
The Checker Framework:
Custom pluggable types for Java

http://types.cs.washington.edu/checker-framework/

Version 1.3.1 (21 Jul 2012)

For the impatient: Section 1.2 (page 10) describes how to install and use pluggable type-checkers.

2

Contents

1 Introduction 9
1.1 How it works: Pluggable types . 9
1.2 Installation . 10
1.3 Example use: detecting a null pointer bug . 11

2 Using a checker 12
2.1 Writing annotations . 12

2.1.1 Distributing your annotated project . 13
2.2 Running a checker . 13

2.2.1 Summary of command-line options . 13
2.2.2 Checker auto-discovery . 14

2.3 What the checker guarantees . 14
2.4 Tips about writing annotations . 15

2.4.1 How to get started annotating legacy code . 15
2.4.2 Do not annotate local variables unless necessary . 16
2.4.3 Annotations indicate normal behavior . 16
2.4.4 Subclasses must respect superclass annotations . 16
2.4.5 Annotations on constructor invocations . 17
2.4.6 When to use (and not use) type qualifiers . 18
2.4.7 What to do if a checker issues a warning about your code . 18

3 Nullness checker 19
3.1 What the Nullness checker checks . 19
3.2 Nullness annotations . 20

3.2.1 Nullness qualifiers . 20
3.2.2 Nullness method annotations . 20
3.2.3 Rawness qualifiers . 21
3.2.4 Map key qualifiers . 22

3.3 Writing nullness annotations . 22
3.3.1 Implicit qualifiers . 22
3.3.2 Default annotation . 22
3.3.3 Conditional nullness . 22
3.3.4 Inference of @NonNull and @Nullable annotations . 23

3.4 Suppressing nullness warnings . 23
3.4.1 Suppressing warnings with assertions and method calls . 24
3.4.2 Suppressing warnings on nullness-checking routines and defensive programming 24

3.5 @Raw annotation for partially-initialized objects . 26
3.5.1 Rawness qualifiers . 26
3.5.2 How an object becomes non-raw . 27
3.5.3 More details about rawness checking . 27

3

3.6 Map key annotations . 28
3.7 Additional details . 28
3.8 Examples . 29

3.8.1 Tiny examples . 29
3.8.2 Annotated library . 29

3.9 Tips for getting started . 29
3.10 Other tools for nullness checking . 30

3.10.1 Which tool is right for you? . 31
3.10.2 Incompatibility note about FindBugs @Nullable . 31

4 Interning checker 33
4.1 Interning annotations . 34
4.2 Annotating your code with @Interned . 34

4.2.1 Implicit qualifiers . 34
4.3 What the Interning checker checks . 34
4.4 Examples . 35
4.5 Other interning annotations . 35

5 IGJ immutability checker 36
5.1 IGJ and Mutability . 36
5.2 IGJ Annotations . 36
5.3 What the IGJ checker checks . 37
5.4 Implicit and default qualifiers . 37
5.5 Annotation IGJ Dialect . 37

5.5.1 Semantic Changes . 38
5.5.2 Syntax Changes . 38
5.5.3 Templating Over Immutability: @I . 38

5.6 Iterators and their abstract state . 39
5.7 Examples . 39

6 Javari immutability checker 40
6.1 Javari annotations . 40
6.2 Writing Javari annotations . 41

6.2.1 Implicit qualifiers . 41
6.2.2 Inference of Javari annotations . 41

6.3 What the Javari checker checks . 41
6.4 Iterators and their abstract state . 41
6.5 Examples . 41

7 Lock checker 42
7.1 Lock annotations . 42

7.1.1 Examples . 42
7.1.2 Discussion of @Holding . 43
7.1.3 Relationship to annotations in Java Concurrency in Practice 44

8 Fake Enum checker 45
8.1 Fake enum annotations . 45
8.2 What the Fenum checker checks . 46
8.3 Running the Fenum checker . 46
8.4 Suppressing warnings . 46
8.5 Example . 47
8.6 References . 47

4

9 Tainting checker 48
9.1 Tainting annotations . 48
9.2 Tips on writing @Untainted annotations . 48
9.3 @Tainted and @Untainted can be used for many purposes . 49

10 Linear checker for preventing aliasing 50
10.1 Linear annotations . 50
10.2 Limitations . 51

11 Regex checker for regular expression syntax 52
11.1 Regex annotations . 52
11.2 Annotating your code with @Regex . 52

11.2.1 Implicit qualifiers . 52
11.2.2 Capturing groups . 53
11.2.3 Concatenation of partial regular expresions . 54
11.2.4 Testing whether a string is a regular expression . 54
11.2.5 Suppressing warnings . 54

12 Property file checker 56
12.1 Generic property file checker . 56
12.2 Internationalization checker . 57

12.2.1 Internationalization annotations . 57
12.2.2 Running the Internationalization Checker . 57

12.3 Compiler Message Key checker . 57

13 Signature checker for string representations of types 59
13.1 Signature annotations . 59
13.2 What the Signature Checker checks . 60

14 Units checker 61
14.1 Units annotations . 61
14.2 Extending the Units Checker . 62
14.3 What the Units Checker checks . 62
14.4 Running the Units Checker . 63
14.5 Suppressing warnings . 63
14.6 References . 63

15 Basic checker 64
15.1 Using the Basic checker . 64
15.2 Basic checker example . 64

16 Typestate checker 67
16.1 Comparison to flow-sensitive type refinement . 67

17 Third-party checkers 68
17.1 Units and dimensions checker . 68
17.2 Thread locality checker . 68
17.3 Safety-Critical Java checker . 68
17.4 Generic Universe Types checker . 68
17.5 EnerJ checker . 68

5

18 Generics and polymorphism 69
18.1 Generics (parametric polymorphism or type polymorphism) . 69

18.1.1 Restricting instantiation of a generic class . 69
18.1.2 A qualifier on a type parameter is like two bounds . 70
18.1.3 Examples of qualifiers on a type parameters . 70
18.1.4 Defaults for bounds . 71
18.1.5 Type annotations on a use of a generic type variable . 71
18.1.6 Covariant type parameters . 72

18.2 Qualifier polymorphism . 72
18.2.1 Examples of using polymorphic qualifiers . 73
18.2.2 Relationship to subtyping and generics . 73
18.2.3 Using multiple polymorphic qualifiers in a method signature 73
18.2.4 Using a single polymorphic qualifier on an element type . 74
18.2.5 The @PolyAll qualifier applies to every type system . 74

19 Advanced type system features 76
19.1 The effective qualifier on a type (defaults and inference) . 76

19.1.1 Default qualifier for unannotated types . 76
19.1.2 Automatic type refinement (flow-sensitive type qualifier inference) 78
19.1.3 Fields and flow sensitivity analysis . 79
19.1.4 Inherited defaults . 79

19.2 Writing Java expressions as annotation arguments . 80
19.3 Unused fields and dependent types . 80

19.3.1 Unused fields . 81
19.3.2 Dependent types . 81

20 Handling warnings and legacy code 83
20.1 Checking partially-annotated programs: handling unannotated code 83
20.2 Suppressing warnings . 84

20.2.1 @SuppressWarnings annotation . 84
20.2.2 -AskipUses command-line option . 85
20.2.3 -AskipDefs command-line option . 85
20.2.4 -Alint command-line option . 85
20.2.5 No -processor command-line option . 85
20.2.6 Checker-specific mechanisms . 86

20.3 Backward compatibility with earlier versions of Java . 86
20.3.1 Annotations in comments . 86
20.3.2 Implicit import statements . 87
20.3.3 Migrating away from annotations in comments . 87
20.3.4 Annotations in Java 5 .class files . 88

21 Annotating libraries 89
21.1 Choosing between stub files and annotated .class files . 89
21.2 Using stub classes . 90

21.2.1 Creating a stub file . 90
21.2.2 Using a stub file . 90
21.2.3 Stub file format . 91
21.2.4 Limitations . 91

21.3 Using distributed annotated JDKs . 91
21.4 Troubleshooting/debugging annotated libraries . 92

6

22 How to create a new checker 93
22.1 Relationship of the Checker Framework to other tools . 93
22.2 The parts of a checker . 94
22.3 Annotations: Type qualifiers and hierarchy . 94

22.3.1 Declaratively defining the qualifier and type hierarchy . 95
22.3.2 Procedurally defining the qualifier and type hierarchy . 95
22.3.3 Defining a default annotation . 96
22.3.4 Completeness of the type hierarchy . 96

22.4 Type factory: Implicit annotations . 97
22.4.1 Declaratively specifying implicit annotations . 97
22.4.2 Procedurally specifying implicit annotations . 97
22.4.3 Flow-sensitive type qualifier inference . 98

22.5 Visitor: Type rules . 98
22.5.1 AST traversal . 99
22.5.2 Avoid hardcoding . 99

22.6 The checker class: Compiler interface . 99
22.6.1 Bundling multiple checkers . 100
22.6.2 Providing command-line options . 100

22.7 Testing framework . 101
22.8 Debugging options . 101
22.9 javac implementation survival guide . 102

22.9.1 Checker access to compiler information . 102
22.9.2 How a checker fits in the compiler as an annotation processor 103

23 Integration with external tools 104
23.1 Javac Compiler . 104

23.1.1 Unix/Linux/MacOS installation . 104
23.1.2 Windows installation . 105

23.2 Ant task . 106
23.2.1 Explanation . 106

23.3 Maven plugin . 107
23.4 Gradle . 108
23.5 IntelliJ IDEA . 109
23.6 Eclipse . 109
23.7 tIDE . 109
23.8 Type inference tools . 110

23.8.1 Varieties of type inference . 110
23.8.2 Type inference to annotate a program . 110

24 Frequently Asked Questions (FAQs) 111
24.1 Are type annotations easy to read and write? . 111
24.2 Will my code become cluttered with type annotations? . 112
24.3 I don’t make type errors, so would pluggable type checking help me? 112
24.4 What should I do if a checker issues a warning about my code? . 112
24.5 Can a pluggable type-checker give an absolute guarantee of correctness? 112
24.6 How do I make compilation succeed even if a checker issues errors? 113
24.7 Will using the Checker Framework slow down my program? Will it slow down the compiler? 113
24.8 How can I do run-time monitoring of properties that were not statically checked? 113
24.9 How do I get started annotating an existing program? . 114
24.10How do I shorten the command line when invoking a checker? . 114
24.11When should I use type qualifiers, and when should I use subclasses? 114
24.12How do I create a new checker? . 114

7

24.13Why is there no declarative syntax for writing type rules? . 114
24.14Why not just use a bug detector (like FindBugs)? . 114
24.15How does pluggable type-checking compare with JML? . 115
24.16Why shouldn’t a qualifier apply to both types and declarations? . 115
24.17What is the meaning of array annotations such as @NonNull Object @Nullable []? 116
24.18Why are the type parameters to List and Map annotated as @NonNull? 116
24.19Is the Checker Framework an official part of Java? . 117

25 Troubleshooting and getting help 118
25.1 Common problems and solutions . 118

25.1.1 Unable to run the checker, or checker crashes . 118
25.1.2 Unexpected type-checking results . 120
25.1.3 Unable to build the checker, or to run programs . 120

25.2 How to report problems (bug reporting) . 120
25.3 Building from source . 121

25.3.1 Obtain the source . 121
25.3.2 Build the Type Annotations compiler . 121
25.3.3 Build the Annotation File Utilities . 121
25.3.4 Build the Checker Framework . 122
25.3.5 Build the Checker Framework manual (this document) . 122

25.4 Learning more . 122
25.5 Comparison to other tools . 122
25.6 Credits and changelog . 123

8

Chapter 1

Introduction

The Checker Framework enhances Java’s type system to make it more powerful and useful. This lets software devel-
opers detect and prevent errors in their Java programs.

The Checker Framework comes with checkers for specific types of errors:

1. Nullness checker for null pointer errors (see Chapter 3, page 19)
2. Interning checker for errors in equality testing and interning (see Chapter 4, page 33)
3. IGJ checker for mutation errors (incorrect side effects), based on the IGJ type system (see Chapter 5, page 36)
4. Javari checker for mutation errors (incorrect side effects), based on the Javari type system (see Chapter 6,

page 40)
5. Lock checker for concurrency and lock errors, inspired by the Java Concurrency in Practice (JCIP) annotations

(see Chapter 7, page 42)
6. Fake enum checker to allow type-safe fake enum patterns (see Chapter 8, page 45)
7. Tainting checker for trust and security errors (see Chapter 9, page 48)
8. Linear checker to control aliasing and prevent re-use (see Chapter 10, page 50)
9. Regex checker to prevent use of syntactically invalid regular expressions (see Chapter 11, page 52)

10. Property file checker to ensure that valid keys are used for property files and resource bundles (see Chapter 12,
page 56). Also includes a checker that code is properly internationalized.

11. Signature string checker to ensure that the string representation of a type is properly used, for example in
Class.forName (see Chapter 13, page 59). Also includes a checker that code is properly internationalized.

12. Units checker to ensure operations are performed on correct units of measurement (see Chapter 14, page 61)
13. Basic checker for customized checking without writing any code (see Chapter 15, page 64)
14. Typestate checker to ensure operations are performed on objects that are in the right state, such as only opened

files being read (see Chapter 16, page 67)
15. Third-party checkers that are distributed separately from the Checker Framework (see Chapter 17, page 68)

These checkers are easy to use and are invoked as arguments to javac.
The Checker Framework also enables you to write new checkers of your own; see Chapters 15 and 22.

1.1 How it works: Pluggable types
The Checker Framework supports adding pluggable type systems to the Java language in a backward-compatible
way. Java’s built-in typechecker finds and prevents many errors — but it doesn’t find and prevent enough errors.
The Checker Framework lets you run an additional typechecker as a plug-in to the javac compiler. Your code stays
completely backward-compatible: your code compiles with any Java compiler, it runs on any JVM, and your coworkers
don’t have to use the enhanced type system if they don’t want to. You can check only part of your program. Type
inference tools exist to help you annotate your code.

9

A type system designer uses the Checker Framework to define type qualifiers and their semantics, and a compiler
plug-in (a “checker”) enforces the semantics. Programmers can write the type qualifiers in their programs and use
the plug-in to detect or prevent errors. The Checker Framework is useful both to programmers who wish to write
error-free code, and to type system designers who wish to evaluate and deploy their type systems.

This document uses the terms “checker”, “checker plugin”, “type-checking compiler plugin”, and “annotation
processor” as synonyms.

1.2 Installation
This section describes how to install the binary release of the Checker Framework. The binary release contains
everything that you need, both to run checkers and to write your own checkers. As an alternative, you can build the
latest development version from source (Section 25.3, page 121).

Requirement: You must have JDK 6 or later installed. You can get JDK 6 from Oracle or elsewhere. If you are
using Apple Mac OS X, you can use Apple’s implementation, SoyLatte, or the OpenJDK.

The installation process is simple! (For a set of commands that you can copy and paste into your command shell,
see Section 23.1.)

1. Download the Checker Framework distribution (http://types.cs.washington.edu/checker-framework/current/checkers.zip).
2. Unzip it to create a checker-framework directory.
3. Optionally, update your execution path or create an alias.

When doing pluggable type-checking, you need to use the “Type Annotations compiler”, an updated version of
the OpenJDK javac compiler that understands type annotations. The Type Annotations compiler is backward-
compatible, so using it as your Java compiler should have no negative consequences.
You can do this in four ways. You can use any one of them. However, if you are using the Windows command
shell, you must use the last one. The instructions assume an CHECKERS environment variable that is set to the
.../checker-framework/checkers directory, but you can just use an absolute path if you prefer.

