external=true
https://docs.oracle.com/javase/8/docs/api/javax/lang/model{}/element/ElementKind.html?is-external=true
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source{}/tree/Tree.Kind.html?is-external=true
../api/org/checkerframework/common/basetype/BaseTypeVisitor.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source{}/util/TreePathScanner.html?is-external=true
../api/org/checkerframework/framework/type/treeannotator/TreeAnnotator.html
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source{}/tree/TreeVisitor.html?is-external=true
https://docs.oracle.com/javase/8/docs/api/javax/lang/model{}/util/Types.html?is-external=true
https://docs.oracle.com/javase/8/docs/api/javax/lang/model{}/util/Elements.html?is-external=true
https://docs.oracle.com/javase/8/docs/jdk/api/javac/tree/com/sun/source{}/util/Trees.html?is-external=true
../api/org/checkerframework/javacutil/TypesUtils.html
../api/org/checkerframework/javacutil/TreeUtils.html
../api/org/checkerframework/javacutil/ElementUtils.html
../api/org/checkerframework/framework/util/AnnotatedTypes.html
../api/org/checkerframework/javacutil/AbstractTypeProcessor.html
../api/org/checkerframework/javacutil/AbstractTypeProcessor.html
http://www.jetbrains.com/idea/

Model AST of JSR 198 (Extension API for Integrated Development Environments) [Cro06], which gives access to the
source code of a method. But, at present no tools implement JSR 198. Also see Section 30.6.1.

Learning more about javac

Sun’s javac compiler interfaces can be daunting to a newcomer, and its documentation is a bit sparse. The Checker
Framework aims to abstract a lot of these complexities. You do not have to understand the implementation of javac
to build powerful and useful checkers. Beyond this document, other useful resources include the Java Infrastructure
Developer’s guide at http://wiki.netbeans.org/Java_DevelopersGuide and the compiler mailing list archives at
http://mail.openjdk.java.net/pipermail/compiler-dev/ (subscribe at http://mail.openjdk.java.net/
mailman/listinfo/compiler-dev).

30.14 Integrating a checker with the Checker Framework
To integrate a new checker with the Checker Framework release, perform the following:

• Make sure check-compilermsgs and check-purity run without warnings or errors.

202

http://wiki.netbeans.org/Java_DevelopersGuide
http://mail.openjdk.java.net/pipermail/compiler-dev/
http://mail.openjdk.java.net/mailman/listinfo/compiler-dev
http://mail.openjdk.java.net/mailman/listinfo/compiler-dev

Chapter 31

Integration with external tools

This chapter discusses how to run a checker from the command line, from a build system, or from an IDE. You can skip
to the appropriate section:

• Android Gradle Plugin (Section 31.1)
• Ant (Section 31.2)
• Eclipse (Section 31.3)
• Gradle (Section 31.4)
• IntelliJ IDEA (Section 31.5)
• javac (Section 31.6)
• Maven (Section 31.7)
• NetBeans (Section 31.8)
• tIDE (Section 31.9)

If your build system or IDE is not listed above, you should customize how it runs the javac command on your
behalf. See your build system or IDE documentation to learn how to customize it, adapting the instructions for javac in
Section 31.6. If you make another tool support running a checker, please inform us via the mailing list or issue tracker
so we can add it to this manual.

All examples in this chapter are in the public domain, with no copyright nor licensing restrictions.

31.1 Android Studio 3.0 and the Android Gradle Plugin 3.0
Android Studio 3.0 and Android Gradle Plugin 3.0.0 support type annotations. (See https://developer.android.
com/studio/write/java8-support.html for more details.) This section explains how to configure your Andriod
project to use the Checker Framework. All the changes should be made to the module’s build.gradle file — not the
app’s build.gradle file.

1. In your module’s build.gradle file, set the source and target compatiblity to JavaVersion.VERSION_1_8

android {
...
compileOptions {

sourceCompatibility JavaVersion.VERSION_1_8
targetCompatibility JavaVersion.VERSION_1_8

}
}

2. Add a build variant for running checkers.

203

https://groups.google.com/forum/#!forum/checker-framework-discuss
https://github.com/typetools/checker-framework/issues
https://developer.android.com/studio/write/java8-support.html
https://developer.android.com/studio/write/java8-support.html

android {
...

buildTypes {
...

checkTypes {
javaCompileOptions.annotationProcessorOptions.

classNames.add("org.checkerframework.checker.nullness.NullnessChecker")
// You can pass options like so:
// javaCompileOptions.annotationProcessorOptions.arguments.put("warns", "")

}
}

}

3. Add a dependency configuration for the annotated JDK:
configurations {

checkerFrameworkAnnotatedJDK {
description = ’a copy of JDK classes with Checker Framework type qualifers inserted’

}
}

4. Declare the Checker Framework dependencies:
dependencies {

... existing dependencies...
ext.checkerFrameworkVersion = ’2.5.1’
implementation "org.checkerframework:checker-qual:${checkerFrameworkVersion}"
annotationProcessor "org.checkerframework:checker:${checkerFrameworkVersion}"
checkerFrameworkAnnotatedJDK "org.checkerframework:jdk8:${checkerFrameworkVersion}"

}

5. Direct all tasks of type JavaCompile used by the CheckTypes build variant to use the annotated JDK.
gradle.projectsEvaluated {

tasks.withType(JavaCompile).all { compile ->
if (compile.name.contains("CheckTypes")) {

compile.options.compilerArgs += [
"-Xbootclasspath/p:${configurations.checkerFrameworkAnnotatedJDK.asPath}"

]
}

}
}

6. To run the checkers, build using the checkTypes variant.

gradlew checkTypes

31.2 Ant task
If you use the Ant build tool to compile your software, then you can add an Ant task that runs a checker. We assume
that your Ant file already contains a compilation target that uses the javac task.

1. Set the jsr308javac property:
<property environment="env"/>

<property name="checkerframework" value="${env.CHECKERFRAMEWORK}" />

<!-- On Mac/Linux, use the javac shell script; on Windows, use javac.bat -->
<condition property="cfJavac" value="javac.bat" else="javac">

<os family="windows" />
</condition>

204

http://ant.apache.org/

<presetdef name="jsr308.javac">
<javac fork="yes" executable="${checkerframework}/checker/bin/${cfJavac}" >
<!-- JSR-308-related compiler arguments -->
<compilerarg value="-version"/>
<compilerarg value="-implicit:class"/>

</javac>
</presetdef>

2. Duplicate the compilation target, then modify it slightly as indicated in this example:
<target name="check-nullness"

description="Check for null pointer dereferences"
depends="clean,...">

<!-- use jsr308.javac instead of javac -->
<jsr308.javac ... >
<compilerarg line="-processor org.checkerframework.checker.nullness.NullnessChecker"/>
<!-- optional, to not check uses of library methods:

<compilerarg value="-AskipUses=^(java\.awt\.|javax\.swing\.)"/>
-->
<compilerarg line="-Xmaxerrs 10000"/>
...

</jsr308.javac>
</target>

Fill in each ellipsis (. . .) from the original compilation target.
In the example, the target is named check-nullness, but you can name it whatever you like.

31.2.1 Explanation
This section explains each part of the Ant task.

1. Definition of jsr308.javac:
The fork field of the javac task ensures that an external javac program is called. Otherwise, Ant will run
javac via a Java method call, and there is no guarantee that it will get the Checker Framework compiler that is
distributed with the Checker Framework.
The -version compiler argument is just for debugging; you may omit it.
The -implicit:class compiler argument causes annotation processing to be performed on implicitly compiled
files. (An implicitly compiled file is one that was not specified on the command line, but for which the source
code is newer than the .class file.) This is the default, but supplying the argument explicitly suppresses a
compiler warning.

2. The check-nullness target:
The target assumes the existence of a clean target that removes all .class files. That is necessary because Ant’s
javac target doesn’t re-compile .java files for which a .class file already exists.
The -processor ... compiler argument indicates which checker to run. You can supply additional arguments
to the checker as well.

31.3 Eclipse
You need to run the Checker Framework via Ant or via another build tool, rather than by supplying the -processor
command-line option to the ejc compiler, which is also known as eclipsec. The reason is that the Checker Framework is
built upon javac, and ejc represents the Java program differently. (If both javac and ejc implemented JSR 198 [Cro06],
then it would be possible to build a type-checking plug-in that works with both compilers.)

31.3.1 Using an Ant task
Add an Ant target as described in Section 31.2. You can run the Ant target by executing the following steps (instruc-
tions copied from http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.user%
2FgettingStarted%2Fqs-84_run_ant.htm):

205

http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2FgettingStarted%2Fqs-84_run_ant.htm
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2FgettingStarted%2Fqs-84_run_ant.htm

1. Select build.xml in one of the navigation views and choose Run As > Ant Build... from its context menu.
2. A launch configuration dialog is opened on a launch configuration for this Ant buildfile.
3. In the Targets tab, select the new ant task (e.g., check-interning).
4. Click Run.
5. The Ant buildfile is run, and the output is sent to the Console view.

31.3.2 Troubleshooting Eclipse
Eclipse issues an “Unhandled Token in @SuppressWarnings” warning if you write a @SuppressWarnings annotation
containing a string that does not know about. Unfortunately, Eclipse hard-codes this list.

To eliminate the warnings: disable all “Unhandled Token in @SuppressWarnings” warnings in Eclipse. Look under
the menu headings Java→ Compiler→ Errors/Warnings→ Annotations→ Unhandled Token in ’@SuppressWarnings’,
and set it to ignore.

31.4 Gradle
This section describes how to run a checker on a project that uses the Gradle build system.

1. Copy the file checkerframework.gradle to your project.
2. Customize the file, such as setting which type-checkers are run.
3. In your main buildfile, add the lines

// Checker Framework pluggable type-checking
apply from: "checkerframework.gradle"

Note: Gradle 3.4 has a bug where it does not run annotation processors, even if the -processor flag is passed. To
work around this, install a later version of gradle. Or, run gradle wrapper -gradle-version 4.5 (or any version
3.5 or later) and then always use ./gradlew where you would have used gradle.

31.5 IntelliJ IDEA
To run a checker within IntelliJ:

1. Set the language level for your project to 8. To do so, go to the “Project Structure” menu via (File>Project
Structure) or (Ctrl-Alt-Shift-S), and set the “Project language level” field in the “Project” sub-menu to 8.
Note: under MacOS, the menu is “Preferences” rather than “Project Structure”.

2. Add the Checker Framework libraries. In this same “Project Structure” menu, navigate to the “Libraries” sub-
menu. Click on the green “+” that appears in this menu, select “Java” in the resulting pop-down menu, select
$CHECKERFRAMEWORK/checker/dist/checker.jar in the resulting menu, and click “OK”.

3. Add the annotated JDK library using the following method. Go to the “Settings” menu via (File>Settings) or
(Ctrl-Alt-S) and navigate to the “Java Compiler” sub-menu via (Build, Execution, Deployment>Compiler>Java
Compiler). Add the following to the field “Additional command line parameters”:
-Xbootclasspath/p:"$CHECKERFRAMEWORK/checker/dist/jdk8.jar"

4. Create an annotation profile and specify which checkers to run. Directly under the “Java Compiler” sub-menu is
the “Annotation Processors” sub-menu. Navigate here and click on the green “+” to create a new Annotation
Processor profile. Give this profile a unique name of your choosing that does not contain special characters or
spaces. Select the modules you would like to use checkers with from under the “Default” profile and move them
to your new profile via the button directly right of the “-” button.
Now select your new profile and check the “Enable annotation processing” option. Select the “Processor path” ra-
dio button and enter $CHECKERFRAMEWORK/checker/dist/checker.jar into the field to the right of it. To add
a checker to be run during compilation, click on the green “+” in the “Processor FQ Name” section and write that
checker’s fully-qualified name in the resulting text field, and press the “ENTER” key. (The fully-qualified name

206

https://bugs.eclipse.org/bugs/show_bug.cgi?id=122475
https://gradle.org/
https://raw.githubusercontent.com/typetools/checker-framework/master/docs/manual/checkerframework.gradle

is usually an instantiation of org.checkerframework.checker.CHECKER.CHECKERChecker, replacing
CHECKER by the checker you want to run; an example would be org.checkerframework.checker.nullness.NullnessChecker.)

Now, when you compile your code, the checker will be run.
It is necessary to manually inform the IDE via a plugin if an annotation system adds any dependencies beyond

those that normally exist in Java. For information about the extension points, see https://youtrack.jetbrains.
com/issue/IDEA-159286.

31.6 Javac compiler
To perform pluggable type-checking, run the javac compiler with the Checker Framework on the classpath. There are
three ways to achieve this. You can use any one of them. However, if you are using the Windows command shell, you
must use the last one.

• Option 1: Add directory .../checker-framework-2.5.1/checker/bin to your path, before any other direc-
tory that contains a javac executable.
If you are using the bash shell, a way to do this is to add the following to your ~/.profile (or alternately
~/.bash_profile or ~/.bashrc) file:

export CHECKERFRAMEWORK=${HOME}/checker-framework-2.5.1
export PATH=${CHECKERFRAMEWORK}/checker/bin:${PATH}

then log out and back in to ensure that the environment variable setting takes effect.
Now, whenever you run javac, you will use the “Checker Framework compiler”. It is exactly the same as the
OpenJDK compiler, with one small differences: it includes the Checker Framework jar file on its classpath.

• Option 2: Whenever this document tells you to run javac, you can instead run
$CHECKERFRAMEWORK/checker/bin/javac.
You can simplify this by introducing an alias. Then, whenever this document tells you to run javac, instead use
that alias. Here is the syntax for your ~/.bashrc file:

export CHECKERFRAMEWORK=${HOME}/checker-framework-2.5.1
alias javacheck=’$CHECKERFRAMEWORK/checker/bin/javac’

• Option 3: Whenever this document tells you to run javac, instead run checker.jar via java (not javac) as in:

java -jar "$CHECKERFRAMEWORK/checker/dist/checker.jar" ...

You can simplify the above command by introducing an alias. Then, whenever this document tells you to run
javac, instead use that alias. For example:

Unix
export CHECKERFRAMEWORK=${HOME}/checker-framework-2.5.1
alias javacheck=’java -jar "$CHECKERFRAMEWORK/checker/dist/checker.jar"’

Windows
set CHECKERFRAMEWORK = C:\Program Files\checker-framework-2.5.1\
doskey javacheck=java -jar "%CHECKERFRAMEWORK%\checker\dist\checker.jar" $*

(Explanation for advanced users: More generally, anywhere that you would use javac.jar, you can substitute
$CHECKERFRAMEWORK/checker/dist/checker.jar; the result is to use the Checker Framework compiler
instead of the regular javac.)

31.7 Maven
If you use the Maven tool, then you can enable Checker Framework checkers by following the instructions below.

207

https://youtrack.jetbrains.com/issue/IDEA-159286
https://youtrack.jetbrains.com/issue/IDEA-159286
http://maven.apache.org/

See the directory docs/examples/MavenExample/ for examples of the use of Maven build files that run a checker.
These examples can be used to verify that Maven is correctly downloading the Checker Framework from Maven Central
Repository and executing it.

Please note that the -AoutputArgsToFile command-line option (see Section 30.11.4) and shorthands for built-in
checkers (see Section 2.2.5) are not available when following these instructions. Both these features are available only
when a checker is launched via checker.jar such as when $CHECKERFRAMEWORK/checker/bin/javac is run. The
instructions in this section bypass checker.jar and cause the compiler to run a checker as an annotation processor
directly.

1. Declare a dependency on the Checker Framework artifacts, either from Maven Central or from a local directory.
Find the existing <dependencies> section and add the following new <dependency> items:

(a) To obtain artifacts from Maven Central:
<dependencies>

... existing <dependency> items ...

<!-- Annotations from the Checker Framework: nullness, interning, locking, ... -->
<dependency>

<groupId>org.checkerframework</groupId>
<artifactId>checker-qual</artifactId>
<version>2.5.1</version>

</dependency>
<dependency>

<groupId>org.checkerframework</groupId>
<artifactId>jdk8</artifactId>
<version>2.5.1</version>

</dependency>
</dependencies>

Periodically update to the most recent version, to obtain the latest bug fixes and new features:
mvn versions:use-latest-versions -Dincludes="org.checkerframework:*"

(b) To use a local version of the Checker Framework (for example, one that you have built from source):
<dependencies>

... existing <dependency> items ...