• Add directory $CHECKERS/binary to your path, before any other directory that contains a javac exe-
cutable. Now, whenever you run javac, you will use the updated compiler. If you are using the bash shell,
a way to do this is to add the following to your ˜/.bashrc file:
export PATH=${CHECKERS}/binary:${PATH}

• Whenever this document tells you to run javac, you can instead run $CHECKERS/binary/javac.
• Introduce an alias, and whenever this document tells you to run javac, instead use that alias. Here is the

syntax for your ˜/.bashrc file:
alias javacheck=’$CHECKERS/binary/javac’

• Introduce an alias that invokes java (not javac), but passes an extra -Xbootclasspath/p: and -jar
argument. For example:

Unix
alias javacheck=’java -Xbootclasspath/p:$CHECKERS/binary/jsr308-all.jar -jar $CHECKERS/binary/jsr308-all.jar’

Windows
doskey javacheck=java -Xbootclasspath/p:%CHECKERS%\binary\jsr308-all.jar -jar %CHECKERS%\binary\jsr308-all.jar $*

To ensure that it was installed properly, run javac -version (possibly using the full pathname to javac or the
alias, if you did not add the Type Annotations javac to your path).

The output should be:

javac 1.7.0-jsr308-1.3.1

That’s all there is to it! Now you are ready to start using the checkers.
Section 1.3 walks you through a simple example. More detailed instructions for using a checker appear in Chap-

ter 2.

10

1.3 Example use: detecting a null pointer bug
To run a checker on a source file, just run javac as usual, passing the -processor flag. (You can also use an IDE or
other build tool; see Chapter 23.)

For instance, if you usually run the compiler like this:

javac Foo.java Bar.java

then you will instead use the command line:

javac -processor ProcessorName Foo.java Bar.java

but take note that the javac command must refer to the Type Annotations compiler (see Section 1.2).
If you usually do your coding within an IDE, you will need to configure the IDE. This manual contains instruc-

tions for Ant (Section 23.2), Maven (Section 23.3), IntelliJ IDEA (Section 23.5), Eclipse (Section 23.6), and tIDE
(Section 23.7). Otherwise, see your IDE documentation for details.

1. Let’s consider this very simple Java class. One local variable is annotated as NonNull, indicating that ref must
be a reference to a non-null object. Save the file as GetStarted.java.

import checkers.nullness.quals.*;

public class GetStarted {
void sample() {

@NonNull Object ref = new Object();
}

}

2. Run the nullness checker on the class. Either run this command:

javac -processor checkers.nullness.NullnessChecker GetStarted.java

or compile from within your IDE, which you have customized to use the JSR 308 compiler and to pass the extra
arguments.
The compilation should complete without any errors.

3. Let’s introduce an error now. Modify ref’s assignment to:

@NonNull Object ref = null;

4. Run the nullness checker again, just as before. This run should emit the following error:

GetStarted.java:5: incompatible types.
found : @Nullable <nulltype>
required: @NonNull Object

@NonNull Object ref = null;
ˆ

1 error

The type qualifiers (e.g., @NonNull) are permitted anywhere that would write a type, including generics and
casts; see Section 2.1.
@Interned String intern() { ... } // return value
int compareTo(@NonNull String other) { ... } // parameter
@NonNull List<@Interned String> messages; // non-null list of interned Strings

11

Chapter 2

Using a checker

A pluggable type-checker enables you to detect certain bugs in your code, or to prove that they are not present. The
verification happens at compile time.

Finding bugs, or verifying their absence, with a checker plugin is a two-step process, whose steps are described in
Sections 2.1 and 2.2.

1. The programmer writes annotations, such as @NonNull and @Interned, that specify additional information
about Java types. (Or, the programmer uses an inference tool to automatically insert annotations in his code: see
Sections 3.3.4 and 6.2.2.) It is possible to annotate only part of your code: see Section 20.1.

2. The checker reports whether the program contains any erroneous code — that is, code that is inconsistent with
the annotations.

This chapter is structured as follows:

• Section 2.1: How to write annotations
• Section 2.2: How to run a checker
• Section 2.3: What the checker guarantees
• Section 2.4: Tips about writing annotations

Additional topics that apply to all checkers are covered later in the manual:

• Chapter 19: Advanced type system features
• Chapter 20: Handling warnings and legacy code
• Chapter 21: Annotating libraries
• Chapter 22: How to create a new checker
• Chapter 23: Integration with external tools

2.1 Writing annotations
The syntax of type annotations in Java is specified by JSR 308 [Ern08]. Ordinary Java permits annotations on declara-
tions. JSR 308 permits annotations anywhere that you would write a type, including generics and casts. You can also
write annotations to indicate type qualifiers for array levels and receivers. Here are a few examples:

@Interned String intern() { ... } // return value
int compareTo(@NonNull String other) { ... } // parameter
String toString(@ReadOnly MyClass this) { ... } // receiver ("this" parameter)
@NonNull List<@Interned String> messages; // generics: non-null list of interned Strings
@Interned String @NonNull [] messages; // arrays: non-null array of interned Strings
myDate = (@ReadOnly Date) readonlyObject; // cast

12

You can also write the annotations within comments, as in List</*@NonNull*/ String>. The Type Annotations
compiler, which is distributed with the Checker Framework, will still process the annotations. However, your code will
remain compilable by people who are not using the Type Annotations compiler. For more details, see Section 20.3.1.

2.1.1 Distributing your annotated project
If your code contains annotations, then your code has a dependency on the annotation declarations. People who want
to compile or run your code may need declarations of the annotations on their classpath.

• To perform pluggable type-checking, all of the Checker Framework (which also contains the annotation decla-
rations) is needed.

• To compile the code:

– If you wrote annotations in comments (see Section 20.3.1) and/or used implicit import statements (see
Section 20.3.2), then the code can be compiled by any Java compiler, without needing declarations of the
annotations.

– Otherwise, compiling the code requires a declaration of the annotations. These appear in the full Checker
Framework. Additionally, the Checker Framework distribution .zip file contains a small jar file, checkers-quals.jar,
that only contains the definitions of the distributed qualifiers, without any support for type-checking.

• To run the code:

– If you compiled the code without using the annotation declarations, then no annotation declarations are
needed.

– If you compiled the code using the annotation declarations, then users may need to have the annotation
declarations on their classpath.

A simple rule of thumb is as follows. When distributing your source code, you may wish to include either the
Checker Framework jar file or the checkers-quals.jar file. When distributing compiled binaries, you may wish to
compile them without using the annotations, or include the contents of checkers-quals.jar in your distribution.

2.2 Running a checker
To run a checker plugin, run the compiler javac as usual, but pass the -processor plugin class command-line
option. (You can run a checker from within your favorite IDE or build system. See Chapter 23 for details about Ant
(Section 23.2), Maven (Section 23.3), IntelliJ IDEA (Section 23.5), Eclipse (Section 23.6), and tIDE (Section 23.7),
and about customizing other IDEs and build tools.) Remember that you must be using the Type Annotations version
of javac, which you already installed (see Section 1.2).

Two concrete examples (using the Nullness checker) are:
javac -processor checkers.nullness.NullnessChecker MyFile.java
javac -processor checkers.nullness.NullnessChecker -Xbootclasspath/p:checkers/jdk/jdk.jar MyFile.java

For a discussion of the -Xbootclasspath/p argument, see Section 21.3.
The checker is run only on any Java file that javac compiles. This includes all Java files specified on the command

line (or created by another annotation processor). It may also include other of your Java files (but not if a more recent
.class file exists). Even when the checker does not analyze a class (say, the class was already compiled, or source
code is not available), it does check the uses of those classes in the source code being compiled.

You can always compile the code without the -processor command-line option, but in that case no checking of
the type annotations is performed. The annotations are still written to the resulting .class files, however.

2.2.1 Summary of command-line options
You can pass command-line arguments to a checker via javac’s standard -A option (“A” stands for “annotation”). All
of the distributed checkers support the following command-line options:

13

• -AskipUses Suppress all errors and warnings at all uses of a given class; see Section 20.2
• -AskipDefs Suppress all errors and warnings within the definition of a given class; see Section 20.2
• -Astubs List of stub files or directories; see Section 21.2.2
• -Alint Enable or disable optional checks; see Section 20.2.4
• -Awarns Treat checker errors as warnings. If you use this, you may wish to also supply -Xmaxwarns 10000,

because by default javac prints at most 100 warnings.
• -Afilenames, -Anomsgtext, -Ashowchecks, -AprintErrorStack, -AprintAllQualifiers, -Aignorejdkastub

Aids for testing or debugging a checker; see Section 22.8

Some checkers support additional options, such as -Aquals for the Basic Checker to check; see Chapter 15.
Here are some standard javac command-line options that you may find useful. Many of them contain the word

“processor”, because in javac jargon, a checker is a type of “annotation processor”.

• -processor Names the checker to be run; see Section 2.2
• -processorpath Indicates where to search for the checker; should also contain any qualifiers used by the Basic

Checker; see Section 15.2
• -proc:{none,only} Controls whether checking happens; -proc:none means to skip checking; -proc:only

means to do only checking, without any subsequent compilation; see Section 2.2.2
• -Xbootclasspath/p: Indicates where to find the annotated JDK classes; see Section 21.3
• -implicit:class Suppresses warnings about implicitly compiled files (not named on the command line); see

Section 23.2
• -XDTA:spacesincomments parse annotation comments even when they contain spaces; applicable only to the

Type Annotations compiler; see Section 20.3.1
• -J Supply an argument to the JVM that is running javac; example: -J-Djsr308 imports=checkers.nullness.quals.*;

see Section 20.3.2

2.2.2 Checker auto-discovery
“Auto-discovery” makes the javac compiler always run a checker plugin, even if you do not explicitly pass the
-processor command-line option. This can make your command line shorter, and ensures that your code is checked
even if you forget the command-line option.

To enable auto-discovery, place a configuration file named META-INF/services/javax.annotation.processing.Processor
in your classpath. The file contains the names of the checker plugins to be used, listed one per line. For instance, to
run the Nullness and the Interning checkers automatically, the configuration file should contain:
checkers.nullness.NullnessChecker
checkers.interning.InterningChecker

You can disable this auto-discovery mechanism by passing the -proc:none command-line option to javac, which
disables all annotation processing including all pluggable type-checking.

2.3 What the checker guarantees
A checker can guarantee that a particular property holds throughout the code. For example, the Nullness checker
(Chapter 3) guarantees that every expression whose type is a @NonNull type never evaluates to null. The Interning
checker (Chapter 4) guarantees that every expression whose type is an @Interned type evaluates to an interned value.
The checker makes its guarantee by examining every part of your program and verifying that no part of the program
violates the guarantee.

There are some limitations to the guarantee.

• A compiler plugin can check only those parts of your program that you run it on. If you compile some parts
of your program without running the checker, then there is no guarantee that the entire program satisfies the
property being checked. Some examples of un-checked code are:

14

– Code compiled without the -processor switch, including any external library supplied as a .class file.
– Code compiled with the -AskipUses or -AskipDefs properties (see Section 20.2).
– Suppression of warnings, such as via the @SuppressWarnings annotation (see Section 20.2).
– Native methods (because the implementation is not Java code, it cannot be checked).

In each of these cases, any use of the code is checked — for example, a call to a native method must be
compatible with any annotations on the native method’s signature. However, the annotations on the un-checked
code are trusted; there is no verification that the implementation of the native method satisfies the annotations.

• Reflection can violate the Java type system, and the checkers are not sophisticated enough to reason about the
possible effects of reflection. Similarly, deserialization and cloning can create objects that could not result from
normal constructor calls, and that therefore may violate the property being checked.

• Your code should pass the Java compiler without errors or warnings. In particular, your code should use generic
types, with no uses of raw types. Misuse of generics, including casting away generic types, can cause other
errors to be missed.

• The Checker Framework does not yet support annotations on intersection types (see JLS §4.9). As a result,
checkers cannot provide guarantees about intersection types.

• Specific checkers may have other limitations; see their documentation for details.

A checker can be useful in finding bugs or in verifying part of a program, even if the checker is unable to verify
the correctness of an entire program.

In order to avoid a flood of unhelpful warnings, many of the checkers avoid issuing the same warning multiple
times. For example, in this code:

@Nullable Object x = ...;
x.toString(); // warning
x.toString(); // no warning

In this case, the second call to toString cannot possibly throw a null pointer warning — x is non-null if control flows
to the second statement. In other cases, a checker avoids issuing later warnings with the same cause even when later
code in a method might also fail. This does not affect the soundness guarantee, but a user may need to examine more
warnings after fixing the first ones identified. (More often, at least in our experience to date, a single fix corrects all
the warnings.)

If you find that a checker fails to issue a warning that it should, then please report a bug (see Section 25.2).

2.4 Tips about writing annotations

2.4.1 How to get started annotating legacy code
Annotating an entire existing program may seem like a daunting task. But, if you approach it systematically and do a
little bit at a time, you will find that it is manageable.

You should start with a property that matters to you, to achieve the best benefits. It is easiest to add annotations if
you know the code or the code contains documentation; you will find that you spend most of your time understanding
the code, and very little time actually writing annotations or running the checker.

Don’t get discouraged if you see many type-checker warnings at first. Often, adding just a few missing annotations
will eliminate many warnings, and you’ll be surprised how fast the process goes overall.

It is best to annotate one package at a time, and to annotate the entire package so that you don’t forget any classes
(failing to annotate a class can lead to unexpected results). Start as close to the leaves of the call tree as possible,
such as with libraries — that is, start with methods/classes/packages that have few dependences on other code or,
equivalently, start with code that a lot of your other code depends on. The reason for this is that it is easiest to annotate
a class if the code it calls has already been annotated.

For each class, read its Javadoc. For instance, if you are adding annotations for the Nullness Checker (Section 3),
then you can search the documentation for “null” and then add @Nullable anywhere appropriate. Do not annotate the
method bodies yet — first, get the signatures and fields annotated. The only reason to even read the method bodies

15

yet is to determine signature annotations for undocumented methods — for example, if the method returns null, you
know its return type should be annotated @Nullable, and a parameter that is compared against null may need to be
annotated @Nullable. If you are only annotating signatures (say, for a library you do not maintain and do not wish to
check), you are now done.

If you wish to check the implementation, then after the signatures are annotated, run the checker. Then, add method
body annotations (usually, few are necessary), fix bugs in code, and add annotations to signatures where necessary. If
signature annotations are necessary, then you may want to fix the documentation that did not indicate the property; but
this isn’t strictly necessary, since the annotations that you wrote provide that documentation.

You may wonder about the effect of adding a given annotation — how many other annotations it will require,
or whether it conflicts with other code. Suppose you have added an annotation to a method parameter. You could
manually examine all callees. A better way can be to save the checker output before adding the annotation, and to
compare it to the checker output after adding the annotation. This helps you to focus on the specific consequences of
your change.

Also see Chapter 20, which tells you what to do when you are unable to eliminate checker warnings.

2.4.2 Do not annotate local variables unless necessary
The checker infers annotations for local variables (see Section 19.1.2). Usually, you only need to annotate fields and
method signatures. After doing those, you can add annotations inside method bodies if the checker is unable to infer
the correct annotation, if you need to suppress a warning (see Section 20.2), etc.

2.4.3 Annotations indicate normal behavior
You should use annotations to indicate normal behavior. The annotations indicate all the values that you want to flow
to reference — not every value that might possibly flow there if your program has a bug.

Many methods are guaranteed to throw an exception if they are passed null as an argument. Examples include

java.lang.Double.valueOf(String)
java.lang.String.contains(CharSequence)
org.junit.Assert.assertNotNull(Object)
com.google.common.base.Preconditions.checkNotNull(Object)

@Nullable (see Section 3.2) might seem like a reasonable annotation for the parameter, for two reasons. First,
null is a legal argument with a well-defined semantics: throw an exception. Second, @Nullable describes a possible
program execution: it might be possible for null to flow there, if your program has a bug.

However, it is never useful for a programmer to pass null. It is the programmer’s intention that null never flows
there. If null does flow there, the program will not continue normally.

Therefore, you should mark such parameters as @NonNull, indicating the intended use of the method. When you
use the @NonNull annotation, the checker is able to issue compile-time warnings about possible run-time exceptions,
which is its purpose. Marking the parameter as @Nullable would suppress such warnings, which is undesirable.

2.4.4 Subclasses must respect superclass annotations
An annotation indicates a guarantee that a client can depend upon. A subclass is not permitted to weaken the contract;
for example, if a method accepts null as an argument, then every overriding definition must also accept null. A
subclass is permitted to strengthen the contract; for example, if a method does not accept null as an argument, then
an overriding definition is permitted to accept null.

As a bad example, consider an erroneous @Nullable annotation at line 141 of com/google/common/collect/Multiset.java,
version r78:

101 public interface Multiset<E> extends Collection<E> {
...

16

122 /**
123 * Adds a number of occurrences of an element to this multiset.
...
129 * @param element the element to add occurrences of; may be {@code null} only
130 * if explicitly allowed by the implementation
...
137 * @throws NullPointerException if {@code element} is null and this
138 * implementation does not permit null elements. Note that if {@code
139 * occurrences} is zero, the implementation may opt to return normally.
140 */
141 int add(@Nullable E element, int occurrences);

There exist implementations of Multiset that permit null elements, and implementations of Multiset that do not
permit null elements. A client with a variable Multiset ms does not know which variety of Multiset ms refers to.
However, the @Nullable annotation promises that ms.add(null, 1) is permissible. (Recall from Section 2.4.3 that
annotations should indicate normal behavior.)

If parameter element on line 141 were to be annotated, the correct annotation would be @NonNull. Suppose a
client has a reference to same Multiset ms. The only way the client can be sure not to throw an exception is to pass only
non-null elements to ms.add(). A particular class that implements Multiset could declare add to take a @Nullable
parameter. That still satisfies the original contract. It strengthens the contract by promising even more: a client with
such a reference can pass any non-null value to add(), and may also pass null.

However, the best annotation for line 141 is no annotation at all. The reason is that each implementation of the
Multiset interface should specify its own nullness properties when it specifies the type parameter for Multiset. For
example, two clients could be written as

class MyNullPermittingMultiset implements Multiset<@Nullable Object> { ... }
class MyNullProhibitingMultiset implements Multiset<@NonNull Object> { ... }

or, more generally, as

class MyNullPermittingMultiset<E extends @Nullable Object> implements Multiset<E> { ... }
class MyNullProhibitingMultiset<E extends @NonNull Object> implements Multiset<E> { ... }

Then, the specification is more informative, and the Checker Framework is able to do more precise checking, than
if line 141 has an annotation.

It is a pleasant feature of the Checker Framework that in many cases, no annotations at all are needed on type
parameters such as E in MultiSet.

2.4.5 Annotations on constructor invocations
In the checkers distributed with the Checker Framework, an annotation on a constructor invocation is equivalent to a
cast on a constructor result. That is, the following two expressions have identical semantics: one is just shorthand for
the other.

new @ReadOnly Date()
(@ReadOnly Date) new Date()

However, you should rarely have to use this. The Checker Framework will determine the qualifier on the result,
based on the “return value” annotation on the constructor definition. The “return value” annotation appears before the
constructor name, for example:

class MyClass {
@ReadOnly MyClass() { ... }

}

17

In general, you should only use an annotation on a constructor invocation when you know that the cast is guar-
anteed to succeed. An example from the IGJ checker (Chapter 5) is new @Immutable MyClass() or new @Mutable
MyClass(), where you know that every other reference to the class is annotated @ReadOnly.

2.4.6 When to use (and not use) type qualifiers
For some programming tasks, you can use either a Java subclass or a type qualifier. For instance, suppose that your
code currently uses String to represent an address. You could create a new Address class and refactor your code
to use it, or you could create a @Address annotation and apply it to some uses of String in your code. If both of
these are truly possible, then it is probably more foolproof to use the Java class. We do not encourage you to use type
qualifiers as a poor substitute for classes. However, sometimes type qualifiers are a better choice.

Using a new class may make your code incompatible with existing libraries or clients. Brian Goetz expands on
this issues in an article on the pseudo-typedef antipattern [Goe06]. Even if compatibility is not a concern, a code
change may introduce bugs, whereas adding annotations does not change the run-time behavior. It is possible to add
annotations to existing code, including code you do not maintain or cannot change. It is possible to annotate primitive
types without converting them to wrappers, which would make the code both uglier and slower.

Type qualifiers can be applied to any type, including final classes that cannot be subclassed.
Type qualifiers permit you to remove operations, with a compile-time guarantee. An example is mutating methods

that are forbidden by immutable types (see Chapters 5 and 6). More generally, type qualifiers permit creating a new
supertype, not just a subtype, of an existing Java type.

A final reason is efficiency. Type qualifiers can be more efficient, since there is no run-time representation such
as a wrapper or a separate class, nor introduction of dynamic dispatch for methods that could otherwise be statically
dispatched.

2.4.7 What to do if a checker issues a warning about your code
When you first run a type-checker on your code, it is likely to issue warnings or errors. For each warning, try to
understand why the checker issues it. (For example, if you are using the Nullness checker (Chapter 3, page 19), try to
understand why it cannot prove that no null pointer exception ever occurs.) The reason will sometimes be an actually
possible null dereference, sometimes be a weakness of the annotations, and sometimes be a weakness of the checker.
You will need to examine your code, and possibly write test cases, to understand the reason.

If there is an actual possible null dereference, then fix your code to prevent that crash.
If there is a weakness in the annotations, then improve the annotations. For example, continuing the Nullness

Checker example, if a particular variable is annotated as @Nullable but it actually never contains null at run time,
then change the annotation to @NonNull. The weakness might be in the annotations in your code, or in the annotations
in a library that your code calls. Another possible problem is that a library is unannotated (see Chapter 21, page 89).

If there is a weakness in the checker, then your code is safe — it never suffers the specific run-time error —
but the checker cannot prove this fact. This is most often because the checker is not omniscient, and some tricky
coding paradigms are beyond its analysis capabilities; in this case, you should suppress the warning (see Chapter 20.2,
page 84). In other cases, the problem is a bug in the checker; in this case, please report the bug (see Chapter 25.2,
page 120).

18

Chapter 3

Nullness checker

If the Nullness checker issues no warnings for a given program, then running that program will never throw a null
pointer exception. This guarantee enables a programmer to prevent errors from occurring when a program is run. See
Section 3.1 for more details about the guarantee and what is checked.

The most important annotations supported by the Nullness Checker are @NonNull and @Nullable. @NonNull is
rarely written, because it is the default. All of the annotations are explained in Section 3.2.

To run the Nullness Checker, supply the -processor checkers.nullness.NullnessChecker command-line
option to javac. For examples, see Section 3.8.

3.1 What the Nullness checker checks
The checker issues a warning in these cases:

1. When an expression of non-@NonNull type is dereferenced, because it might cause a null pointer exception.
Dereferences occur not only when a field is accessed, but when an array is indexed, an exception is thrown, a
lock is taken in a synchronized block, and more. For a complete description of all checks performed by the
Nullness checker, see the Javadoc for NullnessVisitor.

2. When an expression of @NonNull type might become null, because it is a misuse of the type: the null value
could flow to a dereference that the checker does not warn about.
As a special case of an of @NonNull type becoming null, the checker also warns whenever a field of @NonNull
type is not initialized in a constructor. Also see the discussion of the -Alint=uninitialized command-line
option below.

This example illustrates the programming errors that the checker detects:

@Nullable Object obj; // might be null
@NonNull Object nnobj; // never null
...
obj.toString() // checker warning: dereference might cause null pointer exception
nnobj = obj; // checker warning: nnobj may become null
if (nnobj == null) // checker warning: redundant test

Parameter passing and return values are checked analogously to assignments.
The Nullness Checker also checks the correctness, and correct use, of rawness annotations for checking initializa-

tion (see Section 3.5) and of map key annotations (see Section 3.6).
The checker performs additional checks if certain -Alint command-line options are provided. (See Section 20.2.4

for more details about the -Alint command-line option.)

19

1. If you supply the -Alint=nulltest command-line option, then the checker warns when a null check is per-
formed against a value that is guaranteed to be non-null, as in ("m" == null). Such a check is unnecessary
and might indicate a programmer error or misunderstanding. The lint option is disabled by default because
sometimes such checks are part of ordinary defensive programming.

2. If you supply the -Alint=uninitialized command-line option, then the checker warns if a constructor fails
to initialize any field, including @Nullable types and primitive types. Such a warning is unrelated to whether
your code might throw a null pointer exception. However, you might want to enable this warning because it
is better code style to supply an explicit initializer, even if there is a default value such as 0 or false. This
command-line option does not affect the Nullness Checker’s tests that fields of @NonNull type are initialized —
such initialization is mandatory, not optional.

3.2 Nullness annotations
The Nullness checker uses three separate type hierarchies: one for nullness, one for rawness (Section 3.5), and one
for map keys (Section 3.6) The Nullness checker has four varieties of annotations: nullness type qualifiers, nullness
method annotations, rawness type qualifiers, and map key type qualifiers.

3.2.1 Nullness qualifiers
The nullness hierarchy contains these qualifiers:

@Nullable indicates a type that includes the null value. For example, the type Boolean is nullable: a variable of
type Boolean always has one of the values TRUE, FALSE, or null.

@NonNull indicates a type that does not include the null value. The type boolean is non-null; a variable of type
boolean always has one of the values true or false. The type @NonNull Boolean is also non-null: a variable
of type @NonNull Boolean always has one of the values TRUE or FALSE — never null. Dereferencing an
expression of non-null type can never cause a null pointer exception.
The @NonNull annotation is rarely written in a program, because it is the default (see Section 3.3.2).

@PolyNull indicates qualifier polymorphism. For a description of @PolyNull, see Section 18.2.
@LazyNonNull indicates a reference that may be null, but if it ever becomes non-null, then it never becomes

null again. This is appropriate for lazily-initialized fields, among other uses. When the variable is read, its type
is treated as @Nullable, but when the variable is assigned, its type is treated as @NonNull.
Because the Nullness checker works intraprocedurally (it analyzes one method at a time), when a LazyNonNull
field is first read within a method, the field cannot be assumed to be non-null. The benefit of LazyNonNull over
Nullable is its different interaction with flow-sensitive type qualifier refinement (Section 19.1.2). After a check
of a LazyNonNull field, all subsequent accesses within that method can be assumed to be NonNull, even after
arbitrary external method calls that have access to the given field.

Figure 3.1 shows part of the type hierarchy for the Nullness type system. (The annotations exist only at compile
time; at run time, Java has no multiple inheritance.)

3.2.2 Nullness method annotations
The Nullness checker supports several annotations that specify method behavior. These are declaration annotations,
not type annotations: they apply to the method itself rather than to some particular type.

@NonNullOnEntry indicates a method precondition: The annotated method expects the specified variables (typi-
cally field references) to be non-null when the method is invoked.

@AssertNonNullAfter
@AssertNonNullIfTrue

20

Figure 3.1: Partial type hierarchy for the Nullness type system. Java’s Object is expressed as @Nullable Object.
Programmers can omit most type qualifiers, because the default annotation (Section 3.3.2) is usually correct. Also
shown is the type hierarchy for rawness (Section 3.5), which indicates whether initialization has completed. The two
type hierarchies are independent but inter-related. The Nullness Checker verifies both of these, as well as another type
hierarchy for map keys (Section 3.2.4).

@AssertNonNullIfFalse indicates a method postcondition. With @AssertNonNullAfter, the given expres-
sions are non-null after the method returns; this is useful for a method that initializes a field, for example. With
@AssertNonNullIfTrue and @AssertNonNullIfFalse, if the annotated method returns the given boolean
value (true or false), then the given expressions are non-null. See Section 3.3.3 and the Javadoc for examples of
their use.

@Pure indicates that the method has no (visible) side effects. Furthermore, if the method is called multiple times
with the same arguments, then it returns the same result.
For example, consider the following declaration and uses:

@Nullable Object getField(Object arg) { ... }

...
if (x.getField(y) != null) {

x.getField(y).toString();
}

Ordinarily, the Nullness Checker would issue a warning regarding the toString() call, because the receiver
x.getField(y) might be null, according to the @Nullable annotation in the declaration of getField. If you
change the declaration of getField to

@Pure @Nullable Object getField(Object arg) { ... }

then the Nullness Checker issues no warnings, because it can reason that the two invocations x.getField(y)
have the same value, and therefore that x.getField(y) is non-null within the then branch of the if statement.
If a method is pure, then it would be legal to annotate its receiver and every parameter as @ReadOnly, in the
IGJ (Chapter 5) or Javari (Chapter 6) type systems. The reverse is not true, both because the method might
side-effect a global variable and because the method might not be deterministic.

@AssertParametersNonNull is used for suppressing warnings, in very rare cases. See the Javadoc for details.

3.2.3 Rawness qualifiers
The Nullness Checker supports rawness annotations that indicate whether an object is fully initialized — that is,
whether its fields have all been assigned.

@Raw
@NonRaw
@PolyRaw

Use of these annotations can help you to type-check more code. Figure 3.1 shows its type hierarchy. For details,
see Section 3.5.

21

3.2.4 Map key qualifiers
The Nullness Checker supports a map key annotation, @KeyFor that indicates whether a value is a key for a given map
— that is, whether map.containsKey(value) would evaluate to true.

@KeyFor

Use of this annotation can help you to type-check more code. For details, see Section 3.6.

3.3 Writing nullness annotations

3.3.1 Implicit qualifiers
As described in Section 19.1, the Nullness checker adds implicit qualifiers, reducing the number of annotations that
must appear in your code. For example, enum types are implicitly non-null, so you never need to write @NonNull
MyEnumType.

For a complete description of all implicit nullness qualifiers, see the Javadoc for NullnessAnnotatedTypeFactory.

3.3.2 Default annotation
Unannotated references are treated as if they had a default annotation, using the NNEL (non-null except locals) rule
described below. A user may choose a different rule for defaults using the @DefaultQualifier annotation; see
Section 19.1.1.

Here are three possible default rules you may wish to use. Other rules are possible but are not as useful.

• @Nullable: Unannotated types are regarded as possibly-null, or nullable. This default is backward-
compatible with Java, which permits any reference to be null. You can activate this default by writing a
@DefaultQualifier("Nullable") annotation on a class or method declaration.

• @NonNull: Unannotated types are treated as non-null. You can activate this default via the
@DefaultQualifier("NonNull") annotation.

• Non-null except locals (NNEL): Unannotated types are treated as @NonNull, except that the unannotated
raw type of a local variable is treated as @Nullable. (Any generic arguments to a local variable still
default to @NonNull.) This is the standard behavior. You can explicitly activate this default via the
@DefaultQualifier(value="NonNull", locations={DefaultLocation.ALL EXCEPT LOCALS}) annota-
tion.
The NNEL default leads to the smallest number of explicit annotations in your code [PAC+08]. It is what we
recommend. If you do not explicitly specify a different default, then NNEL is the default.

3.3.3 Conditional nullness
The Nullness Checker supports a form of conditional nullness types, via the @AssertNonNullIfTrue and @AssertNonNullIfFalse
method annotations. The annotation on a method declares that some expressions are non-null, if the method returns
true (false, respectively).