<!-- Annotations from the Checker Framework: nullness, interning, locking, ... -->
<dependency>

<groupId>org.checkerframework</groupId>
<artifactId>checker-qual</artifactId>
<version>2.5.1</version>
<scope>system</scope>
<systemPath>${env.CHECKERFRAMEWORK}/checker/dist/checker-qual.jar</systemPath>

</dependency>
<dependency>

<groupId>org.checkerframework</groupId>
<artifactId>checker</artifactId>
<version>2.5.1</version>
<scope>system</scope>
<systemPath>${env.CHECKERFRAMEWORK}/checker/dist/checker.jar</systemPath>

</dependency>
<!-- The annotated JDK to use. -->
<dependency>

<groupId>org.checkerframework</groupId>

208

http://search.maven.org/#search|ga|1|org.checkerframework
http://search.maven.org/#search|ga|1|org.checkerframework

<artifactId>jdk8</artifactId>
<version>2.5.1</version>
<scope>system</scope>
<systemPath>${env.CHECKERFRAMEWORK}/checker/dist/jdk8.jar</systemPath>

</dependency>
</dependencies>

Periodically update to the most recent version, to obtain the latest bug fixes and new features:

mvn versions:use-latest-versions -Dincludes="org.checkerframework:*"

2. Use Maven properties to hold the locations of the annotated JDK. It was declared as Maven dependencies above.
To set the value of this property automatically, you will use the Maven Dependency plugin.
First, create the property in the properties section of the POM:
<properties>
<!-- These properties will be set by the Maven Dependency plugin -->
<annotatedJdk>${org.checkerframework:jdk8:jar}</annotatedJdk>

</properties>
Change the reference to the maven-dependency-plugin within the <plugins> section, or add it if it is not
present.
<plugin>

<!-- This plugin will set properties values using dependency information -->
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<executions>

<execution>
<goals>

<goal>properties</goal>
</goals>

</execution>
</executions>

</plugin>
3. Direct the Maven compiler plugin to use the desired checkers. Change the reference to the maven-compiler-plugin

within the <plugins> section, or add it if it is not present.
For example, to use the org.checkerframework.checker.nullness.NullnessChecker:
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>3.6.1</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
<compilerArguments>
<Xmaxerrs>10000</Xmaxerrs>
<Xmaxwarns>10000</Xmaxwarns>

</compilerArguments>
<annotationProcessorPaths>
<path>
<groupId>org.checkerframework</groupId>
<artifactId>checker</artifactId>
<version>2.5.1</version>

</path>
</annotationProcessorPaths>
<annotationProcessors>
<!-- Add all the checkers you want to enable here -->
<annotationProcessor>org.checkerframework.checker.nullness.NullnessChecker</annotationProcessor>

</annotationProcessors>
<compilerArgs>
<arg>-AprintErrorStack</arg>
<!-- location of the annotated JDK, which comes from a Maven dependency -->

209

<arg>-Xbootclasspath/p:${annotatedJdk}</arg>
<!-- Uncomment the following line to turn type-checking warnings into errors. -->
<!-- <arg>-Awarns</arg> -->

</compilerArgs>
</configuration>

</plugin>

Now, building with Maven will run the checkers during compilation.
Notice that using this approach, no external setup is necessary, so your Maven build should be reproducible on
any server.
If you want to allow Maven to compile your code without running the checkers, you may want to move the
declarations above to within a Maven profile, so that the checkers run only if the profile was enabled.

31.8 NetBeans
There are two approaches to running a checker in NetBeans: via modifying the project properties, or via a custom ant
target.

Note: The ’compile and save’ action in NetBeans 8.1 automatically runs the Checker Framework whereas this
functionality has not yet been incorporated into NetBeans 8.2. Additionally, JDK annotations are currently unavailable
on Netbeans 8.1 and 8.2.

31.8.1 Adding a checker via the Project Properties window
1. Add the Checker Framework libraries to your project’s library. First, right click on the project in the Projects

panel, and select “Properties” in the drop-down menu. Then, in the “Project Properties” window, navigate to the
“Libraries” tab.

2. Add checker-qual.jar to the compile-time libraries. To do so, select the “Compile” tab, click the “Add
JAR/Folder” button on the right and browse to add $CHECKERFRAMEWORK/checker/dist/checker-qual.jar.

3. Add checker.jar to the processor-path libraries. To do so, select the “Processor” tab, click the “Add JAR/Folder”
button on the right and browse to add $CHECKERFRAMEWORK/checker/dist/checker.jar.

4. Enable annotation processor underlining in the editor. Go to “Build>Compiling” and check the box “Enable
Annotation Processing,” and under that, “Enable Annotation Processing in Editor.”

5. Add the checker to run, by clicking “Add” next to the box labeled “Annotation Processors” and enter the fully
qualified name of the checker (for example, org.checkerframework.checker.nullness.NullnessChecker)
and click “OK” to add.

The selected checker should be run on the project either on a save (if Compile on Save is enabled), or when the
project is built, and annotation processor output will appear in the editor.

31.8.2 Adding a checker via an ant target
1. Set the jsr308javac property:

<property environment="env"/>

<property name="checkerframework" value="${env.CHECKERFRAMEWORK}" />

<!-- On Mac/Linux, use the javac shell script; on Windows, use javac.bat -->
<condition property="cfJavac" value="javac.bat" else="javac">

<os family="windows" />
</condition>

<presetdef name="jsr308.javac">
<javac fork="yes" executable="${checkerframework}/checker/bin/${cfJavac}" >
<!-- JSR-308-related compiler arguments -->
<compilerarg value="-version"/>
<compilerarg value="-implicit:class"/>

210

</javac>
</presetdef>

2. Override the -init-macrodef-javac-with-processors target to use jsr308.javac instead of javac and to
run the checker. In this example, a nullness checker is run:
<target depends="-init-ap-cmdline-properties" if="ap.supported.internal"

name="-init-macrodef-javac-with-processors">
<echo message = "${checkerframework}"/>
<macrodef name="javac" uri="http://www.netbeans.org/ns/j2se-project/3">

<attribute default="${src.dir}" name="srcdir"/>
<attribute default="${build.classes.dir}" name="destdir"/>
<attribute default="${javac.classpath}" name="classpath"/>
<attribute default="${javac.processorpath}" name="processorpath"/>
<attribute default="${build.generated.sources.dir}/ap-source-output" name="apgeneratedsrcdir"/>
<attribute default="${includes}" name="includes"/>
<attribute default="${excludes}" name="excludes"/>
<attribute default="${javac.debug}" name="debug"/>
<attribute default="${empty.dir}" name="sourcepath"/>
<attribute default="${empty.dir}" name="gensrcdir"/>
<element name="customize" optional="true"/>
<sequential>

<property location="${build.dir}/empty" name="empty.dir"/>
<mkdir dir="${empty.dir}"/>
<mkdir dir="@{apgeneratedsrcdir}"/>
<jsr308.javac debug="@{debug}" deprecation="${javac.deprecation}"

destdir="@{destdir}" encoding="${source.encoding}"
excludes="@{excludes}" fork="${javac.fork}"
includeantruntime="false" includes="@{includes}"
source="${javac.source}" sourcepath="@{sourcepath}"
srcdir="@{srcdir}" target="${javac.target}"
tempdir="${java.io.tmpdir}">

<src>
<dirset dir="@{gensrcdir}" erroronmissingdir="false">

<include name="*"/>
</dirset>

</src>
<classpath>

<path path="@{classpath}"/>
</classpath>
<compilerarg line="${endorsed.classpath.cmd.line.arg}"/>
<compilerarg line="${javac.profile.cmd.line.arg}"/>
<compilerarg line="${javac.compilerargs}"/>
<compilerarg value="-processorpath"/>
<compilerarg path="@{processorpath}:${empty.dir}"/>
<compilerarg line="${ap.processors.internal}"/>
<compilerarg line="${annotation.processing.processor.options}"/>
<compilerarg value="-s"/>
<compilerarg path="@{apgeneratedsrcdir}"/>
<compilerarg line="${ap.proc.none.internal}"/>
<compilerarg line="-processor org.checkerframework.checker.nullness.NullnessChecker"/>
<compilerarg line="-Xmaxerrs 10000"/>
<compilerarg line="-Xmaxwarns 10000"/>
<customize/>

</jsr308.javac>
</sequential>

</macrodef>
</target>
<target name="-post-jar">
</target>

When Build and Clean Project is used, the output of the checker will now appear in the build console. However,
annotation processor output will not appear in the editor.

211

31.9 tIDE
tIDE, an open-source Java IDE, supports the Checker Framework. You can download it from https://sourceforge.
net/projects/tide/.

31.10 Type inference tools
There are two different tasks that are commonly called “type inference”. You are probably interested in type inference to
annotate a program’s source code; see Section 28.2. This section explains the two different varieties of type inference.

1. Type inference during type-checking (Section 25.4): During type-checking, if certain variables have no type
qualifier, the type-checker determines whether there is some type qualifier that would permit the program to
type-check. If so, the type-checker uses that type qualifier, but never tells the programmer what it was. Each time
the type-checker runs, it re-infers the type qualifier for that variable. If no type qualifier exists that permits the
program to type-check, the type-checker issues a type warning.
This variety of type inference is built into the Checker Framework. Every checker can take advantage of it at no
extra effort. However, it only works within a method, not across method boundaries.
Advantages of this variety of type inference include:

• If the type qualifier is obvious to the programmer, then omitting it can reduce annotation clutter in the
program.
• The type inference can take advantage of only the code currently being compiled, rather than having to be

correct for all possible calls. Additionally, if the code changes, then there is no old annotation to update.

2. Type inference to annotate a program (Section 28.2): As a separate step before type-checking, a type inference
tool takes the program as input, and outputs a set of type qualifiers that would type-check. These qualifiers are
inserted into the source code or the class file. They can be viewed and adjusted by the programmer, and can be
used by tools such as the type-checker.
This variety of type inference must be provided by a separate tool. It is not built into the Checker Framework.
Advantages of this variety of type inference include:

• The program contains documentation in the form of type qualifiers, which can aid programmer understand-
ing.
• Error messages may be more comprehensible. With type inference during type-checking, error messages can

be obscure, because the compiler has already inferred (possibly incorrect) types for a number of variables.
• A minor advantage is speed: type-checking can be modular, which can be faster than re-doing type inference

every time the program is type-checked.

Advantages of both varieties of inference include:

• Less work for the programmer.
• The tool chooses the most general type, whereas a programmer might accidentally write a more specific, less

generally-useful annotation.

Each variety of type inference has its place. When using the Checker Framework, type inference during type-
checking is performed only within a method (Section 25.4). Every method signature (arguments and return values)
and field must have already been explicitly annotated, either by the programmer or by a separate type-checking tool
(Section 28.2). This approach enables modular checking (one class or method at a time) and gives documentation
benefits. The programmer still has to put in some effort, but much less than without inference: typically, a programmer
does not have to write any qualifiers inside the body of a method.

212

https://sourceforge.net/projects/tide/
https://sourceforge.net/projects/tide/

Chapter 32

Frequently Asked Questions (FAQs)

These are some common questions about the Checker Framework and about pluggable type-checking in general. Feel
free to suggest improvements to the answers, or other questions to include here.

Contents:

32.1: Motivation for pluggable type-checking
32.1.1: I don’t make type errors, so would pluggable type-checking help me?
32.1.2: When should I use type qualifiers, and when should I use subclasses?

32.2: Getting started
32.2.1: How do I get started annotating an existing program?
32.2.2: Which checker should I start with?
32.2.3: How can I join the checker-framework-dev mailing list?

32.3: Usability of pluggable type-checking
32.3.1: Are type annotations easy to read and write?
32.3.2: Will my code become cluttered with type annotations?
32.3.3: Will using the Checker Framework slow down my program? Will it slow down the compiler?
32.3.4: How do I shorten the command line when invoking a checker?
32.3.5: Method pre-condition contracts, including formal parameter annotations, make no sense for public methods.

32.4: How to handle warnings
32.4.1: What should I do if a checker issues a warning about my code?
32.4.2: What does a certain Checker Framework warning message mean?
32.4.3: Can a pluggable type-checker guarantee that my code is correct?
32.4.4: What guarantee does the Checker Framework give for concurrent code?
32.4.5: How do I make compilation succeed even if a checker issues errors?
32.4.6: Why does the checker always say there are 100 errors or warnings?
32.4.7: Why does the Checker Framework report an error regarding a type I have not written in my program?
32.4.8: How can I do run-time monitoring of properties that were not statically checked?

32.5: False positive warnings
32.5.1: What is a “false positive” warning?
32.5.2: How can I improve the Checker Framework to eliminate a false positive warning?
32.5.3: Why doesn’t the Checker Framework infer types for fields and method return types?

213

32.5.4: Why doesn’t the Checker Framework track relationships between variables?
32.5.5: Why isn’t the Checker Framework path-sensitive?

32.6: Syntax of type annotations
32.6.1: What is a “receiver”?
32.6.2: What is the meaning of an annotation after a type, such as @NonNull Object @Nullable?
32.6.3: What is the meaning of array annotations such as @NonNull Object @Nullable []?
32.6.4: What is the meaning of varargs annotations such as @English String @NonEmpty ...?
32.6.5: What is the meaning of a type qualifier at a class declaration?
32.6.6: Why shouldn’t a qualifier apply to both types and declarations?
32.6.7: How do I annotate a fully-qualified type name?

32.7: Semantics of type annotations
32.7.1: How can I handle typestate, or phases of my program with different data properties?
32.7.2: Why are explicit and implicit bounds defaulted differently?
32.7.3: Why are type annotations declared with @Retention(RetentionPolicy.RUNTIME)?

32.8: Creating a new checker
32.8.1: How do I create a new checker?
32.8.2: What properties can and cannot be handled by type-checking?
32.8.3: Why is there no declarative syntax for writing type rules?

32.9: Tool questions
32.9.1: How does pluggable type-checking work?
32.9.2: What classpath is needed to use an annotated library?
32.9.4: Is there a type-checker for managing checked and unchecked exceptions?

32.10: Relationship to other tools
32.10.1: Why not just use a bug detector (like FindBugs)?
32.10.2: How does the Checker Framework compare with Eclipse’s Null Analysis?
32.10.3: How does the Checker Framework compare with the JDK’s Optional type?
32.10.4: How does pluggable type-checking compare with JML?
32.10.5: Is the Checker Framework an official part of Java?
32.10.6: What is the relationship between the Checker Framework and JSR 305?
32.10.7: What is the relationship between the Checker Framework and JSR 308?

32.1 Motivation for pluggable type-checking

32.1.1 I don’t make type errors, so would pluggable type-checking help me?
Occasionally, a developer says that he makes no errors that type-checking could catch, or that any such errors are
unimportant because they have low impact and are easy to fix. When I investigate the claim, I invariably find that the
developer is mistaken.

Very frequently, the developer has underestimated what type-checking can discover. Not every type error leads to an
exception being thrown; and even if an exception is thrown, it may not seem related to classical types. Remember that a
type system can discover null pointer dereferences, incorrect side effects, security errors such as information leakage
or SQL injection, partially-initialized data, wrong units of measurement, and many other errors. Every programmer
makes errors sometimes and works with other people who do. Even where type-checking does not discover a problem
directly, it can indicate code with bad smells, thus revealing problems, improving documentation, and making future
maintenance easier.

214

There are other ways to discover errors, including extensive testing and debugging. You should continue to use these.
But type-checking is a good complement to these. Type-checking is more effective for some problems, and less effective
for other problems. It can reduce (but not eliminate) the time and effort that you spend on other approaches. There are
many important errors that type-checking and other automated approaches cannot find; pluggable type-checking gives
you more time to focus on those.

32.1.2 Should I use pluggable types (type qualifiers) or Java subtypes?
In brief, use subtypes when you can, and use type qualifiers when you cannot use subtypes.

For some programming tasks, you can use either a Java subclass or a type qualifier. As an example that your code
currently uses String to represent an address. You could use Java subclasses by creating a new Address class and
refactor your code to use it, or you could use type qualifiers by creating an @Address annotation and applying it to
some uses of String in your code. As another example, suppose that your code currently uses MyClass in two different
ways that should not interact with one another. You could use Java subclasses by changing MyClass into an interface or
abstract class, defining two subclasses, and ensuring that neither subclass ever refers to the other subclass nor to the
parent class.

If Java subclasses solve your problem, then that is probably better. We do not encourage you to use type qualifiers
as a poor substitute for classes. An advantage of using classes is that the Java type-checker runs every time you compile
your code; by contrast, it is possible to forget to run the pluggable type-checker. However, sometimes type qualifiers are
a better choice; here are some reasons:

Backward compatibility Using a new class may make your code incompatible with existing libraries or clients. Brian
Goetz expands on this issue in an article on the pseudo-typedef antipattern [Goe06]. Even if compatibility is not
a concern, a code change may introduce bugs, whereas adding annotations does not change the run-time behavior.
It is possible to add annotations to existing code, including code you do not maintain or cannot change. For code
that strictly cannot be changed, you can write library annotations (see Chapter 29).

Broader applicability Type annotations can be applied to primitives and to final classes such as String, which cannot
be subclassed.

Richer semantics and new supertypes Type qualifiers permit you to remove operations, with a compile-time guar-
antee. More generally, type qualifiers permit creating a new supertype, not just a subtype, of an existing Java
type.

More precise type-checking The Checker Framework is able to verify the correctness of code that the Java type-
checker would reject. Here are a few examples.

• It uses a dataflow analysis to determine a more precise type for variables after conditional tests or assign-
ments.
• It treats certain Java constructs more precisely, such as reflection (see Chapter 21).
• It includes special-case logic for type-checking specific methods, such as the Nullness Checker’s treatment

of Map.get.

Efficiency Type qualifiers have no run-time representation. Therefore, there is no space overhead for separate classes
or for wrapper classes for primitives. There is no run-time overhead for due to extra dereferences or dynamic
dispatch for methods that could otherwise be statically dispatched.

Less code clutter The programmer does not have to convert primitive types to wrappers, which would make the code
both uglier and slower. Thanks to defaults and type inference (Section 25.3.1), you may be able to write and
think in terms of the original Java type, rather than having to explicitly write one of the subtypes in all locations.

For more details, see Section 32.1.2.