Consider java.io.File. Method File.listFiles() may return null, but is specified to return a non-null value
if File.isDirectory() is true. The same holds for method File.list(). You could declare this relationship in
the following way (this particular example is already done for you in the annotated JDK that comes with the Checker
Framework):

class File {

@AssertNonNullIfTrue({"list()", "listFiles()"})
public boolean isDirectory() { ... }

22

public File @Nullable [] listFiles();
}

A client that checks that a File reference is indeed that of a directory, can then de-reference File.isDirectory
safely without any nullness check.

static void analyze(File file) {
if (file.isDirectory()) {

for (File child : file.listFiles()) { // no possible null dereference
analyze(child);

}
} else {

... analyze file ...
}

}

The argument to @AssertNonNullIfTrue and @AssertNonNullIfFalse is a Java expression, including method
calls (as shown above), method formal parameters, fields, etc.; for details, see Section 19.2. More examples of the use
of these annotations appear in the Javadoc for @AssertNonNullIfTrue and @AssertNonNullIfFalse.

3.3.4 Inference of @NonNull and @Nullable annotations
It can be tedious to write annotations in your code. Tools exist that can automatically infer annotations and insert them
in your source code. (This is different than type qualifier refinement for local variables (Section 19.1.2), which infers
a more specific type for local variables and uses them during type-checking but does not insert them in your source
code. Type qualifier refinement is always enabled, no matter how annotations on signatures got inserted in your source
code.)

Your choice of tool depends on what default annotation (see Section 3.3.2) your code uses. You only need one of
these tools.

• Inference of @Nullable: If your code uses the standard NNEL (non-null-except-locals) default or the NonNull
default, then use the AnnotateNullable tool of the Daikon invariant detector.

• Inference of @NonNull: If your code uses the Nullable default, use one of these tools:

– Julia analyzer,
– Nit: Nullability Inference Tool,
– Non-null checker and inferencer of the JastAdd Extensible Compiler.

3.4 Suppressing nullness warnings
The Checker Framework supplies several ways to suppress warnings, most notably the @SuppressWarnings("nullness")
annotation (see Section 20.2). An example use is

// might return null
@Nullable Object getObject() { ... }

void myMethod() {
// The programmer knows that this partucular call never returns null.
@SuppressWarnings("nullness")
@NonNull Object o2 = getObject();

The Nullness Checker supports an additional warning suppression key, nullness:generic.argument. Use of
@SuppressWarnings("nullness:generic.argument") causes the Nullness Checker to suppress warnings related

23

to misuse of generic type arguments. One use for this key is when a class is declared to take only @NonNull type
arguments, but you want to instantiate the class with a @Nullable type argument, as in List<@Nullable Object>.
For a more complete explanation of this example, see Section 24.18, page 116.

The Nullness Checker also permits you to use assertions or method calls to suppress warnings; see below.

3.4.1 Suppressing warnings with assertions and method calls
Occasionally, it is inconvenient or verbose to use the @SuppressWarnings annotation. For example, Java does not
permit annotations such as @SuppressWarnings to appear on statements.

For situations when the @SuppressWarnings annotation is inconvenient, the Nullness Checker provides three ad-
ditional ways to suppress warnings: via an assert statement, the castNonNullmethod, and the @AssertParametersNonNull
annotation. These are appropriate when the Nullness Checker issues a warning, but the programmer knows for sure
that the warning is a false positive, because the value cannot ever be null at run time.

1. Use an assertion. If the string “nullness” appears in the message body, then the Nullness Checker treats the
assertion as suppressing a warning and assumes that the assertion always succeeds. For example, the checker
assumes that no null pointer exception can occur in code such as

assert x != null : "@SuppressWarnings(nullness)";
... x.f ...

If the string “nullness” does not appear in the assertion message, then the Nullness Checker treats the assertion
as being used for defensive programming, and it warns if the method might throw a nullness-related exception.
A downside of putting the string in the assertion message is that if the assertion ever fails, then a user might see
the string and be confused. But the string should only be used if the programmer has reasoned that the assertion
can never fail.

2. Use the NullnessUtils.castNonNull method.
The Nullness Checker considers both the return value, and also the argument, to be non-null after the method
call. Therefore, the castNonNull method can be used either as a cast expression or as a statement. The Nullness
Checker issues no warnings in any of the following code:

// one way to use as a cast:
@NonNull String s = castNonNull(possiblyNull1);

// another way to use as a cast:
castNonNull(possiblyNull2).toString();

// one way to use as a statement:
castNonNull(possiblyNull3);
possiblyNull3.toString();‘

The method also throws AssertionError if Java assertions are enabled and the argument is null. However, it
is not intended for general defensive programming; see Section 3.4.2.
A potential disadvantage of using the castNonNull method is that your code becomes dependent on the Checker
Framework at run time as well as at compile time. You can avoid this by copying the implementation of
castNonNull into your own code, and possibly renaming it if you do not like the name. Be sure to retain the
documentation that indicates that your copy is intended for use only to suppress warnings and not for defensive
programming. See Section 3.4.2 for an explanation of the distinction.

3. Use the @AssertParametersNonNull annotation. It is used on castNonNull, and may be used on other meth-
ods with the same semantics; it should probably never be used in any other situation.

3.4.2 Suppressing warnings on nullness-checking routines and defensive programming
One way to suppress warnings in the Nullness Checker is to use method castNonNull. (Section 3.4.1 gives other
techniques.)

24

This section explains why the Nullness Checker introduces a new method rather than re-using the assert statement
(as in assert x != null) or an existing method such as:

org.junit.Assert.assertNotNull(Object)
com.google.common.base.Preconditions.checkNotNull(Object)

In each case, the assertion or method indicates an application invariant — a fact that should always be true. There
are two distinct reasons a programmer may have written the invariant, depending on whether the programmer is 100%
sure that the application invariant holds.

1. A programmer might write it as defensive programming. This causes the program to throw an exception,
which is useful for debugging because it gives an earlier run-time indication of the error. A programmer would
use an assertion in this way if the programmer is not 100% sure that the application invariant holds.

2. A programmer might write it to suppress false positive warning messages from a checker. A programmer
would use an assertion this way if the programmer is 100% sure that the application invariant holds, and the
reference can never be null at run time.

With assertions and existing methods like JUnit’s assertNotNull, there is no way of knowing the programmer’s
intent in using the method. Different programmers or codebases may use them in different ways. Guessing wrong
would make the Nullness Checker less useful, because it would either miss real errors or issue warnings where there
is no real error. Also, different checking tools issue different false warnings that need to be suppressed, so warning
suppression needs to be customized for each tool rather than inferred from general-purpose code.

As an example of using assertions for defensive programming, some style guides suggest using assertions or
method calls to indicate nullness. A programmer might write

String s = ...
assert s != null; // or: assertNotNull(s); or: checkNotNull(s);
... Double.valueOf(s) ...

A programming error might cause s to be null, in which case the code would throw an exception at run time.
If the assertion caused the Nullness Checker to assume that s is not null, then the Nullness Checker would issue
no warning for this code. That would be undesirable, because the whole purpose of the Nullness Checker is to
give a compile-time warning about possible run-time exceptions. Furthermore, if the programmer uses assertions for
defensive programming systematically throughout the codebase, then many useful Nullness Checker warnings would
be suppressed.

Because it is important to distinguish between the two uses of assertions (defensive programming vs. suppressing
warnings), the Checker Framework introduces the NullnessUtils.castNonNull method. Unlike existing assertions
and methods, castNonNull is intended only to suppress false warnings that are issued by the Nullness Checker, not
for defensive programming.

If you know that a particular codebase uses a nullness-checking method not for defensive programming but to
indicate facts that are guaranteed to be true (that is, these assertions will never fail at run time), then you can cause
the Nullness Checker to suppress warnings related to them, just as it does for castNonNull. Annotate its definition
just as NullnessUtils.castNonNull is annotated (see the source code for the Checker Framework). Also, be sure
to document the intention in the method’s Javadoc, so that programmers do not accidentally misuse it for defensive
programming.

If you are annotating a codebase that already contains precondition checks, such as:

public String get(String key, String def) {
checkNotNull(key, "key"); //NOI18N
...

}

then you should mark the appropriate parameter as @NonNull (which is the default). This will prevent the checker
from issuing a warning about the checkNotNull call.

25

3.5 @Raw annotation for partially-initialized objects
An object is raw from the time that its constructor starts until its constructor finishes. This is relevant to the Nullness
Checker because while the constructor is executing — that is, before initialization completes — a @NonNull field may
be observed to be null, until that field is set. In particular, the Nullness Checker issues a warning for code like this:

public class MyClass {
private @NonNull Object f;
public MyClass(int x, int y) {

// Error because constructor contains no assignment to this.f.
// By the time the constructor exits, f must be initialized to a non-null value.

}
public MyClass(int x) {

// Error because this.f is accessed before f is initialized.
// At the beginning of the constructor’s execution, accessing this.f
// yields null, even though field f has a non-null type.
this.f.toString();

}
public MyClass(int x, int y, int z) {

m();
}
public void m() {

// Error because this.f is accessed before f is initialized,
// even though the access is not in a constructor.
// When m is called from the constructor, accessing f yields null,
// even though field f has a non-null type.
this.f.toString();

}

In general, code can depend that field f is not null, because the field is declared with a @NonNull type. However, this
guarantee does not hold for a partially-initialized object.

The Nullness Checker uses the @Raw annotation to indicate that an object is not yet fully initialized — that is, not
all its @NonNull fields have been assigned. Rawness is mostly relevant within the constructor, or for references to this
that escape the constructor (say, by being stored in a field or passed to a method before initialization is complete). Use
of rawness annotations in rare in most code.

3.5.1 Rawness qualifiers
The rawness hierarchy is shown in Figure 3.1. The rawness hierarchy contains these qualifiers:

@Raw indicates a type that may contain a partially-initialized object. In a partially-initialized object, fields that are
annotated as @NonNull may be null because the field has not yet been assigned. Within the constructor, this has
@Raw type until all the @NonNull fields have been assigned. A partially-initialized object (this in a constructor)
may be passed to a helper method or stored in a variable; if so, the method receiver, or the field, would have to
be annotated as @Raw.

@NonRaw indicates a type that contains a fully-initialized object. NonRaw is the default, so there is little need for a
programmer to write this explicitly.

@PolyRaw indicates qualifier polymorphism over rawness (see Section 18.2).

If a reference has @Raw type, then all of its @NonNull fields are treated as @LazyNonNull: when read, they are
treated as being @Nullable, but when written, they are treated as being @NonNull.

The rawness hierarchy is orthogonal to the nullness hierarchy. It is legal for a reference to be @NonNull @Raw,
@Nullable @Raw, @NonNull @NonRaw, or @Nullable @NonRaw. The nullness hierarchy tells you about the reference

26

Declarations Expression Expression’s nullness type, or checker error
class C {
@NonNull Object f;
@Nullable Object g;
...

}
@NonNull @NonRaw C a; a @NonNull

a.f @NonNull
a.g @Nullable

@NonNull @Raw C b; b @NonNull
b.f @LazyNonNull
b.g @Nullable

@Nullable @NonRaw C c; c @Nullable
c.f error: deref of nullable
c.g error: deref of nullable

@Nullable @Raw C d; d @Nullable
d.f error: deref of nullable
d.g error: deref of nullable

Figure 3.2: Examples of the interaction between nullness and rawness. Declarations are shown at the left for reference,
but the focus of the table is the expressions and their nullness type or error.

itself: might the reference be null? The rawness hierarchy tells you about the @NonNull fields in the referred-to object:
might those fields be temporarily null in contravention of their type annotation? Figure 3.2 contains some examples.

3.5.2 How an object becomes non-raw
Within the constructor, this starts out with @Raw type. As soon as all of the @NonNull fields have been initialized,
then this is treated as non-raw.

The Nullness checker issues an error if the constructor fails to initialize any @NonNull field. This ensures that the
object is in a legal (non-raw) state by the time that the constructor exits. This is different than Java’s test for definite
assignment (see JLS ch.16), which does not apply to fields (except blank final ones, defined in JLS §4.12.4) because
fields have a default value of null.

All @NonNull fields must either have a default in the field declaration, or be assigned in the constructor or in a
helper method that the constructor calls. If your code initializes (some) fields in a helper method, you will need to anno-
tate the helper method with an annotation such as @AssertNonNullAfter({"field1", "field2"}) for all the fields
that the helper method assigns. It’s a bit odd, but you use that same annotation, @AssertNonNullAfter, to indicate that
a primitive field has its value set in a helper method, which is relevant when you supply the -Alint=uninitialized
command-line option (see Section 2).

3.5.3 More details about rawness checking
Suppressing warnings You can suppress warnings related to partially-initialized objects with @SuppressWarnings("rawness").
Do not confuse this with the unrelated @SuppressWarnings("rawtypes") annotation for non-instantiated generic
types!

Checking initialization of all fields, not just @NonNull ones When the -Alint=uninitialized command-line
option is provided, then an object is considered raw until all its fields are assigned, not just the @NonNull ones. See
Section 2.

27

The terminology “raw” The name “raw” comes from a research paper that proposed this approach [FL03]. A better
name might have been “not yet initialized” or “partially initialized”, but the term “raw” is now well-known. The @Raw
annotation has nothing to do with the raw types of Java Generics.

3.6 Map key annotations
Java’s Map.get method always has the possibility to return null, if the key is not in the map. Thus, to guarantee that
the value returned from Map.get is non-null, it is necessary that the map contains only non-null values, and the key is
in the map. The @KeyFor annotation states the latter property.

If a type is annotated as @KeyFor("m"), then any value v with that type is a key in Map m. Another way of saying
this is that the expression m.containsKey(v) evaluates to true.

You usually do not have to write @KeyFor explicitly, because the checker infers it based on usage patterns, such as
calls to containsKey or iteration over a map’s key set.

One usage pattern where you do have to write @KeyFor is for a user-managed collection that is a subset of the key
set:

Map<String, Object> m;
Set<@KeyFor("m") String> matchingKeys; // keys that match some criterion
for (@KeyFor("m") String k : matchingKeys) {

... m.get(k) ... // known to be non-null
}

As with any annotation, use of the @KeyFor annotation may force you to slightly refactor your code. For example,
this would be illegal:

Map<K,V> m;
Collection<@KeyFor("m") K> coll;
coll.add(x); // compiler error, because the @KeyFor annotation is violated
m.put(x, ...);

but this would be OK (no compiler error):

Collection<@KeyFor("m") K> coll;
m.put(x, ...);
coll.add(x);

Because the @KeyFor type hierarchy is independent from the nullness and rawness hierarchies, it uses a different
warning suppression key. You can suppress warnings related to map keys with @SuppressWarnings("keyfor").

3.7 Additional details
The Nullness Checker does some special checks in certain circumstances, in order to soundly reduce the number of
warnings that it produces.

For example, a call to System.getProperty(String) can return null in general, but it will not return null if the ar-
gument is one of the built-in-keys listed in the documentation of System.getProperties(). The Nullness Checker is
aware of this fact, so you do not have to suppress a warning for a call like System.getProperty("line.separator").
The warning is still issued for code like this:

final String s = "line.separator";
nonNullvar = System.getProperty(s);

though that case could be handled as well, if desired. (Suppression of the warning is, strictly speaking, not sound,
because a library that your code calls, or your code itself, could perversely change the system properties; the Nullness
Checker assumes this bizarre coding pattern does not happen.)

28

3.8 Examples

3.8.1 Tiny examples
To try the Nullness checker on a source file that uses the @NonNull qualifier, use the following command (where
javac is the JSR 308 compiler that is distributed with the Checker Framework):

javac -processor checkers.nullness.NullnessChecker examples/NullnessExample.java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations (and therefore the possibility of a null pointer excep-

tion at run time), use the following command:

javac -processor checkers.nullness.NullnessChecker examples/NullnessExampleWithWarnings.java

The compiler will issue three warnings regarding violation of the semantics of @NonNull.

3.8.2 Annotated library
Some libraries that are annotated with nullness qualifiers are:

• The Nullness checker itself.
• The Plume-lib library. Run the command make check-nullness.
• The Daikon invariant detector. Run the command make check-nullness.

3.9 Tips for getting started
Here are some tips about getting started using the Nullness Checker on a legacy codebase. For more generic advice
(not specific to the Nullness Checker), see Section 2.4.1.

Your goal is to add @Nullable annotations to the types of any variables that can be null. (The default is to assume
that a variable is non-null unless it has a @Nullable annotation.) Then, you will run the Nullness Checker. Each of
its errors indicates either a possible null pointer exception, or a wrong/missing annotation. When there are no more
warnings from the checker, you are done!

We recommend that you start by searching the code for occurrences of null in the following locations; when you
find one, write the corresponding annotation:

• in Javadoc: add @Nullable annotations to method signatures (parameters and return types).
• return null: add a @Nullable annotation to the return type of the given method.
• param == null: when a formal parameter is compared to null, then in most cases you can add a @Nullable

annotation to the formal parameter’s type
• TypeName field = null;: when a field is initialized to null in its declaration, then it needs either a
@Nullable or a @LazyNonNull annotation. If the field is always set to a non-null value in the constructor,
then you can just change the declaration to Type field;, without an initializer, and write no type annotation
(because the default is @NonNull).

• declarations of contains, containsKey, containsValue, equals, get, indexOf, lastIndexOf, and remove
(with Object as the argument type): change the argument type to @Nullable Object; for remove, also change
the return type to @Nullable Object.

You should ignore all other occurrences of null within a method body. In particular, you (almost) never need to
annotate local variables.

Only after this step should you run ant to invoke the Nullness Checker. The reason is that it is quicker to search
for places to change than to repeatedly run the checker and fix the errors it tells you about, one at a time.

Here are some other tips:

29

com.sun.istack.NotNull
edu.umd.cs.findbugs.annotations.NonNull
javax.annotation.Nonnull
org.jetbrains.annotations.NotNull
org.netbeans.api.annotations.common.NonNull
org.jmlspecs.annotation.NonNull

⇒ checkers.nullness.quals.NonNull

com.sun.istack.Nullable
edu.umd.cs.findbugs.annotations.Nullable
edu.umd.cs.findbugs.annotations.CheckForNull
edu.umd.cs.findbugs.annotations.UnknownNullness
javax.annotation.Nullable
javax.annotation.CheckForNull
javax.validation.constraints.NotNull
org.jetbrains.annotations.Nullable
org.netbeans.api.annotations.common.CheckForNull
org.netbeans.api.annotations.common.NullAllowed
org.netbeans.api.annotations.common.NullUnknown
org.jmlspecs.annotation.Nullable

⇒ checkers.nullness.quals.Nullable

Figure 3.3: Refactoring for converting other nullness annotations to the Checker Framework’s annotations.

• In any file where you write an annotation such as @Nullable, don’t forget to add import checkers.nullness.quals.*;.
• To indicate an array that can be null, write, for example: int @Nullable [].

By contrast, @Nullable Object [] means a non-null array that contains possibly-null objects.
• If you know that a particular variable is definitely not null, but the Nullness Checker cannot figure it out, then

you can tell it by writing an assertion (see Section 20.2):

assert var != null : "@SuppressWarnings(nullness)";

• To indicate that a routine returns the same value every time it is called, use @Pure (see Section 3.2.2).
• To indicate a method precondition (a contract stating the conditions under which a client is allowed to call it),

you can use annotations such as @NonNullOnEntry (see Section 3.2.2.

3.10 Other tools for nullness checking
The Checker Framework’s nullness annotations are similar to annotations used in IntelliJ IDEA, FindBugs, JML, the
JSR 305 proposal, NetBeans, and other tools. Also see Section 25.5 for a comparison to other tools.

You might prefer to use the Checker Framework because it has a more powerful analysis that can warn you about
more null pointer errors in your code.

If your code is already annotated with a different nullness annotation, you can reuse that effort by converting them
to the Checker Framework’s nullness annotations. Perform the refactoring described in Figure 3.3.

Alternately, the Checker Framework can process those other annotations (as well as its own, if they also appear in
your program). The Checker Framework has its own definition of the annotations on the left side of Figure 3.3, so that
they can be used as type qualifiers. The Checker Framework interprets them according to the right side of Figure 3.3.

The Checker Framework may issue more or fewer errors than another tool. This is expected, since each tool uses
a different analysis. Remember that the Checker Framework aims at soundness: it aims to never miss a possible null
dereference, while at the same time limiting false reports. Also, note FindBugs’s non-standard meaning for @Nullable
(Section 3.10.2).

Because some of the names are the same (NonNull, Nullable), you can import at most one of the annotations
with conflicting names; the other(s) must be written out fully rather than imported.

30

3.10.1 Which tool is right for you?
Different tools are appropriate in different circumstances. Here is a brief comparison with FindBugs, but similar points
apply to other tools.

The Checker Framework has a more powerful nullness analysis; FindBugs misses some real errors. However,
FindBugs does not require you to annotate your code as thoroughly as the Checker Framework does. Depending on
the importance of your code, you may desire: no nullness checking, the cursory checking of FindBugs, or the thorough
checking of the Checker Framework. You might even want to ensure that both tools run, for example if your coworkers
or some other organization are still using FindBugs. If you know that you will eventually want to use the Checker
Framework, there is no point using FindBugs first; it is easier to go straight to using the Checker Framework.

FindBugs can find other errors in addition to nullness errors; here we focus on its nullness checks. Even if you use
FindBugs for its other features, you may want to use the Checker Framework for analyses that can be expressed as
pluggable type-checking, such as detecting nullness errors.

Regardless of whether you wish to use the FindBugs nullness analysis, you may continue running all of the other
FindBugs analyses at the same time as the Checker Framework; there are no interactions among them.

If FindBugs (or any other tool) discovers a nullness error that the Checker Framework does not, please report it to
us (see Section 25.2) so that we can enhance the Checker Framework.

3.10.2 Incompatibility note about FindBugs @Nullable
FindBugs has a non-standard definition of @Nullable. FindBugs’s treatment is not documented in its own Javadoc;
it is different from the definition of @Nullable in every other tool for nullness analysis; it means the same thing as
@NonNull when applied to a formal parameter; and it invariably surprises programmers. Thus, FindBugs’s @Nullable
is detrimental rather than useful as documentation. In practice, your best bet is to not rely on FindBugs for nullness
analysis, even if you find FindBugs useful for other purposes.

You can skip the rest of this section unless you wish to learn more details.
FindBugs suppresses all warnings at uses of a @Nullable variable. (You have to use @CheckForNull to indicate

a nullable variable that FindBugs should check.) For example:

// declare getObject() to possibly return null
@Nullable Object getObject() { ... }

void myMethod() {
@Nullable Object o = getObject();
// FindBugs issues no warning about calling toString on a possibly-null reference!
o.toString();

}

The Checker Framework does not emulate this non-standard behavior of FindBugs, even if the code uses FindBugs
annotations.

With FindBugs, you annotate a declaration, which suppresses checking at all client uses, even the places that
you want to check. It is better to suppress warnings at only the specific client uses where the value is known to be
non-null; the Checker Framework supports this, if you write @SuppressWarnings at the client uses. The Checker
Framework also supports suppressing checking at all client uses, by writing a @SuppressWarnings annotation at the
declaration site. Thus, the Checker Framework supports both use cases, whereas FindBugs supports only one and
gives the programmer less flexibility.

In general, the Checker Framework will issue more warnings than FindBugs, and some of them may be about real
bugs in your program. See Section 3.4 for information about suppressing nullness warnings.

(FindBugs made a poor choice of names. The choice of names should make a clear distinction between annotations
that specify whether a reference is null, and annotations that suppress false warnings. The choice of names should also
have been consistent for other tools, and intuitively clear to programmers. The FindBugs choices make the FindBugs
annotations less helpful to people, and much less useful for other tools. As a separate issue, the FindBugs analysis is

31

also very imprecise. For type-related analyses, it is best to stay away from the FindBugs nullness annotations, and use
a more capable tool like the Checker Framework.)

32

Chapter 4

Interning checker

If the Interning checker issues no warnings for a given program, then all reference equality tests (i.e., all uses of “==”)
are proper; that is, == is not misused where equals() should have been used instead.

Interning is a design pattern in which the same object is used whenever two different objects would be considered
equal. Interning is also known as canonicalization or hash-consing, and it is related to the flyweight design pattern.
Interning has two benefits: it can save memory, and it can speed up testing for equality by permitting use of ==.

The Interning checker prevents two types of errors in your code. First, == should be used only on interned values;
using == on non-interned values can result in subtle bugs. For example:

Integer x = new Integer(22);
Integer y = new Integer(22);
System.out.println(x == y); // prints false!

The Interning checker helps programmers to prevent such bugs. Second, the Interning checker also helps to prevent
performance problems that result from failure to use interning. (See Section 2.3 for caveats to the checker’s guaran-
tees.)

Interning is such an important design pattern that Java builds it in for strings. Every string literal in the program
is guaranteed to be interned (JLS §3.10.5), and the String.intern() method performs interning for strings that are
computed at run time. Users can also write their own interning methods for other types.

It is a proper optimization to use ==, rather than equals(), whenever the comparison is guaranteed to produce
the same result — that is, whenever the comparison is never provided with two different objects for which equals()
would return true. Here are three reasons that this property could hold:

1. Interning. A factory method ensures that, globally, no two different interned objects are equals() to one
another. (In some cases other, non-interned objects of the class might be equals() to one another; in other
cases, every object of the class is interned.) Interned objects should always be immutable.

2. Global control flow. The program’s control flow is such that the constructor for class C is called a limited number
of times, and with specific values that ensure the results are not equals() to one another. Objects of class C
can always be compared with ==. Such objects may be mutable or immutable.

3. Local control flow. Even though not all objects of the given type may be compared with ==, the specific objects
that can reach a given comparison may be. For example, suppose that an array contains no duplicates. Then
testing to find the index of a given element that is known to be in the array can use ==.

To eliminate Interning Checker warnings, you will need to annotate your code regarding all legal uses of ==. Thus,
the Interning Checker could also have been called the Reference Equality Checker. In the future, the checker will in-
clude annotations that target the non-interning cases above, but for now you need to use @Interned, @UsesObjectEquals
(which handles a surprising number of cases), and/or @SuppressWarnings.

To run the Interning Checker, supply the -processor checkers.interning.InterningChecker command-line
option to javac. For examples, see Section 4.4.

33

Figure 4.1: Type hierarchy for the Interning type system.

4.1 Interning annotations
These qualifiers are part of the Interning type system:

@Interned indicates a type that includes only interned values (no non-interned values).
@PolyInterned indicates qualifier polymorphism. For a description of @PolyInterned, see Section 18.2.
@UsesObjectEquals is a class (not type) annotation that indicates that this class’s equals method is the same as

that of Object. In other words, neither this class nor any of its superclasses overrides the equals method. Since
Object.equals uses reference equality, this means that for such a class, == and equals are equivalent, and so
the Interning Checker does not issue warnings for either one.

4.2 Annotating your code with @Interned
In order to perform checking, you must annotate your code with the @Interned type annotation, which indicates a
type for the canonical representation of an object:

String s1 = ...; // type is (uninterned) "String"
@Interned String s2 = ...; // Java type is "String", but checker treats it as "Interned String"

The type system enforced by the checker plugin ensures that only interned values can be assigned to s2.
To specify that all objects of a given type are interned, annotate the class declaration:

public @Interned class MyInternedClass { ... }

This is equivalent to annotating every use of MyInternedClass, in a declaration or elsewhere. For example, enum
classes are implicitly so annotated.

4.2.1 Implicit qualifiers
As described in Section 19.1, the Interning checker adds implicit qualifiers, reducing the number of annotations that
must appear in your code. For example, String literals and the null literal are always considered interned, and object
creation expressions (using new) are never considered @Interned unless they are annotated as such, as in
@Interned Double internedDoubleZero = new @Interned Double(0); // canonical representation for Double zero

For a complete description of all implicit interning qualifiers, see the Javadoc for InterningAnnotatedTypeFactory.

4.3 What the Interning checker checks
Objects of an @Interned type may be safely compared using the “==” operator.

The checker issues a warning in two cases:

1. When a reference (in)equality operator (“==” or “!=”) has an operand of non-@Interned type.
2. When a non-@Interned type is used where an @Interned type is expected.

34

com.sun.istack.Interned ⇒ checkers.interning.quals.Interned
Figure 4.2: Refactoring for converting interning annotations from other tools to the Checker Framework.

This example shows both sorts of problems:

Object obj;
@Interned Object iobj;
...
if (obj == iobj) { ... } // checker warning: reference equality test is unsafe
iobj = obj; // checker warning: iobj’s referent may no longer be interned

The checker also issues a warning when .equals is used where == could be safely used. You can disable this
behavior via the javac -Alint command-line option, like so: -Alint=-dotequals.

For a complete description of all checks performed by the checker, see the Javadoc for InterningVisitor.
You can also restrict which types the checker should examine and type-check, using the -Acheckclass option. For

example, to find only the interning errors related to uses of String, you can pass -Acheckclass=java.lang.String.
The Interning checker always checks all subclasses and superclasses of the given class.

4.4 Examples
To try the Interning checker on a source file that uses the @Interned qualifier, use the following command (where
javac is the JSR 308 compiler that is distributed with the Checker Framework):

javac -processor checkers.interning.InterningChecker examples/InterningExample.java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations, use the following command:

javac -processor checkers.interning.InterningChecker examples/InterningExampleWithWarnings.java

The compiler will issue a warning regarding violation of the semantics of @Interned.
The Daikon invariant detector (http://groups.csail.mit.edu/pag/daikon/) is also annotated with @Interned.

From directory java, run make check-interning.

4.5 Other interning annotations
The Checker Framework’s interning annotations are similar to annotations used elsewhere.

If your code is already annotated with a different interning annotation, you can reuse that effort by converting them
to the Checker Framework’s nullness annotations. Perform the refactoring described in Figure 4.2.

Alternately, the Checker Framework can process those other annotations (as well as its own, if they also appear in
your program). The Checker Framework has its own definition of the annotations on the left side of Figure 4.2, so that
they can be used as type qualifiers. The Checker Framework interprets them according to the right side of Figure 4.2.

35

Chapter 5

IGJ immutability checker

IGJ is a Java language extension that helps programmers to avoid mutation errors (unintended side effects). If the
IGJ checker issues no warnings for a given program, then that program will never change objects that should not be
changed. This guarantee enables a programmer to detect and prevent mutation-related errors. (See Section 2.3 for
caveats to the guarantee.)

To run the IGJ Checker, supply the -processor checkers.igj.IGJChecker command-line option to javac. For
examples, see Section 5.7.

5.1 IGJ and Mutability
IGJ [ZPA+07] permits a programmer to express that a particular object should never be modified via any reference
(object immutability), or that a reference should never be used to modify its referent (reference immutability). Once
a programmer has expressed these facts, an automatic checker analyzes the code to either locate mutability bugs or to
guarantee that the code contains no such bugs.

To learn more details of the IGJ language and type system, please see the ESEC/FSE 2007 paper “Object and
reference immutability using Java generics” [ZPA+07]. The IGJ checker supports Annotation IGJ (Section 5.5),
which is a slightly different dialect of IGJ than that described in the ESEC/FSE paper.

5.2 IGJ Annotations
Each object is either immutable (it can never be modified) or mutable (it can be modified). The following qualifiers
are part of the IGJ type system.

@Immutable An immutable reference always refers to an immutable object. Neither the reference, nor any aliasing
reference, may modify the object.

Figure 5.1: Type hierarchy for three of IGJ’s type qualifiers.