32.2 Getting started

32.2.1 How do I get started annotating an existing program?
See Section 2.4.2.

215

32.2.2 Which checker should I start with?
You should start with a property that matters to you. Think about what aspects of your code cause the most errors, or
cost the most time during maintenance, or are the most common to be incorrectly-documented. Focusing on what you
care about will give you the best benefits.

When you first start out with the Checker Framework, it’s usually best to get experience with an existing type-checker
before you write your own new checker.

Many users are tempted to start with the Nullness Checker (see Chapter 3, page 25), since null pointer errors are
common and familiar. The Nullness Checker works very well, but be warned of three facts that make the absence of
null pointer exceptions challenging to verify.

1. Dereferences happen throughout your codebase, so there are a lot of potential problems. By contrast, fewer lines
of code are related to locking, regular expressions, etc., so those properties are easier to check.

2. Programmers use null for many different purposes. More seriously, programmers write run-time tests against
null, and those are difficult for any static analysis to capture.

3. The Nullness Checker interacts with initialization and map keys.

If null pointer exceptions are most important to you, then by all means use the Nullness Checker. But if you just
want to try some type-checker, there are others that are easier to use.

We do not recommend indiscriminately running all the checkers on your code. The reason is that each one has a
cost — not just at compile time, but also in terms of code clutter and human time to maintain the annotations. If the
property is important to you, is difficult for people to reason about, or has caused problems in the past, then you should
run that checker. For other properties, the benefits may not repay the effort to use it. You will be the best judge of this
for your own code, of course.

Some of the third-party checkers (see Chapter 23, page 136) have known bugs that limit their usability. (Report the
ones that affect you, so the developers will prioritize fixing them.)

32.2.3 How can I join the checker-framework-dev mailing list?
The checker-framework-dev@googlegroups.com mailing list is for Checker Framework developers. Anyone is
welcome to join checker-framework-dev, after they have had several pull requests accepted.

Anyone is welcome to send mail to the checker-framework-dev@googlegroups.com mailing list — for imple-
mentation details it is generally a better place for discussions than the general checker-framework-discuss@googlegroups.com
mailing list, which is for user-focused discussions.

Anyone is welcome to join checker-framework-discuss@googlegroups.com and send mail to it.

32.3 Usability of pluggable type-checking

32.3.1 Are type annotations easy to read and write?
The papers “Practical pluggable types for Java” [PAC+08] and “Building and using pluggable type-checkers” [DDE+11]
discuss case studies in which programmers found type annotations to be natural to read and write. The code continued
to feel like Java, and the type-checking errors were easy to comprehend and often led to real bugs.

You don’t have to take our word for it, though. You can try the Checker Framework for yourself.
The difficulty of adding and verifying annotations depends on your program. If your program is well-designed and

-documented, then skimming the existing documentation and writing type annotations is extremely easy. Otherwise,
you may find yourself spending a lot of time trying to understand, reverse-engineer, or fix bugs in your program, and
then just a moment writing a type annotation that describes what you discovered. This process inevitably improves your
code. You must decide whether it is a good use of your time. For code that is not causing trouble now and is unlikely to
do so in the future (the code is bug-free, and you do not anticipate changing it or using it in new contexts), then the
effort of writing type annotations for it may not be justified.

216

https://groups.google.com/forum/#!forum/checker-framework-dev
https://groups.google.com/forum/#!forum/checker-framework-discuss
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011-abstract.html

32.3.2 Will my code become cluttered with type annotations?
In summary: annotations do not clutter code; they are used much less frequently than generic types, which Java
programmers find acceptable; and they reduce the overall volume of documentation that a codebase needs.

As with any language feature, it is possible to write ugly code that over-uses annotations. However, in normal use,
very few annotations need to be written. Figure 1 of the paper Practical pluggable types for Java [PAC+08] reports data
for over 350,000 lines of type-annotated code:

• 1 annotation per 62 lines for nullness annotations (@NonNull, @Nullable, etc.)
• 1 annotation per 1736 lines for interning annotations (@Interned)

These numbers are for annotating existing code. New code that is written with the type annotation system in mind
is cleaner and more correct, so it requires even fewer annotations.

Each annotation that a programmer writes replaces a sentence or phrase of English descriptive text that would
otherwise have been written in the Javadoc. So, use of annotations actually reduces the overall size of the documentation,
at the same time as making it machine-processable and less ambiguous.

32.3.3 Will using the Checker Framework slow down my program? Will it slow down the
compiler?

Using the Checker Framework has no impact on the execution of your program: the compiler emits the identical
bytecodes as the Java 8 compiler and so there is no run-time effect. Because there is no run-time representation of type
qualifiers, there is no way to use reflection to query the qualifier on a given object, though you can use reflection to
examine a class/method/field declaration.

Using the Checker Framework does increase compilation time. In theory it should only add a few percent overhead,
but our current implementation can double the compilation time — or more, if you run many pluggable type-checkers
at once. This is especially true if you run pluggable type-checking on every file (as we recommend) instead of just on
the ones that have recently changed. Nonetheless, compilation with pluggable type-checking still feels like compilation,
and you can do it as part of your normal development process.

32.3.4 How do I shorten the command line when invoking a checker?
The compile options to javac can be long to type; for example, javac -processor
org.checkerframework.checker.nullness.NullnessChecker See Section 2.2.4 for a way to avoid
the need for the -processor command-line option.

32.3.5 Method pre-condition contracts, including formal parameter annotations, make no
sense for public methods

Some people go further and say that pre-condition contracts make no sense for any method. This objection is sometimes
stated as, "A method parameter should never be annotated as @NonNull. A client could pass any value at all, so the
method implementation cannot depend on the value being non-null. Furthermore, if a client passes an illegal value, it is
the method’s responsibility to immediately tell the client about the illegal value."

Here is an example that invalidates this general argument. Consider a binary search routine. Its specification requires
that clients pass in a sorted array.
/** Return index of the search key, if it is contained it the sorted array a; otherwise ... */
int binarySearch(Object @Sorted [] a, Object key)

The binarySearch routine is fast — it runs in O(log n) time where n is the length of the array. If the routine had
to validate that its input array is sorted, then it would run in O(n) time, negating all benefit of binary search. In other
words, binarySearch should not validate its input!

The nature of a contract is that if the caller violates its responsibilities by passing bad values, then the callee is
absolved of its responsibilities. It is polite for the callee to try to provide a useful diagnostic to the misbehaving caller

217

http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008-abstract.html

(for example, by raising a particular exception quickly), but it is not required. In such a situation, the callee has the
flexibility to do anything that is convenient.

In some cases a routine has a complete specification: the contract permits the caller to pass any value, and the callee
is required to throw particular exceptions for particular inputs. This approach is common for public methods, but it
is not required and is not always the right thing. As explained in section 2.4.3, even when a method has a complete
specification, the annotations should indicate normal behavior: behavior that will avoid exceptions.

32.4 How to handle warnings and errors

32.4.1 What should I do if a checker issues a warning about my code?
For a discussion of this issue, see Section 2.4.6.

32.4.2 What does a certain Checker Framework warning message mean?
Read the error message first; sometimes that is enough to clarify it.

Search through this manual for the text of the warning message or for words that appear in it.
If nothing else explains it, then ask on the mailing list. Be sure to say what you think it means or what specific part

does not make sense to you, and what you have already done to try to understand it.

32.4.3 Can a pluggable type-checker guarantee that my code is correct?
Each checker looks for certain errors. You can use multiple checkers to detect more errors in your code, but you will
never have a guarantee that your code is completely bug-free.

If the type-checker issues no warning, then you have a guarantee that your code is free of some particular error.
There are some limitations to the guarantee.

Most importantly, if you run a pluggable checker on only part of a program, then you only get a guarantee that those
parts of the program are error-free. For example, suppose you have type-checked a framework that clients are intended
to extend. You should recommend that clients run the pluggable checker. There is no way to force users to do so, so
you may want to retain dynamic checks or use other mechanisms to detect errors.

Section 2.3 states other limitations to a checker’s guarantee, such as regarding concurrency. Java’s type system is
also unsound in certain situations, such as for arrays and casts (however, the Checker Framework is sound for arrays
and casts). Java uses dynamic checks is some places it is unsound, so that errors are thrown at run time. The pluggable
type-checkers do not currently have built-in dynamic checkers to check for the places they are unsound. Writing
dynamic checkers would be an interesting and valuable project.

Other types of dynamism in a Java application do not jeopardize the guarantee, because the type-checker is
conservative. For example, at a method call, dynamic dispatch chooses some implementation of the method, but
it is impossible to know at compile time which one it will be. The type-checker gives a guarantee no matter what
implementation of the method is invoked.

Even if a pluggable checker cannot give an ironclad guarantee of correctness, it is still useful. It can find errors,
exclude certain types of possible problems (e.g., restricting the possible class of problems), improve documentation,
and increase confidence in your software.

32.4.4 What guarantee does the Checker Framework give for concurrent code?
The Lock Checker (see Chapter 7) offers a way to detect and prevent certain concurrency errors.

By default, the Checker Framework assumes that the code that it is checking is sequential: that is, there are no
concurrent accesses from another thread. This means that the Checker Framework is unsound for concurrent code, in
the sense that it may fail to issue a warning about errors that occur only when the code is running in a concurrent setting.
For example, the Nullness Checker issues no warning for this code:

218

https://groups.google.com/forum/#!forum/checker-framework-discuss

if (myobject.myfield != null) {
myobject.myfield.toString();

}

This code is safe when run on its own. However, in the presence of multithreading, the call to toString may fail
because another thread may set myobject.myfield to null after the nullness check in the if condition, but before the
if body is executed.

If you supply the -AconcurrentSemantics command-line option, then the Checker Framework assumes that any
field can be changed at any time. This limits the amount of flow-sensitive type qualifier refinement (Section 25.4) that
the Checker Framework can do.

32.4.5 How do I make compilation succeed even if a checker issues errors?
Section 2.2 describes the -Awarns command-line option that turns checker errors into warnings, so type-checking
errors will not cause javac to exit with a failure status.

32.4.6 Why does the checker always say there are 100 errors or warnings?
By default, javac only reports the first 100 errors or warnings. Furthermore, once javac encounters an error, it doesn’t
try compiling any more files (but does complete compilation of all the ones that it has started so far).

To see more than 100 errors or warnings, use the javac options -Xmaxerrs and -Xmaxwarns. To convert Checker
Framework errors into warnings so that javac will process all your source files, use the option -Awarns. See Section 2.2
for more details.

32.4.7 Why does the Checker Framework report an error regarding a type I have not writ-
ten in my program?

Sometimes, a Checker Framework warning message will mention a type you have not written in your program. This is
typically because a default has been applied where you did not write a type; see Section 25.3.1. In other cases, this
is because flow-sensitive type refinement has given an expression a more specific type than you wrote or than was
defaulted; see Section 25.4. Note that an invocation of an impure method may cause the loss of all information that was
determined via flow-sensitive type refinement; see Section 25.4.5.

32.4.8 How can I do run-time monitoring of properties that were not statically checked?
Some properties are not checked statically (see Chapter 26 for reasons that code might not be statically checked). In
such cases, it would be desirable to check the property dynamically, at run time. Currently, the Checker Framework has
no support for adding code to perform run-time checking.

Adding such support would be an interesting and valuable project. An example would be an option that causes the
Checker Framework to automatically insert a run-time check anywhere that static checking is suppressed. If you are
able to add run-time verification functionality, we would gladly welcome it as a contribution to the Checker Framework.

Some checkers have library methods that you can explicitly insert in your source code. Examples include the
Nullness Checker’s NullnessUtil.castNonNull method (see Section 3.4.1) and the Regex Checker’s RegexUtil
class (see Section 11.2.4). But, it would be better to have more general support that does not require the user to explicitly
insert method calls.

32.5 False positive warnings

32.5.1 What is a “false positive” warning?
A “false positive” is when the tool reports a potential problem, but the code is actually correct and will never violate the
given property at run time.

219

../api/org/checkerframework/checker/nullness/NullnessUtil.html#castNonNull-T-

The Checker Framework aims to be sound; that is, if the Checker Framework does not report any possible errors,
then your code is correct.

Every sound tool suffers false positive errors. Wherever the Checker Framework issues an error, you can think of it
as saying, “I can’t prove this code is safe,” but the code might be safe for some complex, tricky reason that is beyond
the capabilities of its analysis.

If you are sure that the warning is a false positive, you have several options. Perhaps you just need to write
annotations, especially on method signatures but perhaps within method bodies as well. Sometimes you can rewrite
the code in a clearer way that the Checker Framework can verify, and that might be easier for people to understand,
too. If these don’t work, then you can suppress the warning (Section 2.4.6). You also might want to report the false
positive in the Checker Framework issue tracker (Section 33.2), if it appears in real-world, well-written code. Finally,
you could improve the Checker Framework to make it more precise, so that it does not suffer that false positive (see
Section 32.5.2).

32.5.2 How can I improve the Checker Framework to eliminate a false positive warning?
As noted in Section 32.5.1, every sound analysis tool suffers false positives.

For any given false positive warning, it is theoretically possible to improve the Checker Framework to eliminate it.
(But, it’s theoretically impossible to eliminate all false positives. That is, there will always exist some programs that
don’t go wrong at run time but for which the Checker Framework issues a warning.)

Some improvements affect the implementation of the type system; they do not add any new types. Such an
improvement is invisible to users, except that the users suffer fewer false positive warnings. This type of improvement
to the type checker’s implementation is often worthwhile.

Other improvements change the type system or add a new type system. Defining new types is a powerful way to
improve precision, but it is costly too. A simpler type system is easier for users to understand, less likely to contain
bugs, and more efficient.

By design, each type system in the Checker Framework has limited expressiveness. Our goal is to implement
enough functionality to handle common, well-written real-world code, not to cover every possible situation.

When reporting bugs, please focus on realistic scenarios. We are sure that you can make up artificial code that
stymies the type-checker! Those bugs aren’t a good use of your time to report nor the maintainers’ time to evaluate and
fix. When reporting a bug, it’s very helpful to minimize it to give a tiny example that is easy to evaluate and fix, but
please also indicate how it arises in real-world, well-written code.

32.5.3 Why doesn’t the Checker Framework infer types for fields and method return types?
Consider the following code. A programmer can tell that all three invocations of format are safe — they never suffer
an IllegalFormatException exception at run time:

class MyClass {

final String field = "%d";

String method() {
return "%d";

}

void method m() {
String local = "%d";
String.format(local, 5); // Format String Checker verifies that call is safe
String.format(field, 5); // Format String Checker warns that call might not be safe
String.format(method(), 5); // Format String Checker warns that call might not be safe

}
}

220

However, the Format String Checker can only verify the first call. It issues a false positive warning about the second
and third calls.

The Checker Framework can verify all three calls, with no false positive warnings, if you annotate the type of field
and the return type of method as @Format(INT).

By default, the Checker Framework infers types for local variables (Section 25.4), but not for fields and method
return types. (The Checker Framework includes a whole-program type inference tool that infers field and method return
types; see Section 28.3.) There are several reasons for this design choice.

Separation of specification from implementation The designer of an API makes certain promises to clients; these
are codified in the API’s specification or contract. The implementation might return a more specific type today,
but the designer does not want clients to depend on that. For example, a string might happen to be a regular
expression because it contains no characters with special meaning in regexes, but that is not guaranteed to always
be true. It’s better for the programmer to explicitly write the intended specification.

Separate compilation To infer types for a non-final method, it is necessary to examine every overriding implementa-
tion, so that the method’s return type annotation is compatible with all values that are returned by any overriding
implementation. In general, examining all implementations is impossible, because clients may override the
method. When possible, it is inconvenient to provide all that source code, and it would slow the type-checker
down.
A related issue is that determining which values can be returned by a method m requires analyzing m’s body,
which requires analyzing all the methods called by m, and so forth. This quickly devolves to analyzing the whole
program. Determining all possible values assigned to a field is equally hard.
Type-checking is modular — it works on one procedure at a time, examining that procedure and the specifications
(not implementations) of methods that it calls. Therefore, type-checking is fast and can work on partial programs.
It is undesirable to change type-checking into a whole-program analysis.

Order of compilation When the compiler is called on class Client and class Library, the programmer has no control
over which class is analyzed first. When the first class is compiled, it has access only to the signature of the
other class. Therefore, a programmer would see inconsistent results depending on whether Client was compiled
first and had access only to the declared types of Library, or the Library was compiled first and the compiler
refined the types of its methods and fields before Client looked them up.

Consistent behavior with or without pluggable type-checking The .class files produced with or without plug-
gable type-checking should specify the same types for all public fields and methods. If pluggable type-checking
changed the those types, then users would be confused. Depending on how a library was compiled, pluggable
type-checking of a client program would give different results.

32.5.4 Why doesn’t the Checker Framework track relationships between variables?
The Checker Framework estimates the possible run-time value of each variable, as expressed in a type system. In
general, the Checker Framework does estimate relationships between two variables, except for specific relationships
listed in Section 25.5.