36

@Mutable A mutable reference refers to a mutable object. The reference, or some aliasing mutable reference, may
modify the object.

@ReadOnly A readonly reference cannot be used to modify its referent. The referent may be an immutable or a
mutable object. In other words, it is possible for the referent to change via an aliasing mutable reference, even
though the referent cannot be changed via the readonly reference.

@Assignable The annotated field may be re-assigned regardless of the immutability of the enclosing class or object
instance.

@AssignsFields is similar to @Mutable, but permits only limited mutation — assignment of fields — and is
intended for use by constructor helper methods.

@I simulates mutability overloading or the template behavior of generics. It can be applied to classes, methods, and
parameters. See Section 5.5.3.

For additional details, see [ZPA+07].

5.3 What the IGJ checker checks
The IGJ checker issues an error whenever mutation happens through a readonly reference, when fields of a readonly
reference which are not explicitly marked with @Assignable are reassigned, or when a readonly reference is assigned
to a mutable variable. The checker also emits a warning when casts increase the mutability access of a reference.

5.4 Implicit and default qualifiers
As described in Section 19.1, the IGJ checker adds implicit qualifiers, reducing the number of annotations that must
appear in your code.

For a complete description of all implicit IGJ qualifiers, see the Javadoc for IGJAnnotatedTypeFactory.
The default annotation (for types that are unannotated and not given an implicit qualifier) is as follows:

• @Mutable for almost all references. This is backward-compatible with Java, since Java permits any reference to
be mutated.

• @Readonly for local variables. This qualifier may be refined by flow-sensitive local type refinement (see Sec-
tion 19.1.2).

• @Readonly for type parameter and wildcard bounds. For example,

interface List<T extends Object> { ... }

is defaulted to

interface List<T extends @Readonly Object> { ... }

This default is not backward-compatible — that is, you may have to explicitly add @Mutable annotations to
some type parameter bounds in order to make unannotated Java code type-check under IGJ. However, this
reduces the number of annotations you must write overall (since most variables of generic type are in fact not
modified), and permits more client code to type-check (otherwise a client could not write List<@Readonly
Date>).

5.5 Annotation IGJ Dialect
The IGJ checker supports the Annotation IGJ dialect of IGJ. The syntax of Annotation IGJ is based on type annota-
tions.

The syntax of the original IGJ dialect [ZPA+07] was based on Java 5’s generics and annotation mechanisms. The
original IGJ dialect was not backward-compatible with Java (either syntactically or semantically). The dialect of IGJ
checked by the IGJ checker corrects these problems.

The differences between the Annotation IGJ dialect and the original IGJ dialect are as follows.

37

5.5.1 Semantic Changes
• Annotation IGJ does not permit covariant changes in generic type arguments, for backward compatibility

with Java. In ordinary Java, types with different generic type arguments, such as Vector<Integer> and
Vector<Number>, have no subtype relationship, even if the arguments (Integer and Number) do. The orig-
inal IGJ dialect changed the Java subtyping rules to permit safely varying a type argument covariantly in certain
circumstances. For example,

Vector<Mutable, Integer> <: Vector<ReadOnly, Integer>
<: Vector<ReadOnly, Number>
<: Vector<ReadOnly, Object>

is valid in IGJ, but in Annotation IGJ, only

@Mutable Vector<Integer> <: @ReadOnly Vector<Integer>

holds and the other two subtype relations do not hold

@ReadOnly Vector<Integer> </: @ReadOnly Vector<Number>
</: @ReadOnly Vector<Object>

• Annotation IGJ supports array immutability. The original IGJ dialect did not permit the (im)mutability of array
elements to be specified, because the generics syntax used by the original IGJ dialect cannot be applied to array
elements.

5.5.2 Syntax Changes
• Immutability is specified through type annotations [Ern08] (Section 5.2), not through a combination of generics

and annotations. Use of type annotations makes Annotation IGJ backward compatible with Java syntax.
• Templating over Immutability: The annotation @I(id) is used to template over immutability. See Section 5.5.3.

5.5.3 Templating Over Immutability: @I
@I is a template annotation over IGJ Immutability annotations. It acts similarly to type variables in Java’s generic
types, and the name @I mimics the standard <I> type variable name used in code written in the original IGJ dialect.
The annotation value string is used to distinguish between multiple instances of @I — in the generics-based original
dialect, these would be expressed as two type variables <I> and <J>.

Usage on classes A class declaration annotated with @I can then be used with any IGJ Immutability annotation. The
actual immutability that @I is resolved to dictates the immutability type for all the non-static appearances of @I with
the same value as the class declaration.

Example:

@I
public class FileDescriptor {

private @Immutable Date creationData;
private @I Date lastModData;

public @I Date getLastModDate(@ReadOnly FileDescriptor this) { }
}

...
void useFileDescriptor() {

@Mutable FileDescriptor file =
new @Mutable FileDescriptor(...);

...

38

@Mutable Data date = file.getLastModDate();

}

In the last example, @I was resolved to @Mutable for the instance file.

Usage on methods For example, it could be used for method parameters, return values, and the actual IGJ im-
mutability value would be resolved based on the method invocation.

For example, the below method getMidpoint returns a Point with the same immutability type as the passed
parameters if p1 and p2 match in immutability, otherwise @I is resolved to @ReadOnly:

static @I Point getMidpoint(@I Point p1, @I Point p2) { ... }

The @I annotation value distinguishes between @I declarations. So, the below method findUnion returns a col-
lection of the same immutability type as the first collection parameter:

static <E> @I("First") Collection<E> findUnion(@I("First") Collection<E> col1,
@I("Second") Collection<E> col2) { ... }

5.6 Iterators and their abstract state
This section explains why the receiver of Iterator.next() is annotated as @ReadOnly.

An iterator conceptually has two pieces of state:

1. the underlying collection
2. an index into that collection (indicating the next object to be returned)

We choose to exclude the index from the abstract state of the iterator. That is, a change to the index does not count
as a mutation of the iterator itself.

Changes to the underlying collection are more important and interesting, and unintentional changes are much more
likely to lead to important errors. Therefore, this choice about the iterator’s abstract state appears to be more useful
than other choices. For example, if the iterator’s abstract state included both the underlying collection and the index,
then there would be no way to express, or check, that Iterator.next does not change the underlying collection.

5.7 Examples
To try the IGJ checker on a source file that uses the IGJ qualifier, use the following command (where javac is the JSR
308 compiler that is distributed with the Checker Framework).

javac -processor checkers.igj.IGJChecker examples/IGJExample.java

The IGJ checker itself is also annotated with IGJ annotations.

39

Chapter 6

Javari immutability checker

Javari [TE05, QTE08] is a Java language extension that helps programmers to avoid mutation errors that result from
unintended side effects. If the Javari checker issues no warnings for a given program, then that program will never
change objects that should not be changed. This guarantee enables a programmer to detect and prevent mutation-
related errors. (See Section 2.3 for caveats to the guarantee.) The Javari webpage (http://types.cs.washington.
edu/javari/) contains papers that explain the Javari language and type system. By contrast to those papers, the Javari
checker uses an annotation-based dialect of the Javari language.

The Javarifier tool infers Javari types for an existing program; see Section 6.2.2.
Also consider the IGJ checker (Chapter 5). The IGJ type system is more expressive than that of Javari, and the IGJ

checker is a bit more robust. However, IGJ lacks a type inference tool such as Javarifier.
To run the Javari Checker, supply the -processor checkers.javari.JavariChecker command-line option to

javac. For examples, see Section 6.5.

6.1 Javari annotations
The following six annotations make up the Javari type system.

@ReadOnly indicates a type that provides only read-only access. A reference of this type may not be used to modify
its referent, but aliasing references to that object might change it.

@Mutable indicates a mutable type.
@Assignable is a field annotation, not a type qualifier. It indicates that the given field may always be assigned, no

matter what the type of the reference used to access the field.
@QReadOnly corresponds to Javari’s “? readonly” for wildcard types. An example of its use is List<@QReadOnly

Date>. It allows only the operations which are allowed for both readonly and mutable types.
@PolyRead (previously named @RoMaybe) specifies polymorphism over mutability; it simulates mutability over-

loading. It can be applied to methods and parameters. See Section 18.2 and the @PolyRead Javadoc for more
details.

Figure 6.1: Type hierarchy for Javari’s ReadOnly type qualifier.

40

@ThisMutable means that the mutability of the field is the same as that of the reference that contains it. @ThisMutable
is the default on fields, and does not make sense to write elsewhere. Therefore, @ThisMutable should never
appear in a program.

6.2 Writing Javari annotations

6.2.1 Implicit qualifiers
As described in Section 19.1, the Javari checker adds implicit qualifiers, reducing the number of annotations that must
appear in your code.

For a complete description of all implicit Javari qualifiers, see the Javadoc for JavariAnnotatedTypeFactory.

6.2.2 Inference of Javari annotations
It can be tedious to write annotations in your code. The Javarifier tool (http://types.cs.washington.edu/
javari/javarifier/) infers Javari types for an existing program. It automatically inserts Javari annotations in
your Java program or in .class files.

This has two benefits: it relieves the programmer of the tedium of writing annotations (though the programmer
can always refine the inferred annotations), and it annotates libraries, permitting checking of programs that use those
libraries.

6.3 What the Javari checker checks
The checker issues an error whenever mutation happens through a readonly reference, when fields of a readonly
reference which are not explicitly marked with @Assignable are reassigned, or when a readonly expression is assigned
to a mutable variable. The checker also emits a warning when casts increase the mutability access of a reference.

6.4 Iterators and their abstract state
For an explanation of why the receiver of Iterator.next() is annotated as @ReadOnly, see Section 5.6.

6.5 Examples
To try the Javari checker on a source file that uses the Javari qualifier, use the following command (where javac is the
JSR 308 compiler that is distributed with the Checker Framework). Alternately, you may specify just one of the test
files.

javac -processor checkers.javari.JavariChecker tests/javari/*.java

The compiler should issue the errors and warnings (if any) specified in the .out files with same name.
To run the test suite for the Javari checker, use ant javari-tests.
The Javari checker itself is also annotated with Javari annotations.

41

Chapter 7

Lock checker

The Lock checker prevents certain kinds of concurrency errors. If the Lock checker issues no warnings for a given
program, then the program holds the appropriate lock every time that it accesses a variable.

Note: This does not mean that your program has no concurrency errors. (You might have forgotten to annotate that
a particular variable should only be accessed when a lock is held. You might release and re-acquire the lock, when
correctness requires you to hold it throughout a computation. And, there are other concurrency errors that cannot, or
should not, be solved with locks.) However, ensuring that your program obeys its locking discipline is an easy and
effective way to eliminate a common and important class of errors.

To run the Lock Checker, supply the -processor checkers.lock.LockChecker command-line option to javac.

7.1 Lock annotations
The Lock checker uses two annotations. One is a type qualifier, and the other is a method annotation.

@GuardedBy indicates a type whose value may be accessed only when the given lock is held. See the GuardedBy
Javadoc for an explanation of the argument. The lock acquisition and the value access may be arbitrarily far in
the future; or, if the value is never accessed, the lock never need be held.

@Holding is a method annotation (not a type qualifier). It indicates that when the method is called, the given lock
must be held by the caller. In other words, the given lock is already held at the time the method is called.

7.1.1 Examples
Most often, field values are annotated with @GuardedBy, but other uses are possible.

A return value may be annotated with @GuardedBy:

@GuardedBy("MyClass.myLock") Object myMethod() { ... }

// reassignments without holding the lock are OK.
@GuardedBy("MyClass.myLock") Object x = myMethod();
@GuardedBy("MyClass.myLock") Object y = x;
Object z = x; // ILLEGAL (assuming no lock inference),

// because z can be freely accessed.
x.toString() // ILLEGAL because the lock is not held
synchronized(MyClass.myLock) {

y.toString(); // OK: the lock is held
}

A parameter may be annotated with @GuardedBy:

42

void helper1(@GuardedBy("MyClass.myLock") Object a) {
a.toString(); // ILLEGAL: the lock is not held
synchronized(MyClass.myLock) {

a.toString(); // OK: the lock is held
}

}
@Holding("MyClass.myLock")
void helper2(@GuardedBy("MyClass.myLock") Object b) {

b.toString(); // OK: the lock is held
}
void helper3(Object c) {

c.toString(); // OK: no lock constraints
}
void helper4(@GuardedBy("MyClass.myLock") Object d) {

d.toString(); // ILLEGAL: the lock is not held
}
void myMethod2(@GuardedBy("MyClass.myLock") Object e) {

helper1(e); // OK to pass to another routine without holding the lock
e.toString(); // ILLEGAL: the lock is not held
synchronized (MyClass.myLock) {

helper2(e);
helper3(e);
helper4(e); // OK, but helper4’s body still does not type-check

}
}

7.1.2 Discussion of @Holding
A programmer might choose to use the @Holding method annotation in two different ways: to specify a higher-level
protocol, or to summarize intended usage. Both of these approaches are useful, and the Lock checker supports both.

Higher-level synchronization protocol @Holding can specify a higher-level synchronization protocol that is not
expressible as locks over Java objects. By requiring locks to be held, you can create higher-level protocol primitives
without giving up the benefits of the annotations and checking of them.

Method summary that simplifies reasoning @Holding can be a method summary that simplifies reasoning. In this
case, the @Holding doesn’t necessarily introduce a new correctness constraint; the program might be correct even if
the lock were acquired later in the body of the method or in a method it calls, so long as the lock is acquired before
accessing the data it protects.

Rather, here @Holding expresses a fact about execution: when execution reaches this point, the following locks
are already held. This fact enables people and tools to reason intra- rather than inter-procedurally.

In Java, it is always legal to re-acquire a lock that is already held, and the re-acquisition always works. Thus,
whenever you write

@Holding("myLock")
void myMethod() {

...
}

it would be equivalent, from the point of view of which locks are held during the body, to write

43

void myMethod() {
synchronized (myLock) { // no-op: re-aquire a lock that is already held

...
}

}

The advantages of the @Holding annotation include:

• The annotation documents the fact that the lock is intended to already be held.
• The Lock Checker enforces that the lock is held when the method is called, rather than masking a programmer

error by silently re-acquiring the lock.
• The synchronized statement can deadlock if, due to a programmer error, the lock is not already held. The

Lock Checker prevents this type of error.
• The annotation has no run-time overhead. Even if the lock re-acquisition succeeds, it still consumes time.

7.1.3 Relationship to annotations in Java Concurrency in Practice
The book Java Concurrency in Practice [GPB+06] defines a @GuardedBy annotation that is the inspiration for ours.
The book’s @GuardedBy serves two related purposes:

• When applied to a field, it means that the given lock must be held when accessing the field. The lock acquisition
and the field access may be arbitrarily far in the future.

• When applied to a method, it means that the given lock must be held by the caller at the time that the method is
called — in other words, at the time that execution passes the @GuardedBy annotation.

One rationale for reusing the annotation name for both purposes in JCIP is that there are fewer annotations to
learn. Another rationale is that both variables and methods are “members” that can be “accessed”; variables can be
accessed by reading or writing them (putfield, getfield), and methods can be accessed by calling them (invokevirtual,
invokeinterface). In both cases, @GuardedBy creates preconditions for accessing so-annotated members. This informal
intuition is inappropriate for a tool that requires precise semantics.

The Lock checker renames the method annotation to @Holding, and it generalizes the @GuardedBy annotation into
a type qualifier that can apply not just to a field but to an arbitrary type (including the type of a parameter, return value,
local variable, generic type parameter, etc.). This makes the annotations more expressive and also more amenable to
automated checking. It also accommodates the distinct (though related) meanings of the two annotations.