For example, the Checker Framework does not track which variables are equal to one another. The Nullness Checker
issues a warning, “dereference of possibly-null reference y”, for expression y.toString():

void nullnessExample1(@Nullable Object x) {
Object y = x;
if (x != null) {

System.out.println(y.toString());
}

}

Code that checks one variable and then uses a different variable is confusing and is often considered poor style.
The Nullness Checker is able to verify the correctness of a small variant of the program, thanks to flow-sensitive

type refinement (Section 25.4):

221

void nullnessExample12(@Nullable Object x) {
if (x != null) {

Object y = x;
System.out.println(y.toString());

}
}

The difference is that in the first example, nothing was known about x at the time y was set to it, and so the Nullness
Checker recorded no facts about y. In the second example, the Nullness Checker knew that x was non-null when y was
assigned to it.

In the future, the Checker Framework could be enriched by tracking which variables are equal to one another, a
technique called “copy propagation”.

This would handle the above examples, but wouldn’t handle other examples. For example, the following code is
safe:

void requiresPositive(@Positive int arg) {}

void intExample1(int x) {
int y = x*x;
if (x > 0) {

requiresPositive(y);
}

}

void intExample2(int x) {
int y = x*x;
if (y > 0) {

requiresPositive(x);
}

}

However, the Index Checker (Chapter 8, page 69), which defines the @Positive type qualifier, issues warnings saying
that it cannot prove that the arguments are @Positive.

A slight variant of intExample1 can be verified:

void intExample1a(int x) {
if (x > 0) {

int y = x*x;
requiresPositive(y);

}
}

No variant of intExample2 can be verified. It is not worthwhile to make the Checker Framework more complex and
slow by tracking rich properties such as arbitrary arithmetic.

As another example of a false positive warning due to arbitrary arithmetic properties, consider the following code:

void falsePositive2(int arg) {
Object o;
if (arg * arg >= arg) { // always true!

o = new Object();
}
o.toString(); // Nullness Checker issues a false positive warning

}

222

../api/org/checkerframework/checker/index/qual/Positive.html

32.5.5 Why isn’t the Checker Framework path-sensitive?
The Checker Framework is not path-sensitive. That is, it maintains one estimate for each variable, and it assumes at
every branch (such as if statement) that every choice could be taken.

In the following code, there are two if statements.

void falsePositive1(boolean b) {
Object o;
if (b) {

o = new Object();
}
if (b) {

o.toString(); // Nullness Checker issues a false positive warning
}

}

In general, if code has two if statements in succession, then there are 4 possible paths through the code: [true, true],
[true, false], [false, true], and [false, false]. However, for this code only two of those paths are feasible: namely, [true,
true] and [false, false].

The Checker Framework is not path-sensitive, so it issues a warning.
The lack of path-sensitivity can be viewed as special case of the fact that the Checker Framework maintains a single

estimate for each variable value, rather than tracking relationships between multiple variables (Section 32.5.4).
Making the Checker Framework path-sensitive would make it more powerful, but also much more complex and

much slower. We have not yet found this necessary.

32.6 Syntax of type annotations
There is also a separate FAQ for the type annotations syntax (https://checkerframework.org/jsr308/jsr308-faq.
html).

32.6.1 What is a “receiver”?
The receiver of a method is the this formal parameter, sometimes also called the “current object”. Within the method
declaration, this is used to refer to the receiver formal parameter. At a method call, the receiver actual argument is
written before the method name.

The method compareTo takes two formal parameters. At a call site like x.compareTo(y), the two arguments are x
and y. It is desirable to be able to annotate the types of both of the formal parameters, and doing so is supported by both
Java’s type annotations syntax and by the Checker Framework.

A type annotation on the receiver is treated exactly like a type annotation on any other formal parameter. At each call
site, the type of the argument must be a consistent with (a subtype of or equal to) the declaration of the corresponding
formal parameter. If not, the type-checker issues a warning.

Here is an example. Suppose that @A Object is a supertype of @B Object in the following declaration:

class MyClass {
void requiresA(@A MyClass this) { ... }
void requiresB(@B MyClass this) { ... }

}

Then the behavior of four different invocations is as follows:

@A MyClass myA = ...;
@B MyClass myB = ...;

223

https://checkerframework.org/jsr308/jsr308-faq.html
https://checkerframework.org/jsr308/jsr308-faq.html

myA.requiresA() // OK
myA.requiresB() // compile-time error
myB.requiresA() // OK
myB.requiresB() // OK

The invocation myA.requiresB() does not type-check because the actual argument’s type is not a subtype of the
formal parameter’s type.

A top-level constructor does not have a receiver. An inner class constructor does have a receiver, whose type is the
same as the containing outer class. The receiver is distinct from the object being constructed. In a method of a top-level
class, the receiver is named this. In a constructor of an inner class, the receiver is named Outer.this and the result is
named this.

32.6.2 What is the meaning of an annotation after a type, such as @NonNull Object
@Nullable?

In a type such as @NonNull Object @Nullable [], it may appear that the @Nullable annotation is written after the
type Object. In fact, @Nullable modifies []. See the next FAQ, about array annotations (Section 32.6.3).

32.6.3 What is the meaning of array annotations such as @NonNull Object @Nullable
[]?

You should parse this as: (@NonNull Object) (@Nullable []). Each annotation precedes the component of the
type that it qualifies.

Thus, @NonNull Object @Nullable [] is a possibly-null array of non-null objects. Note that the first token in
the type, “@NonNull”, applies to the element type Object, not to the array type as a whole. The annotation @Nullable
applies to the array ([]).

Similarly, @Nullable Object @NonNull [] is a non-null array of possibly-null objects.
Some older tools have inconsistent semantics for annotations on array and varargs elements. Their semantics is

unfortunate and confusing; developers should convert their code to use type annotations instead. Section 27.1.1 explains
how the Checker Framework handles declaration annotations in the meanwhile.

32.6.4 What is the meaning of varargs annotations such as @English String @NonEmpty ...?
Varargs annotations are treated similarly to array annotations. (A way to remember this is that when you write a varargs
formal parameter such as void method(String... x) {}, the Java compiler generates a method that takes an array
of strings; whenever your source code calls the method with multiple arguments, the Java compiler packages them up
into an array before calling the method.)

Either of these annotations

void method(String @NonEmpty [] x) {}
void method(String @NonEmpty ... x) {}

applies to the array: the method takes a non-empty array of strings, or the varargs list must not be empty.
Either of these annotations

void method(@English String [] x) {}
void method(@English String ... x) {}

. applies to the element type. The annotation documents that the method takes an array of English strings.

224

32.6.5 What is the meaning of a type qualifier at a class declaration?
Writing an annotation on a class declaration makes that annotation implicit for all uses of the class (see Section 25.3).
If you write class @MyQual MyClass { ... }, then every unannotated use of MyClass is @MyQual MyClass.
A user is permitted to strengthen the type by writing a more restrictive annotation on a use of MyClass, such as
@MyMoreRestrictiveQual MyClass.

32.6.6 Why shouldn’t a qualifier apply to both types and declarations?
It is bad style for an annotation to apply to both types and declarations. In other words, every annotation should have a
@Target meta-annotation, and the @Target meta-annotation should list either only declaration locations or only type
annotations. (It’s OK for an annotation to target both ElementType.TYPE_PARAMETER and ElementType.TYPE_USE,
but no other declaration location along with ElementType.TYPE_USE.)

Sometimes, it may seem tempting for an annotation to apply to both type uses and (say) method declarations. Here
is a hypothetical example:

“Each Widget type may have a @Version annotation. I wish to prove that versions of widgets don’t get
assigned to incompatible variables, and that older code does not call newer code (to avoid problems when
backporting).

A @Version annotation could be written like so:

@Version("2.0") Widget createWidget(String value) { ... }

@Version("2.0") on the method could mean that the createWidget method only appears in the 2.0
version. @Version("2.0") on the return type could mean that the returned Widget should only be used
by code that uses the 2.0 API of Widget. It should be possible to specify these independently, such as a 2.0
method that returns a value that allows the 1.0 API method invocations.”

Both of these are type properties and should be specified with type annotations. No method annotation is necessary
or desirable. The best way to require that the receiver has a certain property is to use a type annotation on the receiver of
the method. (Slightly more formally, the property being checked is compatibility between the annotation on the type of
the formal parameter receiver and the annotation on the type of the actual receiver.) If you do not know what “receiver”
means, see the next question.

Another example of a type-and-declaration annotation that represents poor design is JCIP’s @GuardedBy annota-
tion [GPB+06]. As discussed in Section 7.6.1, it means two different things when applied to a field or a method. To
reduce confusion and increase expressiveness, the Lock Checker (see Chapter 7) uses the @Holding annotation for one
of these meanings, rather than overloading @GuardedBy with two distinct meanings.

A final example of a type-and-declaration annotation is some @Nullable or @NonNull annotations that are intended
to work both with modern tools that process type annotations and with old tools that were written before Java had
type annotations. Such type-and-declaration annotations were a temporary measure, intended to be used until the tool
supported Java 8, and should not be necessary any longer.

32.6.7 How do I annotate a fully-qualified type name?
If you write a fully-qualified type name in your program, then the Java language requires you to write a type annotation
on the simple name part, such as

entity.hibernate. @Nullable User x;

If you try to write the type annotation before the entire fully-qualified name, such as

@Nullable entity.hibernate.User x; // illegal Java syntax

then you will get an error like one of the following:

error: scoping construct for static nested type cannot be annotated
error: scoping construct cannot be annotated with type-use annotation

225

32.7 Semantics of type annotations

32.7.1 How can I handle typestate, or phases of my program with different data properties?
Sometimes, your program works in phases that have different behavior. For example, you might have a field that starts
out null and becomes non-null at some point during execution, such as after a method is called. You can express this
property as follows:

1. Annotate the field type as @MonotonicNonNull.
2. Annotate the method that sets the field as @EnsuresNonNull("myFieldName"). (If method m1 calls method

m2, which actually sets the field, then you would probably write this annotation on both m1 and m2.)
3. Annotate any method that depends on the field being non-null as @RequiresNonNull("myFieldName"). The

type-checker will verify that such a method is only called when the field isn’t null — that is, the method is only
called after the setting method.

You can also use a typestate checker (see Chapter 23.1, page 136), but they have not been as extensively tested.

32.7.2 Why are explicit and implicit bounds defaulted differently?
The following two bits of code have the same semantics under Java, but are treated differently by the Checker
Framework’s CLIMB-to-top defaulting rules (Section 25.3.2):

class MyClass<T> { ... }
class MyClass<T extends Object> { ... }

The difference is the annotation on the upper bound of the type argument T. They are treated in the following.

class MyClass<T> == class MyClass<T extends @TOPTYPEANNO Object> { ... }
class MyClass<T extends Object> == class MyClass<T extends @DEFAULTANNO Object>

@TOPTYPEANNO is the top annotation in the type qualifier hierarchy. For example, for the nullness type system, the top
type annotation is @Nullable; as shown in Figure 3.1. @DEFAULTANNO is the default annotation for the type system.
For example, for the nullness type system, the default type annotation is @NonNull.

In some type systems, the top qualifier and the default are the same. For such type systems, the two code snippets
shown above are treated the same. An example is the regular expression type system; see Figure 11.1.

The CLIMB-to-top rule reduces the code edits required to annotate an existing program, and it treats types written
in the program consistently.

When a user writes no upper bound, as in class C<T> { ... }, then Java permits the class to be instantiated
with any type parameter. The Checker Framework behaves exactly the same, no matter what the default is for a
particular type system – and no matter whether the user has changed the default locally.

When a user writes an upper bound, as in class C<T extends OtherClass> { ... }, then the Checker
Framework treats this occurrence of OtherClass exactly like any other occurrence, and applies the usual defaulting
rules. Use of Object is treated consistently with all other types in this location and all other occurrences of Object in
the program.

It is uncommon for a user to write Object as an upper bound with no type qualifier: class C<T extends Object>
{ ... }. It is better style to write no upper bound or to write an explicit type annotation on Object.

32.7.3 Why are type annotations declared with @Retention(RetentionPolicy.RUNTIME)?
Annotations such as @NonNull are declared with @Retention(RetentionPolicy.RUNTIME). In other words, these
type annotations are available to tools at run time. Such run-time tools could check the annotations (like an assert
statement), type-check dynamically-loaded code, check casts and instanceof operations, resolve reflection more
precisely, or other tasks that we have not yet thought of. Not many such tools exist today, but the annotation designers
wanted to accommodate them in the future.

226

../api/org/checkerframework/checker/nullness/qual/MonotonicNonNull.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html
../api/org/checkerframework/checker/nullness/qual/RequiresNonNull.html
../api/org/checkerframework/checker/nullness/qual/NonNull.html
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/Retention.html
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/RetentionPolicy.html#RUNTIME

RUNTIME retention has negligible costs (no run-time dependency, minimal increase in heap size).
For the purpose of static checking at compile time, CLASS retention would be sufficient. Note that SOURCE retention

would not be sufficient, because of separate compilation: when type-checking a class, the compiler needs to read the
annotations on libraries that it uses, and separately-compiled libraries are available to the compiler only as class files.

32.8 Creating a new checker

32.8.1 How do I create a new checker?
In addition to using the checkers that are distributed with the Checker Framework, you can write your own checker to
check specific properties that you care about. Thus, you can find and prevent the bugs that are most important to you.

Chapter 30 gives complete details regarding how to write a checker. It also suggests places to look for more help,
such as the Checker Framework API documentation (Javadoc) and the source code of the distributed checkers.

To whet your interest and demonstrate how easy it is to get started, here is an example of a complete, useful
type-checker.

@SubtypeOf(Unqualified.class)
@Target({ElementType.TYPE_USE, ElementType.TYPE_PARAMETER})
public @interface Encrypted { }

Section 22.2 explains this checker and tells you how to run it.

32.8.2 What properties can and cannot be handled by type-checking?
In theory, any property about a program can be expressed and checked within a type system. In practice, types are a
good choice for some properties and a bad choice for others.

A type expresses the set of possible values for an expression. Therefore, types are a good choice for any property
that is about variable values or provenance.

Types are a poor choice for expressing properties about timing, such as that action B will happen within 10
milliseconds of action A. Types are not good for verifying the results of calculations; for example, they could ensure
that code always call an encrypt routine in the appropriate places, but not that the encrypt routine is correctly
implemented. Types are not a good solution for preventing infinite loops, except perhaps in special cases.

32.8.3 Why is there no declarative syntax for writing type rules?
A type system implementer can declaratively specify the type qualifier hierarchy (Section 30.4.2) and the type
introduction rules (Section 30.7.1). However, the Checker Framework uses a procedural syntax for specifying type-
checking rules (Section 30.6). A declarative syntax might be more concise, more readable, and more verifiable than a
procedural syntax.

We have not found the procedural syntax to be the most important impediment to writing a checker.
Previous attempts to devise a declarative syntax for realistic type systems have failed; see a technical paper [PAC+08]

for a discussion. When an adequate syntax exists, then the Checker Framework can be extended to support it.

32.9 Tool questions

32.9.1 How does pluggable type-checking work?
The Checker Framework enables you to define a new type system. It finds errors, or guarantees their absence, by
performing type-checking that is similar to that already performed by the Java compiler.

Type-checking examines each statement of your program in turn, one at a time.

227

https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/RetentionPolicy.html#CLASS
https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/RetentionPolicy.html#SOURCE

• Expressions are processed bottom-up. Given types for each sub-expression, the type-checker determines whether
the types are legal for the expression’s operator and determines the type of the expression.

• An assignment is legal if the type of the right-hand side is a subtype of the declared type of the left-hand side.
• At a method call, the arguments are legal if they can be assigned to the formal parameters (this is called a

“pseudo-assignment” and it follows the normal rules for assignment). The type of the method call is the declared
type of the return type, where the method is declared. If the method declaration is not annotated, then a default
annotation is used.

• Suppose that method Sub.m overrides method Super.m. The return type of Sub.m must be equal to or a subtype
of the return type of Super.m (this is called “covariance”). The type of formal parameter i of Sub.m must be
equal to or a supertype of the type of formal parameter i in Super.m (this is called “contravariance”).

32.9.2 What classpath is needed to use an annotated library?
Suppose that you distribute a library, which contains Checker Framework annotations such as @Nullable. This enables
clients of the library to use the Checker Framework to type-check their programs. To do so, they must have the Checker
Framework annotations on their classpath, for instance by using the Checker Framework Compiler.

Clients who do not wish to perform pluggable type-checking do not need to have the Checker Framework annotations
(checker-qual.jar) in their classpath, either when compiling or running their programs.

The JVM does not issue a link error if an annotation is not found when a class is loaded. (By contrast, the JVM
does issue a link error if a superclass, or a parameter/return/field type, is not found.) Likewise, there is no problem
compiling against a library even if the library’s annotations are not on the classpath. These are properties of Java, and
are not specific to the Checker Framework’s annotations.

32.9.3 Why do .class files contain more annotations than the source code?
You may notice annotations such as @Pure and @SideEffectFree in compiled .class files even though the source
code containes no annotations. These annotations are propagated from annotated libraries, such as the JDK, to your
code.

When an overridden method has a side effect annotation, the overriding method must have one too. If you do not
write one explicitly, the Checker Framework could issue a warning, or it could automatically add the missing annotation.
It does the latter, for annotations declared with the @InheritedAnnotation meta-annotation.

In addition, defaulted and inferred type qualifiers are written into .class files; see Section 25.3.

32.9.4 Is there a type-checker for managing checked and unchecked exceptions?
It is possible to annotate exception types, and any type-checker built on the Checker Framework enforces that type
annotations are consistent between throw statements and catch clauses that might catch them.