44

Chapter 8

Fake Enum checker

Java’s enum keyword lets you define an enumeration type: a finite set of distinct values that are related to one another
but are disjoint from all other types, including other enumerations. Before enums were added to Java, there were two
ways to encode an enumeration, both of which are error-prone:

the fake enum pattern a set of int or String constants (as often found in older C code).
the typesafe enum pattern a class with private constructor.

Sometimes you need to use the fake enum pattern, rather than a real enum or the typesafe enum pattern. One
reason is backward-compatibility. A public API that predates Java’s enum keyword may use int constants; it cannot
be changed, because doing so would break existing clients. For example, Java’s JDK still uses int constants in the
AWT and Swing frameworks. Another reason is performance, especially in environments with limited resources. Use
of an int instead of an object can reduce code size, memory requirements, and run time.

In cases when code has to use the fake enum pattern, the fake enum (Fenum) checker gives the same safety
guarantees as a true enumeration type. The developer can introduce new types that are distinct from all values of the
base type and from all other fake enums. Fenums can be introduced for primitive types as well as for reference types.

Figure 8.1 shows part of the type hierarchy for the Fenum type system.

8.1 Fake enum annotations
The checker supports two ways to introduce a new fake enum (fenum):

1. Introduce your own specialized fenum annotation with code like this in file MyFenum.java:
package myproject.quals;

import java.lang.annotation.*;

Figure 8.1: Partial type hierarchy for the Fenum type system. There are two forms of fake enumeration annotations
— above, illustrated by @Fenum("A") and @FenumC. See section 8.1 for descriptions of how to introduce both types
of fenums. The type qualifiers in gray (@FenumTop, @FenumUnqualified, and @Bottom) should never be written in
source code; they are used internally by the type system.

45

import checkers.quals.SubtypeOf;
import checkers.quals.TypeQualifier;

@Documented
@Retention(RetentionPolicy.RUNTIME)
@TypeQualifier
@SubtypeOf({ FenumTop.class })
public @interface MyFenum {}
You only need to adapt the italicized package, annotation, and file names in the example.

2. Use the provided @Fenum annotation, which takes a String argument to distinguish different fenums. For
example, @Fenum("A") and @Fenum("B") are two distinct fenums.

The first approach allows you to define a short, meaningful name suitable for your project, whereas the second
approach allows quick prototyping.

8.2 What the Fenum checker checks
The Fenum checker ensures that unrelated types are not mixed. All types with a particular fenum annotation, or
@Fenum(...) with a particular String argument, are disjoint from all unannotated types and all types with a different
fenum annotation or String argument.

The checker forbids method calls on fenum types and ensures that only compatible fenum types are used in com-
parisons and arithmetic operations (if applicable to the annotated type).

It is the programmer’s responsibility to ensure that fields with a fenum type are properly initialized before use.
Otherwise, one might observe a null reference or zero value in the field of a fenum type. (The Nullness checker
(Chapter 3, page 19) can prevent failure to initialize a reference variable.)

8.3 Running the Fenum checker
The Fenum checker can be invoked by running the following commands.

• If you define your own annotation, provide the name of the annotation using the -Aquals option:
javac -processor checkers.fenum.FenumChecker

-Aquals=myproject.quals.MyFenum MyFile.java ...
• If your code uses the @Fenum annotation, you do not need the -Aquals option:

javac -processor checkers.fenum.FenumChecker MyFile.java ...

8.4 Suppressing warnings
One example of when you need to suppress warnings is when you initialize the fenum constants to literal values.
To remove this warning message, add a @SuppressWarnings annotation to either the field or class declaration, for
example:

@SuppressWarnings("fenum:assignment.type.incompatible")
class MyConsts {

public static final @Fenum("A") int ACONST1 = 1;
public static final @Fenum("A") int ACONST2 = 2;

}

46

8.5 Example
The following example introduces two fenums in class TestStatic and then performs a few typical operations.

@SuppressWarnings("fenum:assignment.type.incompatible") // for initialization
public class TestStatic {

public static final @Fenum("A") int ACONST1 = 1;
public static final @Fenum("A") int ACONST2 = 2;

public static final @Fenum("B") int BCONST1 = 4;
public static final @Fenum("B") int BCONST2 = 5;

}

class FenumUser {
@Fenum("A") int state1 = TestStatic.ACONST1; // ok
@Fenum("B") int state2 = TestStatic.ACONST1; // Incompatible fenums forbidden!

void fenumArg(@Fenum("A") int p) {}

void foo() {
state1 = 4; // Direct use of value forbidden!
state1 = TestStatic.BCONST1; // Incompatible fenums forbidden!
state1 = TestStatic.ACONST2; // ok

fenumArg(5); // Direct use of value forbidden!
fenumArg(TestStatic.BCONST1); // Incompatible fenums forbidden!
fenumArg(TestStatic.ACONST1); // ok

}
}

8.6 References
• Java Language Specification on enums:
http://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.9

• Tutorial trail on enums:
http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html

• Typesafe enum pattern:
http://www.oracle.com/technetwork/java/page1-139488.html

• Java Tip 122: Beware of Java typesafe enumerations:
http://www.javaworld.com/javaworld/javatips/jw-javatip122.html

47

Chapter 9

Tainting checker

The tainting checker prevents certain kinds of trust errors. A tainted, or untrusted, value is one that comes from an
arbitrary, possibly malicious source, such as user input or unvalidated data. In certain parts of your application, using
a tainted value can compromise the application’s integrity, causing it to crash, corrupt data, leak private data, etc.

For example, a user-supplied pointer, handle, or map key should be validated before being dereferenced. As
another example, a user-supplied string should not be concatenated into a SQL query, lest the program be subject to a
SQL injection attack. A location in your program where malicious data could do damage is called a sensitive sink.

A program must “sanitize” or “untaint” an untrusted value before using it at a sensitive sink. There are two general
ways to untaint a value: by checking that it is innocuous/legal (e.g., it contains no characters that can be interpreted
as SQL commands when pasted into a string context), or by transforming the value to be legal (e.g., quoting all the
characters that can be interpreted as SQL commands). A correct program must use one of these two techniques so that
tainted values never flow to a sensitive sink. The Tainting Checker ensures that your program does so.

If the Tainting Checker issues no warning for a given program, then no tainted value ever flows to a sensitive sink.
However, your program is not necessarily free from all trust errors. As a simple example, you might have forgotten
to annotate a sensitive sink as requiring an untainted type, or you might have forgotten to annotate untrusted data as
having a tainted type.

To run the Tainting Checker, supply the -processor checkers.tainting.TaintingChecker command-line
option to javac.

9.1 Tainting annotations
The Tainting type system uses the following annotations:

• @Untainted indicates a type that includes only untainted, trusted values.
• @Tainted indicates a type that may include only tainted, untrusted values. @Tainted is a supertype of @Untainted.
• @PolyTainted is a qualifier that is polymorphic over tainting (see Section 18.2).

9.2 Tips on writing @Untainted annotations
Most programs are designed with a boundary that surrounds sensitive computations, separating them from untrusted
values. Outside this boundary, the program may manipulate malicious values, but no malicious values ever pass the
boundary to be operated upon by sensitive computations.

In some programs, the area outside the boundary is very small: values are sanitized as soon as they are received
from an external source. In other programs, the area inside the boundary is very small: values are sanitized only
immediately before being used at a sensitive sink. Either approach can work, so long as every possibly-tainted value
is sanitized before it reaches a sensitive sink.

48

Once you determine the boundary, annotating your program is easy: put @Tainted outside the boundary, @Untainted
inside, and @SuppressWarnings("tainting") at the validation or sanitization routines that are used at the boundary.

The Tainting Checker’s standard default qualifier is @Tainted (see Section 19.1.1 for overriding this default). This
is the safest default, and the one that should be used for all code outside the boundary (for example, code that reads
user input). You can set the default qualifier to @Untainted in code that may contain sensitive sinks.

The Tainting Checker does not know the intended semantics of your program, so it cannot warn you if you mis-
annotate a sensitive sink as taking @Tainted data, or if you mis-annotate external data as @Untainted. So long as you
correctly annotate the sensitive sinks and the places that untrusted data is read, the Tainting Checker will ensure that
all your other annotations are correct and that no undesired information flows exist.

As an example, suppose that you wish to prevent SQL injection attacks. You would start by annotating the
Statement class to indicate that the execute operations may only operate on untainted queries (Chapter 21 describes
how to annotate external libraries):

public boolean execute(@Untainted String sql) throws SQLException;
public boolean executeUpdate(@Untainted String sql) throws SQLException;

9.3 @Tainted and @Untainted can be used for many purposes
The @Tainted and @Untainted annotations have only minimal built-in semantics. In fact, the Tainting Checker
provides only a small amount of functionality beyond the Basic Checker (Section 15). This lack of hard-coded behavior
means that the annotations can serve many different purposes. Here are just a few examples:

• Prevent SQL injection attacks: @Tainted is external input, @Untainted has been checked for SQL syntax.
• Prevent cross-site scripting attacks: @Tainted is external input, @Untainted has been checked for JavaScript

syntax.
• Prevent information leakage: @Tainted is secret data, @Untainted may be displayed to a user.

In each case, you need to annotate the appropriate untainting/sanitization routines. This is similar to the @Encrypted
annotation (Section 15.2), where the cryptographic functions are beyond the reasoning abilities of the type system. In
each case, the type system verifies most of your code, and the @SuppressWarnings annotations indicate the few places
where human attention is needed.

If you want more specialized semantics, or you want to annotate multiple types of tainting in a single program,
then you can copy the definition of the Tainting Checker to create a new annotation and checker with a more specific
name and semantics. See Chapter 22 for more details.

49

Chapter 10

Linear checker for preventing aliasing

The Linear Checker implements type-checking for a linear type system. A linear type system prevents aliasing: there
is only one (usable) reference to a given object at any time. Once a reference appears on the right-hand side of an
assignment, it may not be used any more. The same rule applies for pseudo-assignments such as procedure argument-
passing (including as the receiver) or return.

One way of thinking about this is that a reference can only be used once, after which it is “used up”. This property
is checked statically at compile time. The single-use property only applies to use in an assignment, which makes a
new reference to the object; ordinary field dereferencing does not use up a reference.

By forbidding aliasing, a linear type system can prevent problems such as unexpected modification (by an alias),
or ineffectual modification (after a reference has already been passed to, and used by, other code).

To run the Linear Checker, supply the -processor checkers.Linear.LinearChecker command-line option to
javac.

Figure 10.1 gives an example of the Linear Checker’s rules.

10.1 Linear annotations
The linear type system uses one user-visible annotation: @Linear. The annotation indicates a type for which each value
may only have a single reference — equivalently, may only be used once on the right-hand side of an assignment.

The full qualifier hierarchy for the linear type system includes three types:

• @UsedUp is the type of references whose object has been assigned to another reference. The reference may not
be used in any way, including having its fields dereferenced, being tested for equality with ==, or being assigned
to another reference. Users never need to write this qualifier.

• @Linear is the type of references that have no aliases, and that may be dereferenced at most once in the future.
The type of new T() is @Linear T (the analysis does not account for the slim possibility that an alias to this
escapes the constructor).

• @NonLinear is the type of references that may be dereferenced, and aliases made, as many times as desired.
This is the default, so users only need to write @NonLinear if they change the default.

@UsedUp is a supertype of @NonLinear, which is a supertype of @Linear.
This hierarchy makes an assignment like

@Linear Object l = new Object();
@NonLinear Object nl = l;
@NonLinear Object nl2 = nl;

legal. In other words, the fact that an object is referenced by a @Linear type means that there is only one usable
reference to it now, not that there will never be multiple usable references to it. (The latter guarantee would be
possible to enforce, but it is not what the Linear Checker does.)

50

class Pair {
Object a;
Object b;
public String toString() {
return "<" + String.valueOf(a) + "," + String.valueOf(b) + ">";

}
}

void print(@Linear Object arg) {
System.out.println(arg);

}

@Linear Pair printAndReturn(@Linear Pair arg) {
System.out.println(arg.a);
System.out.println(arg.b); // OK: field dereferencing does not use up the reference arg
return arg;

}

@Linear Object m(Object o, @Linear Pair lp) {
@Linear Object lo2 = o; // ERROR: aliases may exist
@Linear Pair lp3 = lp;
@Linear Pair lp4 = lp; // ERROR: reference lp was already used
lp3.a;
lp3.b; // OK: field dereferencing does not use up the reference
print(lp3);
print(lp3); // ERROR: reference lp3 was already used
lp3.a; // ERROR: reference lp3 was already used
@Linear Pair lp4 = new Pair(...);
lp4.toString();
lp4.toString(); // ERROR: reference lp4 was already used
lp4 = new Pair(); // OK to reassign to a used-up reference
// If you need a value back after passing it to a procedure, that
// procedure must return it to you.
lp4 = printAndReturn(lp4);
if (...) {
print(lp4);

}
if (...) {
return lp4; // ERROR: reference lp4 may have been used

} else {
return new Object();

}
}

Figure 10.1: Example of Linear Checker rules.

10.2 Limitations
The @Linear annotation is supported and checked only on method parameters (including the receiver), return types,
and local variables. Supporting @Linear on fields would require a sophisticated alias analysis or type system, and is
future work.

No annotated libraries are provided for linear types. Most libraries would not be able to use linear types in their
purest form. For example, you cannot put a linearly-typed object in a hashtable, because hashtable insertion calls
hashCode; hashCode uses up the reference and does not return the object, even though it does not retain any pointers
to the object. For similar reasons, a collection of linearly-typed objects could not be sorted or searched.

Our lightweight implementation is intended for use in the parts of your program where errors relating to aliasing
and object reuse are most likely. You can use manual reasoning (and possibly an unchecked cast or warning sup-
pression) when objects enter or exit those portions of your program, or when that portion of your program uses an
unannotated library.

51

Chapter 11

Regex checker for regular expression syntax

The Regex Checker prevents, at compile-time, use of syntactically invalid regular expressions and access of invalid
capturing groups.

A regular expression, or regex, is a pattern for matching certain strings of text. In Java, a programmer writes a
regular expression as a string. At run time, the string is “compiled” into an efficient internal form (Pattern) that is
used for text-matching. Regular expression in Java also have capturing groups, which are delimited by parentheses
and allow for extraction from text.

The syntax of regular expressions is complex, so it is easy to make a mistake. It is also easy to accidentally use a
regex feature from another language that is not supported by Java (see section “Comparison to Perl 5” in the Pattern
Javadoc). Ordinarily, the programmer does not learn of these errors until run time. The Regex checker warns about
these problems at compile time.

To run the Regex Checker, supply the -processor checkers.regex.RegexChecker command-line option to
javac.

11.1 Regex annotations
These qualifiers make up the Regex type system:

@Regex indicates valid regular expression Strings. This qualifier takes an optional parameter of at the least the
number of capturing groups in the regular expression. If not provided, the parameter defaults to 0.

@PolyRegex indicates qualifier polymorphism. For a description of @PolyRegex, see Section 18.2.

The subtyping hierarchy of the Regex checker’s qualifiers is shown in Figure 11.1.

11.2 Annotating your code with @Regex

11.2.1 Implicit qualifiers
As described in Section 19.1, the Regex checker adds implicit qualifiers, reducing the number of annotations that must
appear in your code. The checker implicitly adds the Regex qualifier with the parameter set to the correct number of
capturing groups to any String literal that is a valid regex. The Regex checker allows the null literal to be assigned
to any type qualified with the Regex qualifier.

In rare cases, you will need to override the implicit qualifiers, most notably because of type inference for type
parameters. For example, the following code does not type-check

List<String> list1 = Arrays.asList("a", "b", "c");

because of invariant subtyping for type parameters, which is the same reason that

52

Figure 11.1: The subtyping relationship of the Regex checkers’s qualifiers. Because the parameter to a @Regex qualifier
is at least the number of capturing groups in a regular expression, a @Regex qualifier with more capturing groups is a
subtype of a @Regex qualifier with fewer capturing groups. Qualifiers in gray are used internally by the type system
but should never be written by a programmer.