The Java compiler already enforces that all checked exceptions are caught or are declared to be passed through, so
you would use annotations to express other properties about exceptions.

Checked exceptions are an example of a “type and effect” system, which is like a type system but also accounts for
actions/behaviors such as side effects. The GUI Effect Checker (Chapter 16, page 106) is a type-and-effect system that
is distributed with the Checker Framework.

32.10 Relationship to other tools

32.10.1 Why not just use a bug detector (like FindBugs)?
Pluggable type-checking finds more bugs than a bug detector does, for any given variety of bug.

A bug detector like FindBugs [HP04, HSP05], Jlint [Art01], or PMD [Cop05] aims to find some of the most obvious
bugs in your program. It uses a lightweight analysis, then uses heuristics to discard some of its warnings. Thus, even if

228

../api/org/checkerframework/framework/qual/InheritedAnnotation.html
http://findbugs.sourceforge.net/
http://jlint.sourceforge.net/
https://pmd.github.io/

the tool prints no warnings, your code might still have errors — maybe the analysis was too weak to find them, or the
tool’s heuristics classified the warnings as likely false positives and discarded them.

A type-checker aims to find all the bugs (of certain varieties). It requires you to write type qualifiers in your program,
or to use a tool that infers types. Thus, it requires more work from the programmer, and in return it gives stronger
guarantees.

Each tool is useful in different circumstances, depending on how important your code is and your desired level of
confidence in your code. For more details on the comparison, see Section 33.6. For a case study that compared the
nullness analysis of FindBugs, Jlint, PMD, and the Checker Framework, see section 6 of the paper “Practical pluggable
types for Java” [PAC+08].

32.10.2 How does the Checker Framework compare with Eclipse’s null analysis?
Eclipse comes with a null analysis that can detect potential null pointer errors in your code. Eclipse’s built-in analysis
differs from the Checker Framework in several respects.

The Checker Framework’s Nullness Checker (see Chapter 3, page 25) is more precise: it does a deeper semantic
analysis, so it issues fewer false positives than Eclipse. Eclipse’s nullness analysis is missing many features that
the Checker Framework supports, such as handling of map keys, partially-initialized objects, method pre- and post-
conditions, polymorphism, and a powerful dataflow analysis. These are essential for practical verification of real-world
code without poor precision. Furthermore, Eclipse by default ignores unannotated code (even unannotated parameters
within a method that contains other annotations). As a result, Eclipse is more useful for bug-finding than for verification,
and that is what the Eclipse documentation recommends.

Eclipse assumes by default that all code is multi-threaded, which cripples its local type inference. (This default
can be turned off, however.) By contrast, the Checker Framework allows the user to specify whether code will be run
concurrently or not via the -AconcurrentSemantics command-line option (see Section 32.4.4).

The Checker Framework builds on javac, so it is easier to run in integration scripts or in environments where not all
developers have installed Eclipse.

Eclipse handles only nullness properties and is not extensible, whereas the Checker Framework comes with over 20
type-checkers (for a list, see Chapter 1, page 12) and is extensible to more properties.

There are also some benefits to Eclipse’s null analysis. It is faster than the Checker Framework, in part because it is
less featureful. It is built into Eclipse, so you do not have to add it to your build scripts. Its IDE integration is tighter
and slicker.

(If you know of other differences, please let us know at checker-framework-dev@googlegroups.com so we can
update the manual.)

32.10.3 How does the Checker Framework compare with the JDK’s Optional type?
JDK 8 introduced the Optional class, a container that is either empty or contains a non-null value.

Optional has numerous problems without countervailing benefits. Optional does not make your code more correct
or robust. There is a real problem that Optional tries to solve, but you are better off using a regular possibly-null Java
reference and the Nullness Checker (see Chapter 3, page 25), rather than using Optional.

The Optional class does not solve the problem of null pointer exceptions. Changing your code to use the Optional
class has these effects:

• It transforms a NullPointerException into a NoSuchElementException, which still crashes your program.
• It creates new problems that were not a danger before.
• It clutters your code.
• It adds both space and time overheads.
• It does not address important sources of null pointer exceptions, such as partially-initialized objects and calls to
Map.get.

See the article “Nothing is better than Java’s Optional class” for more details and explanation of the benefits of
@Nullable over Optional.

229

http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-using_null_annotations.htm
https://docs.oracle.com/javase/8/docs/api/java/util/Optional.html
http://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html
http://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html#benefits-of-nullable
http://homes.cs.washington.edu/~mernst/advice/nothing-is-better-than-optional.html#benefits-of-nullable

The Optional class provides utility routines to reduce clutter when using Optional. The Nullness Checker
provides an Opt class that provides all the same methods, but written for regular possibly-null Java references.

32.10.4 How does pluggable type-checking compare with JML?
JML, the Java Modeling Language [LBR06], is a language for writing formal specifications.

JML aims to be more expressive than pluggable type-checking. A programmer can write a JML specification
that describes arbitrary facts about program behavior. Then, the programmer can use formal reasoning or a theorem-
proving tool to verify that the code meets the specification. Run-time checking is also possible. By contrast, pluggable
type-checking can express a more limited set of properties about your program. Pluggable type-checking annotations
are more concise and easier to understand.

JML is not as practical as pluggable type-checking. The JML toolset is less mature. For instance, if your code
uses generics or other features of Java 5, then you cannot use JML. However, JML has a run-time checker, which the
Checker Framework currently lacks.

32.10.5 Is the Checker Framework an official part of Java?
The Checker Framework is not an official part of Java. The Checker Framework relies on type annotations, which are
part of Java 8. See the Type Annotations (JSR 308) FAQ for more details.

32.10.6 What is the relationship between the Checker Framework and JSR 305?
JSR 305 aimed to define official Java names for some annotations, such as @NonNull and @Nullable. However, it
did not aim to precisely define the semantics of those annotations nor to provide a reference implementation of an
annotation processor that validated their use; as a result, JSR 305 was of limited utility as a specification. JSR 305 has
been abandoned; there has been no activity by its expert group since 2009.

By contrast, the Checker Framework precisely defines the meaning of a set of annotations and provides powerful
type-checkers that validate them. However, the Checker Framework is not an official part of the Java language; it
chooses one set of names, but another tool might choose other names.

In the future, the Java Community Process might revitalize JSR 305 or create a replacement JSR to standardize the
names and meanings of specific annotations, after there is more experience with their use in practice.

The Checker Framework defines annotations @NonNull and @Nullable that are compatible with annotations
defined by JSR 305, FindBugs, IntelliJ, and other tools; see Section 3.7.

32.10.7 What is the relationship between the Checker Framework and JSR 308?
JSR 308, also known as the Type Annotations specification, dictates the syntax of type annotations in Java SE 8: how
they are expressed in the Java language.

JSR 308 does not define any type annotations such as @NonNull, and it does not specify the semantics of any
annotations. Those tasks are left to third-party tools. The Checker Framework is one such tool.

230

../api/org/checkerframework/checker/nullness/Opt.html
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
https://checkerframework.org/jsr308/jsr308-faq.html#pluggable-type-checking-in-java

Chapter 33

Troubleshooting, getting help, and
contributing

The manual might already answer your question, so first please look for your answer in the manual, including this chapter
and the FAQ (Chapter 32). If not, you can use the mailing list, checker-framework-discuss@googlegroups.com,
to ask other users for help. For archives and to subscribe, see https://groups.google.com/forum/#!forum/
checker-framework-discuss. To report bugs, please see Section 33.2. If you want to help out, you can give
feedback (including on the documentation), choose a bug and fix it, or select a project from the ideas list at https:
//rawgit.com/typetools/checker-framework/master/docs/developer/gsoc-ideas.html.

33.1 Common problems and solutions
• To verify that you are using the compiler you think you are, you can add -version to the command line. For

instance, instead of running javac -g MyFile.java, you can run javac -version -g MyFile.java. Then,
javac will print out its version number in addition to doing its normal processing.

33.1.1 Unable to compile the Checker Framework
If you get the following error while compiling the Checker Framework itself:
checker-framework/stubparser/dist/stubparser.jar(org/checkerframework/stubparser/ast/CompilationUnit.class):
warning: [classfile] Signature attribute introduced in version 49.0 class files is ignored in version 46.0 class files

and you have used Eclipse to compile the Checker Framework, then probably you are using a very old version of
Eclipse. (If you install Eclipse from the Ubuntu 16.04 repository, you get Eclipse version 3.8. Ubuntu 16.04 was
released in April 2016, and Eclipse 3.8 was released in June 2012, with subsequent major releases in June 2013, June
2014, and June 2015.) Install the latest version of Eclipse and use it instead.

33.1.2 Unable to run the checker, or checker crashes
If you are unable to run the checker, or if the checker or the compiler terminates with an error, then the problem may be
a problem with your environment. (If the checker or the compiler crashes, that is a bug in the Checker Framework;
please report it. See Section 33.2.) This section describes some possible problems and solutions.

• If you get the error
com.sun.tools.javac.code.Symbol$CompletionFailure: class file for com.sun.source.tree.Tree not found

then you are using the source installation and file tools.jar is not on your classpath. See the installation
instructions (Section 1.3).

231

https://groups.google.com/forum/#!forum/checker-framework-discuss
https://groups.google.com/forum/#!forum/checker-framework-discuss
https://rawgit.com/typetools/checker-framework/master/docs/developer/gsoc-ideas.html
https://rawgit.com/typetools/checker-framework/master/docs/developer/gsoc-ideas.html

• If you get an error such as

package org.checkerframework.checker.nullness.qual does not exist

despite no apparent use of import org.checkerframework.checker.nullness.qual.*; in the source code,
then perhaps jsr308_imports is set as a Java system property, a shell environment variable, or a command-line
option. You should solve this by unsetting the variable/option, which is deprecated.
If the error is

package ’org.checkerframework.checker.nullness.qual does not exist

(note the extra apostrophe!), then you have probably misused quoting when supplying the (deprecated)
jsr308_imports environment variable.

• If you get an error like one of the following,
...\build.xml:59: Error running ${env.CHECKERFRAMEWORK}\checker\bin\javac.bat compiler

.../bin/javac: Command not found

then the problem may be that you have not set the CHECKERFRAMEWORK environment variable, as described in
Section 31.6. Or, maybe you made it a user variable instead of a system variable.

• If you get one of these errors:
The hierarchy of the type ClassName is inconsistent

The type com.sun.source.util.AbstractTypeProcessor cannot be resolved.
It is indirectly referenced from required .class files

then you are likely not using the Checker Framework compiler. Use either
$CHECKERFRAMEWORK/checker/bin/javac or one of the alternatives described in Section 31.6.

• If you get the error

java.lang.ArrayStoreException: sun.reflect.annotation.TypeNotPresentExceptionProxy

If you get an error such as

java.lang.NoClassDefFoundError: java/util/Objects

then you are trying to run the compiler using a JDK 6 or earlier JVM. Install and use a Java 8 JDK, at least for
running the Checker Framework.
then an annotation is not present at run time that was present at compile time. For example, maybe when you
compiled the code, the @Nullable annotation was available, but it was not available at run time. You can use
JDK 8 at run time.
• A “class file for . . . not found” error, especially for an inner class in the JDK, is probably due to a JDK version

mismatch. To solve the problem, you need to perform compilation with a different Java version or different
version of the JDK.
In general, Java issues a “class file for . . . not found” error when your classpath contains code that was compiled
with some library, but your classpath does not contain that library itself.
For example, suppose that when you run the compiler, you are using JDK 8, but some library on your classpath
was compiled against JDK 6 or 7, and the compiled library refers to a class that only appears in JDK 6 or 7. (If
only one version of Java existed, or the Checker Framework didn’t try to support multiple different versions of
Java, this would not be a problem.)
Examples of classes that were in JDK 7 but were removed in JDK 8 include:

class file for java.util.TimeZone$DisplayNames not found

Examples of classes that were in JDK 6 but were removed in JDK 7 include:

class file for java.io.File$LazyInitialization not found
class file for java.util.Hashtable$EmptyIterator not found
java.lang.NoClassDefFoundError: java/util/Hashtable$EmptyEnumerator

Examples of classes that were not in JDK 7 but were introduced in JDK 8 include:

The type java.lang.Class$ReflectionData cannot be resolved

232

Examples of classes that were not in JDK 6 but were introduced in JDK 7 include:

class file for java.util.Vector$Itr not found

There are even classes that were introduced within a single JDK release. Classes that appear in JDK 7 release 71
but not in JDK 7 release 45 include:

class file for java.lang.Class$ReflectionData not found

You may be able to solve the problem by running

./gradlew buildJdk assemble

to re-generate files checker/jdk/jdk{8,9}.jar and checker/bin/jdk{8,9}.jar.
That usually works, but if not, then you should recompile the Checker Framework from source (Section 33.3)
rather than using the pre-compiled distribution.

• A NoSuchFieldError such as this:

java.lang.NoSuchFieldError: NATIVE_HEADER_OUTPUT

Field NATIVE_HEADER_OUTPUT was added in JDK 8. The error message suggests that you’re not executing with
the right bootclasspath: some classes were compiled with the JDK 8 version and expect the field, but you’re
executing the compiler on a JDK without the field.
One possibility is that you are not running the Checker Framework compiler — use javac -version to check
this, then use the right one. (Maybe the Checker Framework javac is at the end rather than the beginning of your
path.)
If you are using Ant, then one possibility is that the javac compiler is using the same JDK as Ant is using. You
can correct this by being sure to use fork="yes" (see Section 31.2) and/or setting the build.compiler property
to extJavac.
If you are building from source (Section 33.3), you might need to rebuild the Annotation File Utilities before
recompiling or using the Checker Framework.

• If you get an error that contains lines like these:

Caused by: java.util.zip.ZipException: error in opening zip file
at java.util.zip.ZipFile.open(Native Method)
at java.util.zip.ZipFile.<init>(ZipFile.java:131)

then one possibility is that you have installed the Checker Framework in a directory that contains special characters
that Java’s ZipFile implementation cannot handle. For instance, if the directory name contains “+”, then Java 1.6
throws a ZipException, and Java 1.7 throws a FileNotFoundException and prints out the directory name with “+”
replaced by blanks.

• If you get an error like the following

error: scoping construct for static nested type cannot be annotated
error: scoping construct cannot be annotated with type-use annotation

then you have probably written something like @Nullable java.util.List. The correct Java syntax to
write an annotation on a fully-qualified type name is to put the annotation on the simple name part, as in
java.util.@Nullable List. But, it’s usually better to add import java.util.List to your source file, so
that you can just write @Nullable List. Likewise, you must write Outer.@Nullable StaticNestedClass
rather than @Nullable Outer.StaticNestedClass.
Java 8 requires that a type qualifier be written directly on the type that it qualifies, rather than on a scoping
mechanism that assists in resolving the name. Examples of scoping mechanisms are package names and outer
classes of static nested classes.
The reason for the Java 8 syntax is to avoid syntactic irregularity. When writing a member nested class (also
known as an inner class), it is possible to write annotations on both the outer and the inner class: @A1 Outer.
@A2 Inner. Therefore, when writing a static nested class, the annotations should go on the same place: Outer.
@A3 StaticNested (rather than @ConfusingAnnotation Outer. Nested where @ConfusingAnnotation
applies to Outer if Nested is a member class and applies to Nested if Nested is a static class). It’s not legal to

233

write an annotation on the outer class of a static nested class, because neither annotations nor instantiations of the
outer class affect the static nested class.
Similar arguments apply when annotating package.Outer.Nested.

• A message of the form

warning: StubParser: annotateTypeParameters: mismatched sizes

might be because you compiled your project with -source 1.4. Java 1.4 doesn’t support type parameters, but
the Checker Framework expects that classes such as List have a type parameter. The discrepancy causes a
problem. To fix the problem, supply -source 1.5 or later, or no -source command-line argument.

33.1.3 Unexpected type-checking results
This section describes possible problems that can lead the type-checker to give unexpected results.

• If the Checker Framework is unable to verify a property that you know is true, then you should formulate a proof
about why the property is true. Your proof depends on some set of facts about the program and its operation.
State them completely; for example, don’t write “the field f cannot be null when execution reaches line 22”, but
justify why the field cannot be null.
Once you have written down your proof, translate each fact into a Java annotation.
If you are unable to express some aspect of your proof as an annotation, then the type system is not capable of
reproducing your proof. You might need to find a different proof, or extend the type system to be more expressive,
or suppress the warning.
If you are able to express your entire proof as annotations, then look at the Checker Framework error messages.
One possibility is that the errors indicate that your proof was incomplete or incorrect. Maybe your proof implicitly
depended on some fact you didn’t write down, such as “method m has no side effects.” In this case, you should
revise your proof and add more annotations to your Java code. Another possibility is that your proof is incorrect,
and the errors indicate where. Another possibility is that there is a bug in the type-checker. In this case, you
should report it to the maintainers, giving your proof and explaining why the type-checker should be able to make
the same inferences that you did.
Recall that the Checker Framework does modular verification, one procedure at a time; it observes the specifica-
tions, but not the implementations, of other methods.
Also see Section 2.4.6, which explains this same methodology in different words.
• If a checker seems to be ignoring the annotation on a method, then it is possible that the checker is reading the

method’s signature from its .class file, but the .class file was not created by a Java 8 or later compiler. You
can check whether the annotations actually appear in the .class file by using the javap tool.
If the annotations do not appear in the .class file, here are two ways to solve the problem:

– Re-compile the method’s class with the Checker Framework compiler. This will ensure that the type
annotations are written to the class file, even if no type-checking happens during that execution.

– Pass the method’s file explicitly on the command line when type-checking, so that the compiler reads its
source code instead of its .class file.

• If a checker issues a warning about a property that it accepted (or that was checked) on a previous line, then
probably there was a side-effecting method call in between that could invalidate the property. For example, in
this code:

if (currentOutgoing != null && !message.isCompleted()) {
currentOutgoing.continueBuffering(message);

}

the Nullness Checker will issue a warning on the second line:

warning: [dereference.of.nullable] dereference of possibly-null reference currentOutgoing
currentOutgoing.continueBuffering(message);
^

234

If currentOutgoing is a field rather than a local variable, and isCompleted() is not a pure method, then a null
pointer dereference can occur at the given location, because isCompleted() might set the field currentOutgoing
to null.
If you want to communicate that isCompleted() does not set the field currentOutgoing to null, you can use
@Pure, @SideEffectFree, or @EnsuresNonNull on the declaration of isCompleted(); see Sections 25.4.5
and 3.2.2.

• If a checker issues a type-checking error for a call that the library’s documentation states is correct, then maybe
that library method has not yet been annotated, so default annotations are being used.
To solve the problem, add the missing annotations to the library (see Chapter 29). Depending on the checker, the an-
notations might be expressed in the form of stub files (which appear together with the checker’s source code, such
as in file checker/src/org/checkerframework/checker/interning/jdk.astub for the Interning Checker)
or in the form of annotated libraries (which appear under checker/jdk/, such as at checker/jdk/nullness/src/
for the Nullness Checker.

• If the compiler reports that it cannot find a method from the JDK or another external library, then maybe the stub
file for that class is incomplete.
To solve the problem, add the missing annotations to the library, as described in the previous item.
The error might take one of these forms:

method sleep in class Thread cannot be applied to given types
cannot find symbol: constructor StringBuffer(StringBuffer)

• If you get an error related to a bounded type parameter and a literal such as null, the problem may be missing
defaulting. Here is an example:

mypackage/MyClass.java:2044: warning: incompatible types in assignment.
T retval = null;

^
found : null
required: T extends @MyQualifier Object

A value that can be assigned to a variable of type T extends @MyQualifier Object only if that value is
of the bottom type, since the bottom type is the only one that is a subtype of every subtype of T extends
@MyQualifier Object. The value null satisfies this for the Java type system, and it must be made to satisfy
it for the pluggable type system as well. The typical way to address this is to write the meta-annotation
@ImplicitFor(literals=LiteralKind.NULL) on the definition of the bottom type qualifier.
• An error such as

MyFile.java:123: error: incompatible types in argument.
myModel.addElement("Scanning directories...");

^
found : String
required: ? extends Object

may stem from use of raw types. (“String” might be a different type and might have type annotations.) If your
declaration was

DefaultListModel myModel;

then it should be

DefaultListModel<String> myModel;

Running the regular Java compiler with the -Xlint:unchecked command-line option will help you to find and
fix problems such as raw types.

• The error

error: annotation type not applicable to this kind of declaration
... List<@NonNull String> ...

235

../api/org/checkerframework/dataflow/qual/Pure.html
../api/org/checkerframework/dataflow/qual/SideEffectFree.html
../api/org/checkerframework/checker/nullness/qual/EnsuresNonNull.html

indicates that you are using a definition of @NonNull that is a declaration annotation, which cannot be used in
that syntactic location. For example, many legacy annotations such as those listed in Figure 3.2 are declaration
annotations. You can fix the problem by instead using a definition of @NonNull that is a type annotation, such as
the Checker Framework’s annotations; often this only requires changing an import statement.

• This compile-time error

unknown enum constant java.lang.annotation.ElementType.TYPE_USE

indicates that you are compiling using a Java 6 or 7 JDK, but your code references an enum constant that is only
defined in the Java 8 JDK. The problem might be that your code uses a library that references the enum constant.
In particular, the type annotations shipped with the Checker Framework reference ElementType.TYPE_USE.

• If Eclipse gives the warning

The annotation @NonNull is disallowed for this location

then you have the wrong version of the org.eclipse.jdt.annotation classes. Eclipse includes two incompati-
ble versions of these annotations. You want the one with a name like org.eclipse.jdt.annotation_2.0.0.....jar,
which you can find in the plugins subdirectory under the Eclipse installation directory. Add this .jar file to your
build path.

• When one formal parameter’s annotation references another formal parameter’s name, as in this constructor:
public String(char value[], @IndexFor("value") int offset, @IndexOrHigh("value") int count) { ... }

you will get an error such as
[expression.unparsable.type.invalid] Expression in dependent type annotation invalid:
[error for expression: myParamName error: myParamName: identifier not found]

Section 25.5 explains that you need to use a different syntax to refer to a formal parameter:
public String(char value[], @IndexFor("#1") int offset, @IndexOrHigh("#1") int count) { ... }

33.1.4 Unexpected compilation output when running javac without a pluggable type-checker
On rare occasions, javac may issue an error when compiling against the Checker Framework’s annotated JDK that you
do not get when using the regular JDK. (Recall that the Checker Framework compiler uses the annotated JDK.) This
may occur even when you are not running any annotation processor. The error is:

unchecked method invocation: method myMethod in class C is applied to given types

The reason for this is that there are some wildcards in the annotated JDK that have been given an explicit upper
bound — they have been changed from, for example, List<?> to List<? extends Object>. The JDK treats
these two types as identical in almost all respects. However, they have a different representation in bytecode. More
importantly, List<?> is reifiable but List<? extends Object> is not; this means that the compiler permits uses of
the former in some locations where it issues a warning for the latter. You can suppress the warning.

A message of the form

error: annotation values must be of the form ’name=value’
@LTLengthOf("firstName", "lastName") int index;

^

is caused by incorrect Java syntax. When you supply a set of multiple values as an annotation argument, you need to
put curly braces around them:

@LTLengthOf({"firstName", "lastName"}) int index;

A message of the form

Error: cannot find symbol

for an annotation type that is imported, and is a applied to a statically-imported enum, is caused by a javac bug,
unrelated to the Checker Framework. See https://bugs.openjdk.java.net/browse/JDK-7101822 and https:
//bugs.openjdk.java.net/browse/JDK-8169095.

236

https://docs.oracle.com/javase/8/docs/api/java/lang/annotation/ElementType.html#TYPE_USE
https://bugs.openjdk.java.net/browse/JDK-7101822
https://bugs.openjdk.java.net/browse/JDK-8169095
https://bugs.openjdk.java.net/browse/JDK-8169095

33.2 How to report problems (bug reporting)
If you have a problem with any checker, or with the Checker Framework, please file a bug at https://github.com/
typetools/checker-framework/issues. (First, check whether there is an existing bug report for that issue.) If the
problem is with an incorrect or missing annotation on a library, including the JDK, see Section 33.2.1.

Alternately (especially if your communication is not a bug report), you can send mail to checker-framework-
dev@googlegroups.com. We welcome suggestions, annotated libraries, bug fixes, new features, new checker plugins,
and other improvements.

Please ensure that your bug report is clear and that it is complete. Otherwise, we may be unable to understand it or
to reproduce it, either of which would prevent us from helping you. Your bug report will be most helpful if you:

• Add -version -verbose -AprintErrorStack -AprintAllQualifiers to the javac options. This causes
the compiler to output debugging information, including its version number.

• Indicate exactly what you did. Don’t skip any steps, and don’t merely describe your actions in words. Show the
exact commands by attaching a file or using cut-and-paste from your command shell. Always include plaintext,
not just a screenshot. Try to reproduce the problem from the command line as well as from an IDE or within a
build system; that helps to indicate whether the problem is with the IDE or build system.

• Include all files that are necessary to reproduce the problem. This includes every file that is used by any of the
commands you reported, and possibly other files as well. Please attach the files, rather than pasting their contents
into the body of your bug report or email message, because some mailers mangle formatting of pasted text. If you
encountered a problem while using tool integration such as Maven integration, then try to reproduce the problem
from the command line as well — this will indicate whether the problem is with the checker itself or with the
tool integration.

• Indicate exactly what the result was by attaching a file or using cut-and-paste from your command shell (don’t
merely describe it in words).

• Indicate what you expected the result to be, since a bug is a difference between desired and actual outcomes. Also,
please indicate why you expected that result — explaining your reasoning can help you understand how your
reasoning is different than the checker’s and which one is wrong. Remember that the checker reasons modularly
and intraprocedurally: it examines one method at a time, using only the method signatures of other methods.

• Indicate what you have already done to try to understand the problem. Did you do any additional experiments?
What parts of the manual did read, and what else did you search for in the manual? This information will prevent
you from being given redundant suggestions.

A particularly useful format for a test case is as a new file, or a diff to an existing file, for the existing Checker Frame-
work test suite. For instance, for the Nullness Checker, see directory checker-framework/checker/tests/nullness/.
But, please report your bug even if you do not report it in this format.

When reporting bugs, please focus on realistic scenarios and well-written code. We are sure that you can make up
artificial code that stymies the type-checker! Those aren’t a good use of your time to report nor the maintainers’ time to
evaluate and fix.

33.2.1 Problems with annotated libraries
Sometimes, a checker will report a warning because a library is not annotated or because the library contains incorrect
annotations. Please do not open GitHub issues for these. Instead, we appreciate pull requests to help us improve the
annotations. Alternatively or in the interim, you can use stub files as described in Section 29.5.

If the library is annotated but has some incorrect or missing annotations, then please open a pull request that adds the
annotations. You can find the annotated source for non-JDK libraries in https://github.com/typetools/. You can
find the annotated JDK source in the Checker Framework GitHub repository, either in subdirectories of checker/jdk
or in files named jdk.astub in the checker’s implementation directory.

If the library is not annotated at all, you can fork it, add annotations, and propose that your annotated version be
moved into https://github.com/typetools/.

For either approach, please see Chapter 29, page 174 for tips about writing library annotations.
Thanks for your contribution to the annotated libraries!

237

https://github.com/typetools/checker-framework/issues
https://github.com/typetools/checker-framework/issues
https://github.com/typetools/
https://github.com/typetools/

33.3 Building from source
The Checker Framework release (Section 1.3) contains everything that most users need, both to use the distributed
checkers and to write your own checkers. This section describes how to compile its binaries from source. You will be
using the latest development version of the Checker Framework, rather than an official release.

The Checker Framework can be easily built on Unix (Linux and Mac). You might have trouble building on Windows.
If so, you can switch to Unix (at least for building, if not for running, the Checker Framework) or you can report the
problems to the Checker Framework developers.

33.3.1 Install prerequisites
You need to install several packages in order to build the Checker Framework. Follow the instructions for your operating
system.

Ubuntu Run the following commands:

sudo apt-get update
sudo apt-get install --yes ant dia git hevea junit4 librsvg2-bin libcurl3-gnutls \
make maven mercurial openjdk-8-jdk texlive-latex-base texlive-latex-recommended \
texlive-latex-extra texlive-fonts-recommended unzip

Mac OS If you employ homebrew to install packages, run the following commands (you may need to update the
version number 2.31):

brew update
brew install git ant hevea maven mercurial librsvg unzip make
brew cask install java
brew cask install mactex

Make latex directory and copy hevea.sty file into it.

mkdir -p $HOME/Library/texmf/tex/latex
cp -p /usr/local/Cellar/hevea/2.31/lib/hevea/hevea.sty $HOME/Library/texmf/tex/latex/

Note: If copy permission denied, try sudo.
Also set the JAVA_HOME environment variable in your .bashrc file; for example,

export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_144.jdk/Contents/Home

Windows To build on Windows 10, run bash to obtain a version of Ubuntu (provided by the Windows Subsystem for
Linux) and follow the Ubuntu instructions.

33.3.2 Obtain the source
Obtain the latest source code from the version control repository:

export JSR308=$HOME/jsr308
mkdir -p $JSR308
cd $JSR308
git clone https://github.com/typetools/checker-framework.git checker-framework

You might want to add the export JSR308=$HOME/jsr308 line to your .bashrc file.
Set the JAVA_HOME environment variable to the location of your JDK 8 installation (not the JRE installation, and

not JDK 7 or earlier). This needs to be an Oracle JDK. (The JAVA_HOME environment variable might already be set,
because it is needed for Ant to work.)

Ubuntu If you use the bash shell, put the following command in your .bashrc file. (This might not work if java
refers to an executable in the JRE rather than in the JDK, but you need the JDK installed to build the Checker
Framework anyway.)

238

export JAVA_HOME=${JAVA_HOME:-$(dirname $(dirname $(dirname $(readlink -f $(/usr/bin/which java)))))}

Mac OSX 10.5 or later Add one of the following two commands in your .bash_profile or .profile file according
to the version of your JDK.

export JAVA_HOME=$(/usr/libexec/java_home -v 1.8)
export JAVA_HOME=$(/usr/libexec/java_home -v 1.9)

33.3.3 Build the Checker Framework
1. Run ./gradlew cloneAndBuildDependencies to build the Checker Framework dependencies:

cd $JSR308/checker-framework
./gradlew cloneAndBuildDependencies

2. Run ./gradlew assemble to build the Checker Framework:

cd $JSR308/checker-framework
./gradlew assemble

3. Once it is built, you may wish to put the Checker Framework’s javac even earlier in your PATH:

export PATH=$JSR308/checker-framework/checker/bin:$JSR308/jsr308-langtools/dist/bin:${PATH}

The Checker Framework’s javac ensures that all required libraries are on your classpath and boot classpath, but
is otherwise identical to the Type Annotations compiler.
Putting the Checker Framework’s javac earlier in your PATH will ensure that the Checker Framework’s version
is used.

4. If you are developing a checker within the Checker Framework, there is a developer version of javac in
the bin-devel directory. This version will use compiled classes from dataflow/build, javacutil/build,
framework/build, and checker/build in the checker-framework directory instead of the compiled jar files,
and by default will print stack traces for all errors.
To use it, set your PATH to use javac in the bin-devel directory:

export PATH=$JSR308/checker-framework/checker/bin-devel:$JSR308/jsr308-langtools/dist/bin:${PATH}

The developer version of javac allows you to not have to rebuild the jar files after every code change, in turn
allowing you to test your changes faster. Source files can be compiled using command ant build in the checker
directory, or can be automatically compiled by an IDE such as Eclipse.

5. Test that everything works:

• Run ./gradlew allTests:
cd $JSR308/checker-framework
./gradlew allTests

• Run the Nullness Checker examples (see Section 3.5, page 31).

33.3.4 Build the Checker Framework Manual (this document)
1. Install needed packages; see Section 33.3.1 for instructions.
2. Run make in the docs/manual directory to build both the PDF and HTML versions of the manual.

33.3.5 Configure Eclipse to edit the Checker Framework
These instructions are relevant if you use Eclipse as your IDE.

1. Follow the instructions earlier in Section 33.3 to clone and build all projects from their sources.
2. Download Eclipse from the official Eclipse website and install it.
3. Run Eclipse and set the workspace to the directory pointed to by $JSR308.

239

https://www.eclipse.org/downloads/

4. Enter the main Eclipse working screen and in the “File” menu, select “Import”→ “General”→ “Existing Projects
into workspace”.

5. After the “Import Projects” window appears, select “Select Root Directory”, and select the directory pointed to
by $JSR308.

6. Select all the projects in the folder except for the ones related to “Eclipse”, “encryption”, “tutorial”, and “demo”.

Eclipse should successfully build all the imported projects. If Eclipse reports any errors, ensure you followed the
instructions in Section 33.3.

33.3.6 Enable Travis continuous integration builds
Travis-CI is a continuous integration system: it runs tests every time you push a commit to GitHub.

If you have forked any of the projects rather than just creating a clone, then we recommend that you enable Travis-CI
builds, so that you learn quickly of any errors that creep into your fork.

Run the Travis-CI getting started directions, though note that the .travis.yml files already exist, so only the first
two steps may be necessary.

To save time, by default the Travis jobs download a pre-built version of the JDK rather than building the JDK from
the sources in the Checker Framework repository. This means that if you make a change to the annotated JDK, your
tests will fail. Here is how to deal with this issue:

1. In your pull request, edit file .travis.yml so that it rebuilds the JDK (some jobs might time out).
2. Verify that all tests pass.
3. A Checker Framework developer needs to update the pre-built JDK from your branch.
4. Undo your edits to file .travis.yml.
5. Verify that all tests pass.
6. A Checker Framework developer will review your code and merge your branch.

Debugging Travis continuous integration builds

If a Travis job is failing, you can reproduce the problem locally. The Travis jobs all run within Docker containers.
Install Docker on your local computer, then perform commands like the following to get a shell within Docker:

docker pull mdernst/ubuntu-for-cf-jdk8
docker run -it mdernst/ubuntu-for-cf-jdk8 /bin/bash

Then, you can run arbitrary commands, including those that appear in the docker run command in the .travis.yml
file. For example:

export JAVA_HOME=‘which javac|xargs readlink -f|xargs dirname|xargs dirname‘
git clone -b $BRANCHNAME --depth 9 https://github.com/$USER/checker-framework.git checker-framework
cd checker-framework
./.travis-build.sh all-tests downloadjdk

33.3.7 Code style
Code in this project follows the Google Java Style Guide except 4 spaces are used for indentation. If you commit changes
to the Git repository, then a pre-commit hook verifies that the changes follow the style by running ant check-format
in the top-level directory.

If the pre-commit hook fails because of improper formatting, run ant reformat, stage the changes, and try the
commit operation again.

If the pre-commit hook or ant reformat fails with an "Argument list too long" error, then create a local.properties
file in the top-level directory that sets the property maxparallel to 4000. If the error is still issued, reduce the number
and try again.

240

33.4 Contributing fixes (creating a pull request)
Please see the document How to create and review a GitHub pull request for instructions about how to create a pull
request, which is the way you can contribute code to the Checker Framework project. Thanks in advance for your
participation!

For writing new test cases, see file checker-framework/checker/tests/README.

33.5 Publications
Here are two technical papers about the Checker Framework itself:

• “Practical pluggable types for Java” [PAC+08] (ISSTA 2008, http://homes.cs.washington.edu/~mernst/
pubs/pluggable-checkers-issta2008.pdf) describes the design and implementation of the Checker Frame-
work. The paper also describes case studies in which the Nullness, Interning, Javari, and IGJ Checkers found
previously-unknown errors in real software. The case studies also yielded new insights about type systems.

• “Building and using pluggable type-checkers” [DDE+11] (ICSE 2011, http://homes.cs.washington.edu/
~mernst/pubs/pluggable-checkers-icse2011.pdf) discusses further experience with the Checker Frame-
work, increasing the number of lines of verified code to 3 million. The case studies are of the Fake Enum,
Signature String, Interning, and Nullness Checkers. The paper also evaluates the ease of pluggable type-checking
with the Checker Framework: type-checkers were easy to write, easy for novices to use, and effective in finding
errors.

Here are some papers about type systems that were implemented and evaluated using the Checker Framework:

Nullness (Chapter 3) See the two papers about the Checker Framework, described above.
Rawness initialization (Section 3.8.8) “Inference of field initialization” (ICSE 2011, http://homes.cs.washington.

edu/~mernst/pubs/initialization-icse2011-abstract.html) describes inference for the Rawness Ini-
tialization Checker.

Interning (Chapter 6) See the two papers about the Checker Framework, described above.
Locking (Chapter 7) “Locking discipline inference and checking” (ICSE 2016, http://homes.cs.washington.

edu/~mernst/pubs/locking-inference-checking-icse2016-abstract.html) describes the Lock Checker.
Fake enumerations, type aliases, and typedefs (Chapter 9) See the ICSE 2011 paper about the Checker Framework,

described above.
Regular expressions (Chapter 11) “A type system for regular expressions” [SDE12] (FTfJP 2012, http://homes.

cs.washington.edu/~mernst/pubs/regex-types-ftfjp2012-abstract.html) describes the Regex Checker.
Format Strings (Chapter 12) “A type system for format strings” [WKSE14] (ISSTA 2014, http://homes.cs.

washington.edu/~mernst/pubs/format-string-issta2014-abstract.html) describes the Format String
Checker.

Signature strings (Chapter 15) See the ICSE 2011 paper about the Checker Framework, described above.
GUI Effects (Chapter 16) “JavaUI: Effects for controlling UI object access” [GDEG13] (ECOOP 2013, http://

homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html) describes the GUI
Effect Checker.

“Verification games: Making verification fun” (FTfJP 2012, http://homes.cs.washington.edu/~mernst/pubs/
verigames-ftfjp2012-abstract.html) describes a general inference approach that, at the time, had only
been implemented for the Nullness Checker (Section 3).

Thread locality (Section 23.3) “Loci: Simple thread-locality for Java” [WPM+09] (ECOOP 2009, http://janvitek.
org/pubs/ecoop09.pdf)

Security (Section 23.8) “Static analysis of implicit control flow: Resolving Java reflection and Android intents” [BJM+15]
(ASE 2015, http://homes.cs.washington.edu/~mernst/pubs/implicit-control-flow-ase2015-abstract.
html) describes the SPARTA toolset and information flow type-checker.
“Boolean formulas for the static identification of injection attacks in Java” [ELM+15] (LPAR 2015, http:
//homes.cs.washington.edu/~mernst/pubs/detect-injections-lpar2015-abstract.html)

241

http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-issta2008.pdf
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
http://homes.cs.washington.edu/~mernst/pubs/pluggable-checkers-icse2011.pdf
http://homes.cs.washington.edu/~mernst/pubs/initialization-icse2011-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/initialization-icse2011-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/locking-inference-checking-icse2016-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/locking-inference-checking-icse2016-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/regex-types-ftfjp2012-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/regex-types-ftfjp2012-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/format-string-issta2014-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/gui-thread-ecoop2013-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/verigames-ftfjp2012-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/verigames-ftfjp2012-abstract.html
http://janvitek.org/pubs/ecoop09.pdf
http://janvitek.org/pubs/ecoop09.pdf
http://homes.cs.washington.edu/~mernst/pubs/implicit-control-flow-ase2015-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/implicit-control-flow-ase2015-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/detect-injections-lpar2015-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/detect-injections-lpar2015-abstract.html

Generic Universe Types (Section 23.5) “Tunable static inference for Generic Universe Types” (ECOOP 2011, http:
//homes.cs.washington.edu/~mernst/pubs/tunable-typeinf-ecoop2011-abstract.html) describes in-
ference for the Generic Universe Types type system.
Another implementation of Universe Types and ownership types is described in “Inference and checking of object
ownership” [HDME12] (ECOOP 2012, http://homes.cs.washington.edu/~mernst/pubs/infer-ownership-ecoop2012-abstract.
html).

Approximate data (Section 23.6) “EnerJ: Approximate Data Types for Safe and General Low-Power Computa-
tion” [SDF+11] (PLDI 2011, https://homes.cs.washington.edu/~luisceze/publications/Enerj-pldi2011.
pdf)

Information flow and tainting (Section 23.8) “Collaborative Verification of Information Flow for a High-Assurance
App Store” [EJM+14] (CCS 2014, http://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.
pdf) describes the SPARTA information flow type system.

IGJ and OIGJ immutability (Section 23.9) “Object and reference immutability using Java generics” [ZPA+07] (ES-
EC/FSE 2007, http://homes.cs.washington.edu/~mernst/pubs/immutability-generics-fse2007-abstract.
html) and “Ownership and immutability in generic Java” [ZPL+10] (OOPSLA 2010, http://homes.cs.
washington.edu/~mernst/pubs/ownership-immutability-oopsla2010-abstract.html) describe the IGJ
and OIGJ immutability type systems. For further case studies, also see the ISSTA 2008 paper about the Checker
Framework, described above.

Javari immutability (Section 23.9) “Javari: Adding reference immutability to Java” [TE05] (OOPSLA 2005, http:
//homes.cs.washington.edu/~mernst/pubs/ref-immutability-oopsla2005-abstract.html) describes
the Javari type system. For inference, see “Inference of reference immutability” [QTE08] (ECOOP 2008, http://
homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-ecoop2008-abstract.html) and “Pa-
rameter reference immutability: Formal definition, inference tool, and comparison” [AQKE09] (J.ASE 2009,
http://homes.cs.washington.edu/~mernst/pubs/mutability-jase2009-abstract.html). For further
case studies, also see the ISSTA 2008 paper about the Checker Framework, described above.

ReIm immutability “ReIm & ReImInfer: Checking and inference of reference immutability and method purity” [HMDE12]
(OOPSLA 2012, http://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-oopsla2012-abstract.
html) describes the ReIm immutability type system.

In addition to these papers that discuss use the Checker Framework directly, other academic papers use the Checker
Framework in their implementation or evaluation. Most educational use of the Checker Framework is never published,
and most commercial use of the Checker Framework is never discussed publicly.

(If you know of a paper or other use that is not listed here, please inform the Checker Framework developers so we
can add it.)

33.6 Comparison to other tools
A pluggable type-checker, such as those created by the Checker Framework, is a verification tool that prevents or detects
all errors of a given variety. An alternate approach is to use a bug detector such as FindBugs, Jlint, or PMD.

A pluggable type-checker or verifier differs from a bug detector in several ways:

• A type-checker aims to find all errors. Thus, it can verify the absence of errors: if the type-checker says there are
no null pointer errors in your code, then there are none. (This guarantee only holds for the code it checks, of
course; see Section 2.3.)
A bug detector aims to find some of the most obvious errors. Even if it reports no errors, then there may still be
errors in your code.
Both types of tools may issue false alarms, also known as false positive warnings; see Chapter 26.

• A type-checker requires you to annotate your code with type qualifiers, or to run an inference tool that does so
for you. Some bug detectors do not require annotations. This means that it may be easier to get started running a
bug detector.

• A type-checker may use a more sophisticated and complete analysis. A bug detector typically does a more
lightweight analysis, coupled with heuristics to suppress false positives.

242

https://ece.uwaterloo.ca/~wdietl/ownership/
http://homes.cs.washington.edu/~mernst/pubs/tunable-typeinf-ecoop2011-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/tunable-typeinf-ecoop2011-abstract.html
http://www.cs.rpi.edu/~huangw5/cf-inference/
http://homes.cs.washington.edu/~mernst/pubs/infer-ownership-ecoop2012-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/infer-ownership-ecoop2012-abstract.html
https://homes.cs.washington.edu/~luisceze/publications/Enerj-pldi2011.pdf
https://homes.cs.washington.edu/~luisceze/publications/Enerj-pldi2011.pdf
http://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
http://homes.cs.washington.edu/~mernst/pubs/infoflow-ccs2014.pdf
http://homes.cs.washington.edu/~mernst/pubs/immutability-generics-fse2007-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/immutability-generics-fse2007-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/ownership-immutability-oopsla2010-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/ownership-immutability-oopsla2010-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/ref-immutability-oopsla2005-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/ref-immutability-oopsla2005-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-ecoop2008-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-ecoop2008-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/mutability-jase2009-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-oopsla2012-abstract.html
http://homes.cs.washington.edu/~mernst/pubs/infer-refimmutability-oopsla2012-abstract.html
http://findbugs.sourceforge.net/
http://jlint.sourceforge.net/
https://pmd.github.io

As one example, a type-checker can take advantage of annotations on generic type parameters, such as
List<@NonNull String>, permitting it to be much more precise for code that uses generics.

A case study [PAC+08, §6] compared the Checker Framework’s nullness checker with those of FindBugs, Jlint, and
PMD. The case study was on a well-tested program in daily use. The Checker Framework tool found 8 nullness errors
(that is, null pointer dereferences). None of the other tools found any errors.

Another alternative is to use an IDE tool such as those built into Eclipse or IntelliJ. They are bug-finding tools that
give up on precision, soundness, or both. For a more detailed comparison to Eclipse, see Section 32.10.2.

Also see the JSR 308 [Ern08] documentation for another discussion of related work.

33.7 Credits and changelog
Differences from previous versions of the checkers and framework can be found in the changelog.txt file. This file
is included in the Checker Framework distribution and is also available on the web at https://checkerframework.
org/changelog.txt.

Developers who have contributed code to the Checker Framework include Abraham Lin, Anatoly Kupriyanov,
Asumu Takikawa, Bohdan Sharipov, Charlie Garrett, Chris Mackie, Colin Gordon, Dan Brotherston, Dan Brown, David
Lazar, David McArthur, Eric Spishak, Google Inc. (via @wmdietlGC), Javier Thaine, Jeff Luo, Jiasen (Jason) Xu,
Jonathan Burke, Kivanc Muslu, Konstantin Weitz, Mahmood Ali, Mark Roberts, Matt Mullen, Michael Bayne, Michael
Coblenz, Michael Ernst, Michael Sloan, Paul Vines, Paulo Barros, Philip Lai, Renato Athaydes, René Just, Ryan Oblak,
Shinya Yoshida, Stefan Heule, Steph Dietzel, Stuart Pernsteiner, Suzanne Millstein, Trask Stalnaker, Vlastimil Dort,
Werner Dietl. In addition, too many users to list have provided valuable feedback, which has improved the toolset’s
design and implementation. Thanks for your help!

33.8 License
Two different licenses apply to different parts of the Checker Framework.

• The Checker Framework itself is licensed under the GNU General Public License (GPL), version 2, with the
classpath exception. The GPL is the same license that OpenJDK is licensed under. Just as compiling your code
with javac does not infect your code with the GPL, type-checking your code with the Checker Framework does
not infect your code with the GPL. Running the Checker Framework during development has no effect on your
intellectual property or licensing. If you want to ship the Checker Framework as part of your product, then your
product must be licensed under the GPL.

• The more permissive MIT License applies to code that you might want to include in your own program, such as
the annotations and run-time utility classes.

For details, see file LICENSE.txt.

243

https://checkerframework.org/jsr308/
https://checkerframework.org/changelog.txt
https://checkerframework.org/changelog.txt

Bibliography

[AQKE09] Shay Artzi, Jaime Quinonez, Adam Kieżun, and Michael D. Ernst. Parameter reference immutability:
Formal definition, inference tool, and comparison. Automated Software Engineering, 16(1):145–192,
March 2009.

[Art01] Cyrille Artho. Finding faults in multi-threaded programs. Master’s thesis, Swiss Federal Institute of
Technology, March 15, 2001.

[BJM+15] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner Dietl, Marcelo d’Amorim, and Michael D.
Ernst. Static analysis of implicit control flow: Resolving Java reflection and Android intents. In ASE 2015:
Proceedings of the 30th Annual International Conference on Automated Software Engineering, pages
669–679, Lincoln, NE, USA, November 2015.

[CNA+17] Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad Myers, and Joshua Sunshine. Glacier:
Transitive class immutability for Java. In ICSE 2017, Proceedings of the 39th International Conference on
Software Engineering, pages 496–506, Buenos Aires, Argentina, May 2017.

[Cop05] Tom Copeland. PMD Applied. Centennial Books, November 2005.

[Cro06] Jose Cronembold. JSR 198: A standard extension API for Integrated Development Environments.
http://jcp.org/en/jsr/detail?id=198, May 8, 2006.

[Dar06] Joe Darcy. JSR 269: Pluggable annotation processing API. http://jcp.org/en/jsr/detail?id=269,
May 17, 2006. Public review version.

[DDE+11] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kıvanç Muşlu, and Todd Schiller. Building and using
pluggable type-checkers. In ICSE 2011, Proceedings of the 33rd International Conference on Software
Engineering, pages 681–690, Waikiki, Hawaii, USA, May 2011.

[DEM11] Werner Dietl, Michael D. Ernst, and Peter Müller. Tunable static inference for Generic Universe Types. In
ECOOP 2011 — Object-Oriented Programming, 25th European Conference, pages 333–357, Lancaster,
UK, July 2011.

[EJM+14] Michael D. Ernst, René Just, Suzanne Millstein, Werner Dietl, Stuart Pernsteiner, Franziska Roesner, Karl
Koscher, Paulo Barros, Ravi Bhoraskar, Seungyeop Han, Paul Vines, and Edward X. Wu. Collaborative
verification of information flow for a high-assurance app store. In CCS 2014: Proceedings of the 21st
ACM Conference on Computer and Communications Security, pages 1092–1104, Scottsdale, AZ, USA,
November 2014.

[ELM+15] Michael D. Ernst, Alberto Lovato, Damiano Macedonio, Ciprian Spiridon, and Fausto Spoto. Boolean
formulas for the static identification of injection attacks in Java. In LPAR 2015: Proceedings of the
20th International Conference on Logic for Programming, Artificial Intelligence, and Reasoning, pages
130–145, Suva, Fiji, November 2015.

[Ern08] Michael D. Ernst. Type Annotations specification (JSR 308). https://checkerframework.org/
jsr308/, September 12, 2008.

244

http://jcp.org/en/jsr/detail?id=198
http://jcp.org/en/jsr/detail?id=269
https://checkerframework.org/jsr308/
https://checkerframework.org/jsr308/

[FL03] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types in an object-oriented
language. In OOPSLA 2003, Object-Oriented Programming Systems, Languages, and Applications, pages
302–312, Anaheim, CA, USA, November 2003.

[GDEG13] Colin S. Gordon, Werner Dietl, Michael D. Ernst, and Dan Grossman. JavaUI: Effects for controlling
UI object access. In ECOOP 2013 — Object-Oriented Programming, 27th European Conference, pages
179–204, Montpellier, France, July 2013.

[Goe06] Brian Goetz. The pseudo-typedef antipattern: Extension is not type definition. https://www.ibm.com/
developerworks/java/library/j-jtp02216/, February 21, 2006.

[GPB+06] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. Java Concurrency
in Practice. Addison-Wesley, 2006.

[HDME12] Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst. Inference and checking of object
ownership. In ECOOP 2012 — Object-Oriented Programming, 26th European Conference, pages 181–
206, Beijing, China, June 2012.

[HMDE12] Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. ReIm & ReImInfer: Checking and
inference of reference immutability and method purity. In OOPSLA 2012, Object-Oriented Programming
Systems, Languages, and Applications, pages 879–896, Tucson, AZ, USA, October 2012.

[HP04] David Hovemeyer and William Pugh. Finding bugs is easy. In OOPSLA Companion: Companion to
Object-Oriented Programming Systems, Languages, and Applications, pages 132–136, Vancouver, BC,
Canada, October 2004.

[HSP05] David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating and tuning a static analysis to find null
pointer bugs. In PASTE 2005: ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (PASTE 2005), pages 13–19, Lisbon, Portugal, September 2005.

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. ACM SIGSOFT Software Engineering Notes, 31(3), March 2006.

[PAC+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D. Ernst. Practical
pluggable types for Java. In ISSTA 2008, Proceedings of the 2008 International Symposium on Software
Testing and Analysis, pages 201–212, Seattle, WA, USA, July 2008.

[QTE08] Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of reference immutability. In
ECOOP 2008 — Object-Oriented Programming, 22nd European Conference, pages 616–641, Paphos,
Cyprus, July 2008.

[SDE12] Eric Spishak, Werner Dietl, and Michael D. Ernst. A type system for regular expressions. In FTfJP: 14th
Workshop on Formal Techniques for Java-like Programs, pages 20–26, Beijing, China, June 2012.

[SDF+11] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze, and Dan Grossman.
EnerJ: Approximate data types for safe and general low-power computation. In PLDI 2011: Proceedings
of the ACM SIGPLAN 2011 Conference on Programming Language Design and Implementation, pages
164–174, San Jose, CA, USA, June 2011.

[SM11] Alexander J. Summers and Peter Müller. Freedom before commitment: A lightweight type system
for object initialisation. In OOPSLA 2011, Object-Oriented Programming Systems, Languages, and
Applications, pages 1013–1032, Portland, OR, USA, October 2011.

[TE05] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability to Java. In OOPSLA
2005, Object-Oriented Programming Systems, Languages, and Applications, pages 211–230, San Diego,
CA, USA, October 2005.

245

https://www.ibm.com/developerworks/java/library/j-jtp02216/
https://www.ibm.com/developerworks/java/library/j-jtp02216/

[TPV10] Daniel Tang, Ales Plsek, and Jan Vitek. Static checking of safety critical Java annotations. In JTRES 2010:
8th International Workshop on Java Technologies for Real-time and Embedded Systems, pages 148–154,
Prague, Czech Republic, August 2010.

[VPEJ14] Mohsen Vakilian, Amarin Phaosawasdi, Michael D. Ernst, and Ralph E. Johnson. Cascade: A universal
type qualifier inference tool. Technical report, University of Illinois at Urbana-Champaign, Urbana, IL,
USA, September 2014.

[WKSE14] Konstantin Weitz, Gene Kim, Siwakorn Srisakaokul, and Michael D. Ernst. A type system for format
strings. In ISSTA 2014, Proceedings of the 2014 International Symposium on Software Testing and
Analysis, pages 127–137, San Jose, CA, USA, July 2014.

[WPM+09] Tobias Wrigstad, Filip Pizlo, Fadi Meawad, Lei Zhao, and Jan Vitek. Loci: Simple thread-locality for Java.
In ECOOP 2009 — Object-Oriented Programming, 23rd European Conference, pages 445–469, Genova,
Italy, July 2009.

[ZPA+07] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieżun, and Michael D. Ernst. Object
and reference immutability using Java generics. In ESEC/FSE 2007: Proceedings of the 11th European
Software Engineering Conference and the 15th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 75–84, Dubrovnik, Croatia, September 2007.

[ZPL+10] Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D. Ernst. Ownership and immutability in
generic Java. In OOPSLA 2010, Object-Oriented Programming Systems, Languages, and Applications,
pages 598–617, Revo, NV, USA, October 2010.

246

	Introduction
	How to read this manual
	How it works: Pluggable types
	Installation
	Example use: detecting a null pointer bug

	Using a checker
	Writing annotations
	Running a checker
	Using annotated libraries
	Distributing your annotated project
	Summary of command-line options
	Checker auto-discovery
	Shorthand for built-in checkers

	What the checker guarantees
	Tips about writing annotations
	Write annotations before you run a checker
	How to get started annotating legacy code
	Annotations indicate normal behavior
	Subclasses must respect superclass annotations
	Annotations on constructor invocations
	What to do if a checker issues a warning about your code

	Nullness Checker
	What the Nullness Checker checks
	Nullness annotations
	Nullness qualifiers
	Nullness method annotations
	Initialization qualifiers
	Map key qualifiers

	Writing nullness annotations
	Implicit qualifiers
	Default annotation
	Conditional nullness
	Nullness and arrays
	Run-time checks for nullness
	Additional details
	Inference of @NonNull and @Nullable annotations

	Suppressing nullness warnings
	Suppressing warnings with assertions and method calls

	Examples
	Tiny examples
	Example annotated source code

	Tips for getting started
	Other tools for nullness checking
	Which tool is right for you?
	Incompatibility note about FindBugs @Nullable
	Relationship to Optional<T>

	Initialization Checker
	Initialization qualifiers
	How an object becomes initialized
	Partial initialization
	Method calls from the constructor
	Initialization of circular data structures
	How to handle warnings
	More details about initialization checking
	Rawness Initialization Checker

	Map Key Checker
	Map key annotations
	Examples
	Inference of @KeyFor annotations

	Optional Checker for possibly-present data
	How to run the Optional Checker
	Optional annotations

	Interning Checker
	Interning annotations
	Annotating your code with @Interned
	Implicit qualifiers
	InternedDistinct: values not equals() to any other value

	What the Interning Checker checks
	Limitations of the Interning Checker

	Examples
	Other interning annotations

	Lock Checker
	What the Lock Checker guarantees
	Lock annotations
	Type qualifiers
	Declaration annotations

	Type-checking rules
	Polymorphic qualifiers
	Dereferences
	Primitive types, boxed primitive types, and Strings
	Overriding
	Side effects

	Examples
	Examples of @GuardedBy
	@GuardedBy({``a'', ``b''}) is not a subtype of @GuardedBy({``a''})
	Examples of @Holding
	Examples of @EnsuresLockHeld and @EnsuresLockHeldIf
	Example of @LockingFree, @ReleasesNoLocks, and @MayReleaseLocks
	Polymorphism and method formal parameters with unknown guards

	More locking details
	Two types of locking: monitor locks and explicit locks
	Held locks and held expressions; aliasing
	Run-time checks for locking
	Discussion of default qualifier
	Discussion of @Holding

	Other lock annotations
	Relationship to annotations in Java Concurrency in Practice

	Possible extensions

	Index Checker for sequence bounds (arrays and strings)
	Index Checker structure and annotations
	Lower bounds
	Upper bounds
	Sequence minimum lengths
	Sequences of the same length
	Binary search indices
	Substring indices
	The need for the @SubstringIndexFor annotation

	Inequalities
	Annotating fixed-size data structures

	Fake Enum Checker for fake enumerations
	Fake enum annotations
	What the Fenum Checker checks
	Running the Fenum Checker
	Suppressing warnings
	Example
	The fake enumeration pattern
	References

	Tainting Checker
	Tainting annotations
	Tips on writing @Untainted annotations
	@Tainted and @Untainted can be used for many purposes

	Regex Checker for regular expression syntax
	Regex annotations
	Annotating your code with @Regex
	Implicit qualifiers
	Capturing groups
	Concatenation of partial regular expressions
	Testing whether a string is a regular expression
	Suppressing warnings

	Format String Checker
	Formatting terminology
	Format String Checker annotations
	Conversion Categories
	Subtyping rules for @Format

	What the Format String Checker checks
	Possible false alarms
	Possible missed alarms

	Implicit qualifiers
	@FormatMethod
	Testing whether a format string is valid

	Internationalization Format String Checker (I18n Format String Checker)
	Internationalization Format String Checker annotations
	Conversion categories
	Subtyping rules for @I18nFormat
	What the Internationalization Format String Checker checks
	Resource files
	Running the Internationalization Format Checker
	Testing whether a string has an i18n format type
	Examples of using the Internationalization Format Checker

	Property File Checker
	General Property File Checker
	Internationalization Checker (I18n Checker)
	Internationalization annotations
	Running the Internationalization Checker

	Compiler Message Key Checker

	Signature String Checker for string representations of types
	Signature annotations
	What the Signature Checker checks

	GUI Effect Checker
	GUI effect annotations
	What the GUI Effect Checker checks
	Running the GUI Effect Checker
	Annotation defaults
	Polymorphic effects
	Defining an effect-polymorphic type
	Using an effect-polymorphic type
	Subclassing a specific instantiation of an effect-polymorphic type
	Subtyping with polymorphic effects

	References

	Units Checker
	Units annotations
	Extending the Units Checker
	What the Units Checker checks
	Running the Units Checker
	Suppressing warnings
	References

	Signedness Checker
	Annotations
	Default qualifiers

	Prohibited operations
	Rationale
	Utility routines for manipulating unsigned values

	Constant Value Checker
	Annotations
	Type Annotations
	Compile-time execution of expressions
	@StaticallyExecutable methods and the classpath

	Warnings
	Unsoundly ignoring overflow

	Aliasing Checker
	Aliasing annotations
	Leaking contexts
	Restrictions on where @Unique may be written
	Aliasing type refinement

	Reflection resolution
	MethodVal and ClassVal Checkers
	ClassVal Checker
	MethodVal Checker
	MethodVal and ClassVal inference

	Reflection resolution example

	Subtyping Checker
	Using the Subtyping Checker
	Subtyping Checker example
	Type aliases and typedefs

	Third-party checkers
	Typestate checkers
	Comparison to flow-sensitive type refinement

	Units and dimensions checker
	Thread locality checker
	Safety-Critical Java checker
	Generic Universe Types checker
	EnerJ checker
	CheckLT taint checker
	SPARTA information flow type-checker for Android
	Immutability checkers: IGJ, OIGJ, and Javari
	Read Checker for CERT FIO08-J
	SQL checker that supports multiple dialects
	Glacier: Class immutability

	Generics and polymorphism
	Generics (parametric polymorphism or type polymorphism)
	Raw types
	Restricting instantiation of a generic class
	Type annotations on a use of a generic type variable
	Annotations on wildcards
	Examples of qualifiers on a type parameter
	Covariant type parameters
	Method type argument inference and type qualifiers
	The Bottom type

	Qualifier polymorphism
	Examples of using polymorphic qualifiers
	Relationship to subtyping and generics
	The @PolyAll qualifier applies to every type system
	Using multiple polymorphic qualifiers in a method signature
	Using a single polymorphic qualifier in a method signature

	Advanced type system features
	Invariant array types
	Context-sensitive type inference for array constructors
	The effective qualifier on a type (defaults and inference)
	Default qualifier for unannotated types
	Defaulting rules and CLIMB-to-top
	Inherited defaults
	Inherited wildcard annotations
	Default qualifiers for .class files (conservative library defaults)

	Automatic type refinement (flow-sensitive type qualifier inference)
	Type refinement examples
	Types that are not refined
	Run-time tests and type refinement
	Fields and flow-sensitive analysis
	Side effects, determinism, purity, and flow-sensitive analysis
	Assertions

	Writing Java expressions as annotation arguments
	Field invariants
	Unused fields
	@Unused annotation

	Suppressing warnings
	@SuppressWarnings annotation
	@SuppressWarnings syntax
	Where @SuppressWarnings can be written
	Good practices when suppressing warnings

	@AssumeAssertion string in an assert message
	Suppressing warnings and defensive programming

	-AsuppressWarnings command-line option
	-AskipUses and -AonlyUses command-line options
	-AskipDefs and -AonlyDefs command-line options
	-Alint command-line option
	Don't run the processor
	Checker-specific mechanisms

	Handling legacy code
	Checking partially-annotated programs: handling unannotated code
	Declaration annotations

	Type inference
	Local type inference during type-checking
	Type inference to annotate a program
	Type inference tools

	Whole-program inference
	Whole-program inference ignores some code
	Manually checking whole-program inference results
	How whole-program inference works

	Annotating libraries
	Tips for annotating a library
	Don't change the code
	Library annotations should reflect the specification, not the implementation
	Report bugs upstream
	Fully annotate the library, or indicate which parts you did not
	Verify your annotations

	Creating an annotated library
	Creating an annotated JDK
	Compiling partially-annotated libraries
	The -AuseDefaultsForUncheckedCode=source,bytecode command-line argument

	Using stub classes
	Using a stub file
	Stub file format
	Creating a stub file
	Troubleshooting stub libraries

	Troubleshooting/debugging annotated libraries

	How to create a new checker
	How checkers build on the Checker Framework
	The parts of a checker
	Compiling and using a custom checker
	Tips for creating a checker

	Annotations: Type qualifiers and hierarchy
	Defining the type qualifiers
	Declaratively defining the qualifier hierarchy
	Procedurally defining the qualifier hierarchy
	Defining a default annotation
	Relevant Java types
	Do not re-use type qualifiers
	Completeness of the type hierarchy
	Annotations whose argument is a Java expression (dependent type annotations)

	The checker class: Compiler interface
	Indicating supported annotations
	Bundling multiple checkers
	Providing command-line options

	Visitor: Type rules
	AST traversal
	Avoid hardcoding

	Type factory: Implicit annotations (type introduction rules)
	Declaratively specifying implicit annotations
	Procedurally specifying implicit annotations

	Dataflow: enhancing flow-sensitive type qualifier inference
	Determine expressions to refine the types of
	Create required class
	Override methods that handle Nodes of interest
	Implement the refinement
	Disabling flow-sensitive inference

	Annotated JDK
	Testing framework
	Debugging options
	Amount of detail in messages
	Stub and JDK libraries
	Progress tracing
	Saving the command-line arguments to a file
	Visualizing the dataflow graph
	Miscellaneous debugging options
	Examples
	Using an external debugger

	Documenting the checker
	javac implementation survival guide
	Checker access to compiler information
	How a checker fits in the compiler as an annotation processor

	Integrating a checker with the Checker Framework

	Integration with external tools
	Android Studio 3.0 and the Android Gradle Plugin 3.0
	Ant task
	Explanation

	Eclipse
	Using an Ant task
	Troubleshooting Eclipse

	Gradle
	IntelliJ IDEA
	Javac compiler
	Maven
	NetBeans
	Adding a checker via the Project Properties window
	Adding a checker via an ant target

	tIDE
	Type inference tools

	Frequently Asked Questions (FAQs)
	Motivation for pluggable type-checking
	I don't make type errors, so would pluggable type-checking help me?
	Should I use pluggable types (type qualifiers) or Java subtypes?

	Getting started
	How do I get started annotating an existing program?
	Which checker should I start with?
	How can I join the checker-framework-dev mailing list?

	Usability of pluggable type-checking
	Are type annotations easy to read and write?
	Will my code become cluttered with type annotations?
	Will using the Checker Framework slow down my program? Will it slow down the compiler?
	How do I shorten the command line when invoking a checker?
	Method pre-condition contracts, including formal parameter annotations, make no sense for public methods

	How to handle warnings and errors
	What should I do if a checker issues a warning about my code?
	What does a certain Checker Framework warning message mean?
	Can a pluggable type-checker guarantee that my code is correct?
	What guarantee does the Checker Framework give for concurrent code?
	How do I make compilation succeed even if a checker issues errors?
	Why does the checker always say there are 100 errors or warnings?
	Why does the Checker Framework report an error regarding a type I have not written in my program?
	How can I do run-time monitoring of properties that were not statically checked?

	False positive warnings
	What is a ``false positive'' warning?
	How can I improve the Checker Framework to eliminate a false positive warning?
	Why doesn't the Checker Framework infer types for fields and method return types?
	Why doesn't the Checker Framework track relationships between variables?
	Why isn't the Checker Framework path-sensitive?

	Syntax of type annotations
	What is a ``receiver''?
	What is the meaning of an annotation after a type, such as @NonNull Object @Nullable?
	What is the meaning of array annotations such as @NonNull Object @Nullable []?
	What is the meaning of varargs annotations such as @English String @NonEmpty ...?
	What is the meaning of a type qualifier at a class declaration?
	Why shouldn't a qualifier apply to both types and declarations?
	How do I annotate a fully-qualified type name?

	Semantics of type annotations
	How can I handle typestate, or phases of my program with different data properties?
	Why are explicit and implicit bounds defaulted differently?
	Why are type annotations declared with @Retention(RetentionPolicy.RUNTIME)?

	Creating a new checker
	How do I create a new checker?
	What properties can and cannot be handled by type-checking?
	Why is there no declarative syntax for writing type rules?

	Tool questions
	How does pluggable type-checking work?
	What classpath is needed to use an annotated library?
	Why do .class files contain more annotations than the source code?
	Is there a type-checker for managing checked and unchecked exceptions?

	Relationship to other tools
	Why not just use a bug detector (like FindBugs)?
	How does the Checker Framework compare with Eclipse's null analysis?
	How does the Checker Framework compare with the JDK's Optional type?
	How does pluggable type-checking compare with JML?
	Is the Checker Framework an official part of Java?
	What is the relationship between the Checker Framework and JSR 305?
	What is the relationship between the Checker Framework and JSR 308?

	Troubleshooting, getting help, and contributing
	Common problems and solutions
	Unable to compile the Checker Framework
	Unable to run the checker, or checker crashes
	Unexpected type-checking results
	Unexpected compilation output when running javac without a pluggable type-checker

	How to report problems (bug reporting)
	Problems with annotated libraries

	Building from source
	Install prerequisites
	Obtain the source
	Build the Checker Framework
	Build the Checker Framework Manual (this document)
	Configure Eclipse to edit the Checker Framework
	Enable Travis continuous integration builds
	Code style

	Contributing fixes (creating a pull request)
	Publications
	Comparison to other tools
	Credits and changelog
	License