List<Object> objlist = Arrays.asList(2.718, 3.14);

does not type-check in ordinary Java.
Depending on your intention, you should rewrite your code in one of the following ways (alternately, you can just

suppress the warning):

List<@Regex String> list2 = Arrays.asList("a", "b", "c");

List<String> list3 = Arrays.<String>asList("a", "b", "c");

List<? extends String> list4 = Arrays.asList("a", "b", "c");

For the latter two variants, you might want to add a comment explaining that you used <String>asList() instead of
just aslist(), or List<? extends String> instead of just List<String>, because of invariant subtyping for type
parameters and @Regex type inference. Thot will keep some other developer from undoing your change because it
looks silly.

11.2.2 Capturing groups
The Regex checker validates that a legal capturing group number is passed to Matcher’s group, start and end meth-
ods. To do this, the type of Matcher must be qualified with a @Regex annotation with the number of capturing groups
in the regular expression. This is handled implicitly by the Regex checker for local variables (see Section 19.1.2), but
you may need to add @Regex annotations with a capturing group count to Pattern and Matcher fields and parameters.

53

public @Regex String parenthesize(@Regex String regex) {
return "(" + regex + ")"; // Even though the parentheses are not @Regex Strings, the checker still treats

// the whole expression as a @Regex String
}

Figure 11.2: An example of the Regex Checker’s support for concatenation of non-regular expression Strings to
produce valid regular expression Strings.

String regex = getRegexFromUser();
if (! RegexUtil.isRegex(regex)) {

throw new RuntimeException("Error parsing regex " + regex, RegexUtil.regexException(regex));
// or: System.out.println("Error parsing regex \"" + regex + "\": " + RegexUtil.regexError(regex));

}
// The following line suppresses a Regex Checker warning and is only necessary until the
// Regex Checker supports flow-sensitivity, after which time it can be removed from the code.
regex = RegexUtil.asRegex(regex); // @SuppressWarnings("regex") // flow-sensitivity
Pattern p = Pattern.compile(regex);

Figure 11.3: Example use of RegexUtil methods.

11.2.3 Concatenation of partial regular expresions
The Regex Checker supports concatenation of non-regular expression Strings that produce valid regular expression

Strings. For an example see Figure 11.2.

11.2.4 Testing whether a string is a regular expression
Sometimes, the Regex Checker cannot infer whether a particular expression is a regular expression — and sometimes
your code cannot either! In these cases, you can use the isRegex method to perform such a test, and other helper
methods to provide useful error messages. A common use is for user-provided regular expressions (such as ones
passed on the command-line). Figure 11.3 gives an example of the intended use of the RegexUtil methods.

RegexUtil.isRegex returns true if its argument is a valid regular expression.
RegexUtil.regexError returns a String error message if its argument is not a valid regular expression, or

null if its argument is a valid regular expression.
RegexUtil.regexException returns the PatternSyntaxException that Pattern.compile(String) throws

when compiling an invalid regular expression. It returns null if its argument is a valid regular expression.

An additional version of each of these methods is also provided that takes an additional group count param-
eter. The RegexUtil.isRegex method verifies that the argument has at least the given number of groups. The
RegexUtil.regexError and RegexUtil.regexException methods return a String error message and Pattern-
SyntaxException, respectively, detailing why the given String is not a syntactically valid regular expression with at
least the given number of capturing groups.

A potential disadvantage of using these methods is that your code becomes dependent on the Checker Framework
at run time as well as at compile time. You can avoid this by copying the implementation of these methods into your
own code.

11.2.5 Suppressing warnings
If you are positive that a particular string that is being used as a regular expression is syntactically valid, but the Regex
Checker cannot conclude this and issues a warning about possible use of an invalid regular expression, then you can
use the RegexUtil.asRegex method to suppress the warning.

54

You can think of this method is a cast: it returns its argument unchanged, but with the type @Regex String if it is
a valid regular expression. It throws an Error if its argument is not a valid regular expression, but you should only use
it when you are sure it will not throw an error.

There is an additional RegexUtil.asRegex method that takes a capturing group parameter. This method works
the same as described above, but returns a @Regex String with the parameter on the annotation set to the value of the
capturing group parameter passed to the method.

This method is mainly a workaround until the Regex Checker supports flow-sensitivity (see Section 19.1.2) and
should be used rarely once the Regex Checker supports flow-sensitivity.

55

Chapter 12

Property file checker

The property file checker ensures that a property file or resource bundle (both of which act like maps from keys to
values) is only accessed with valid keys. Accesses without a valid key either return null or a default value, which
can lead to a NullPointerException or hard-to-trace behavior. The property file checker (Section 12.1, page 56)
ensures that the used keys are found in the corresponding property file or resource bundle.

We also provide two specialized checkers. An internationalization checker (Section 12.2, page 57) verifies that
code is properly internationalized. A compiler message key checker (Section 12.3, page 57) verifies that compiler mes-
sage keys used in the Checker Framework are declared in a property file; This is an example of a simple specialization
of the property file checker, and the Checker Framework source code shows how it is used.

It is easy to customize the property key checker for other related purposes. Take a look at the source code of the
compiler message key checker and adapt it for your purposes.

12.1 Generic property file checker
The generic property file checker ensures that a resource key is located in a specified property file or resource bundle.

The annotation @PropertyKey indicates that the qualified String is a valid key found in the property file or
resource bundle. You do not need to annotate String literals. The checker looks up every String literal in the
specified property file or resource bundle, and adds annotations as appropriate.

If you pass a String variable to be eventually used as a key, you also need to annotate all these variables with
@PropertyKey.

The checker can be invoked by running the following command:

javac -processor checkers.propkey.PropertyKeyChecker
-Abundlenames=MyResource MyFile.java ...

You must specify the resources, which map keys to strings. The checker supports two types of resource: resource
bundles and property files. You can specify one or both of the following two command-line options:

1. -Abundlenames=resource name
resource name is the name of the resource to be used with ResourceBundle.getBundle(). The checker uses
the default Locale and ClassLoader in the compilation system. (For a tutorial about ResourceBundles, see
http://docs.oracle.com/javase/tutorial/ui/features/i18n.html.) Multiple resource bundle names
are separated by colons ’:’.

2. -Apropfiles=prop file
prop file is the name of a properties file that maps keys to values. The file format is described in the Javadoc for
Properties.load(). Multiple files are separated by colons ’:’.

56

12.2 Internationalization checker
The Internationalization Checker verifies that your code is properly internationalized. Internationalization is the pro-
cess of adapting software to different languages and locales. Internationalization is sometimes called localization
(though the terms are not identical), and is sometimes called i18n (because the word starts with “i”, ends with “n”, and
has 18 characters in between; localization is similarly sometimes abbreviated as l10n).

The checker focuses on one aspect of internationalization: user-visible strings should be presented in the user’s
own language, such as English, French, or German. This is achieved by looking up keys in a localization resource,
which maps keys to user-visible strings. For instance, one version of a resource might map "CANCEL STRING" to
"Cancel", and another version of the same resource might map "CANCEL STRING" to "Abbrechen".

There are other aspects to localization, such as formatting of dates (3/5 vs. 5/3 for March 5), that the checker does
not check.

The Internationalization Checker verifies these two properties:

1. Any user-visible text should be obtained from a localization resource. For example, String literals should not
be output to the user.

2. When looking up keys in a localization resource, the key should exist in that resource. This check catches
incorrect or misspelled localization keys.

12.2.1 Internationalization annotations
The Internationalization Checker supports two annotations:

1. @Localized: indicates that the qualified String is a message that has been localized and/or formatted with
respect to the used locale.

2. @LocalizableKey: indicates that the qualified String or Object is a valid key found in the localization re-
source. This annotation is a specialization of the @PropertyKey annotation, that gets checked by the generic
property key checker.

You may need to add the @Localized annotation to more methods in the JDK or other libraries, or in your own
code.

12.2.2 Running the Internationalization Checker
The Internationalization Checker can be invoked by running the following command:

javac -processor checkers.i18n.I18nChecker -Abundlenames=MyResource MyFile.java ...

You must specify the localization resource, which maps keys to user-visible strings. Like the generic property
key checker, the internationalization checker supports two types of localization resource: ResourceBundles using the
-Abundlenames=resource name option or property files using the -Apropfiles=prop file option.

12.3 Compiler Message Key checker
The Checker Framework uses compiler message keys to output error messages. These keys are substituted by localized
strings for user-visible error messages. Using keys instead of the localized strings in the source code enables easier
testing, as the expected error keys can stay unchanged while the localized strings can still be modified. We use the
compiler message key checker to ensure that all internal keys are correctly localized. Instead of using the property file
checker, we use a specialized checker, giving us more precise documentation of the intended use of Strings.

The single annotation used by this checker is @CompilerMessageKey. The Checker Framework is completely
annotated; for example, class checkers.source.Result uses @CompilerMessageKey in methods failure and
warning. For most users of the Checker Framework there will be no need to annotate any Strings, as the checker
looks up all String literals and adds annotations as appropriate.

The compiler message key checker can be invoked by running the following command:

57

javac -processor checkers.compilermsgs.CompilerMessagesChecker
-Apropfiles=messages.properties MyFile.java ...

You must specify the resource, which maps compiler message keys to user-visible strings. The checker supports
the same options as the generic property key checker. Within the Checker Framework we only use property files, so
the -Apropfiles=prop file option should be used.

58

Chapter 13

Signature checker for string representations
of types

The Signature String Checker, or Signature Checker for short, verifies that string representations of types and signa-
tures are used correctly.

Java defines multiple different string representations, and it is easy to misuse them or to miss bugs during testing.
Using the wrong string format leads to a run-time exception or an incorrect result. This is a particular problem for
fully qualified and binary names, which are nearly the same — they differ only for nested classes and arrays.

13.1 Signature annotations
Java defines three main formats for the string representation of a type. There is an annotation for each of these
representations, plus one more. Figure 13.1 shows how they are related.

@FullyQualifiedName A fully qualified name (JLS §6.7), such as package.Outer.Inner, is used in Java code
and in messages to the user.

@BinaryName A binary name (JLS §13.1), such as package.Outer$Inner, is the representation of a type in its
own .class file.

@FieldDescriptor A field descriptor (JVMS §4.3.2), such as Lpackage/Outer$Inner;, is used in a .class
file’s constant pool, for example to refer to other types; it abbreviates primitives and arrays, and uses internal
form (JVMS §4.2) for class names.

@ClassGetName The type representation used by the Class.getName(), Class.forName(String), and Class.forName(String,
boolean, ClassLoader) methods. This format is: for any non-array type, the binary name; and for any array
type, a format like the @link FieldDescriptor field descriptor, but using “.” where the field descriptor uses “/”.

@SourceName A source name is a string that is a valid fully qualified name and a valid binary name. A program-
mer should never or rarely use this — you should know how you intend to use a given variable. The checker

Figure 13.1: Partial type hierarchy for the Signature type system, showing string representations of a Java type.
Programmers only need to write the boldfaced qualifiers, in the second row; qualifiers below those are included to
improve the internal handling of String literals.

59

infers it for literal strings such as "package.MyClass" that are valid in both formats, and you might occa-
sionally see it in an error message. Likewise, you might see other types such as SourceNameForNonArray,
BinaryNameForNonArray, and FieldDescriptorForArray, but you generally should not use them either.

Java also defines other string formats for a type: simple names (JLS §6.2), qualified names (JLS §6.2), and canon-
ical names (JLS §6.7). The Signature Checker does not include annotations for these.

Here are examples of the supported formats:

fully-qualified name binary name Class.getName field descriptor
int int int I
int[][] int[][] [[I [[I
MyClass MyClass MyClass LMyClass;
MyClass[] MyClass[] [LMyClass; [LMyClass;
java.lang.Integer java.lang.Integer java.lang.Integer Ljava/lang/Integer;
java.lang.Integer[] java.lang.Integer[] [Ljava.lang.Integer; [Ljava/lang/Integer;
package.Outer.Inner package.Outer$Inner package.Outer$Inner Lpackage/Outer$Inner;
package.Outer.Inner[] package.Outer$Inner[] [Lpackage.Outer$Inner; [Lpackage/Outer$Inner;

Java defines one format for the string representation of a method signature:

@MethodDescriptor A method descriptor (JVMS §4.3.3) identifies a method’s signature (its parameter and re-
turn types), just as a field descriptor identifies a type. The method descriptor for the method

Object mymethod(int i, double d, Thread t)

is

(IDLjava/lang/Thread;)Ljava/lang/Object;

13.2 What the Signature Checker checks
Certain methods in the JDK, such as Class.forName, are annotated indicating the type they require. The Signature
Checker ensures that clients call them with the proper arguments. The Signature Checker does not reason about string
operations such as concatenation, substring, parsing, etc.

To run the Signature Checker, supply the -processor checkers.signature.SignatureChecker command-
line option to javac.

60

Chapter 14

Units checker

For many applications, it is important to use the correct units of measurement for primitive types. For example,
NASA’s Mars Climate Orbiter (cost: $327 million) was lost because of a discrepancy between use of the metric unit
Newtons and the imperial measure Pound-force.

The Units Checker ensures consistent usage of units. For example, consider the following code:

@m int meters = 5 * UnitsTools.m;
@s int secs = 2 * UnitsTools.s;
@mPERs int speed = meters / secs;

Due to the annotations @m and @s, the variables meters and secs are guaranteed to contain only values with meters
and seconds as units of measurement. Utility class UnitsTools provides constants with which unqualified integer are
multiplied to get values of the corresponding unit. The assignment of an unqualified value to meters, as in meters =
99, will be flagged as an error by the Units Checker.

The division meters/secs takes the types of the two operands into account and determines that the result is of
type meters per second, signified by the @mPERs qualifier. We provide an extensible framework to define the result of
operations on units.

14.1 Units annotations
The checker currently supports two varieties of units annotations: kind annotations (@Length, @Mass, . . .) and the SI
units (@m, @kg, . . .).

Kind annotations can be used to declare what the expected unit of measurement is, without fixing the particular
unit used. For example, one could write a method taking a @Length value, without specifying whether it will take
meters or kilometers. The following kind annotations are defined:

@Area
@Current
@Length
@Luminance
@Mass
@Speed
@Substance
@Temperature
@Time

For each kind of unit, the corresponding SI unit of measurement is defined:

1. For @Area: the derived units square millimeters @mm2, square meters @m2, and square kilometers @km2

61

2. For @Current: Ampere @A
3. For @Length: Meters @m and the derived units millimeters @mm and kilometers @km
4. For @Luminance: Candela @cd
5. For @Mass: kilograms @kg and the derived unit grams @g
6. For @Speed: meters per second @mPERs and kilometers per hour @kmPERh
7. For @Substance: Mole @mol
8. For @Temperature: Kelvin @K and the derived unit Celsius @C
9. For @Time: seconds @s and the derived units minutes @min and hours @h

You may specify SI unit prefixes, using enumeration Prefix. The basic SI units (@s, @m, @g, @A, @K, @mol, @cd)
take an optional Prefix enum as argument. For example, to use nanoseconds as unit, you could use @s(Prefix.nano)
as a unit type. Furthermore, @mm is equivalent to @m(Prefix.milli).

Class UnitsTools contains a constant for each SI unit. To create a value of the particular unit, multiply an
unqualified value with one of these constants. By using static imports, this allows very natural notation; for example,
after statically importing UnitsTools.m, the expression 5 * m represents five meters. As all these unit constants are
public, static, and final with value one, the compiler will optimize away these multiplications.

14.2 Extending the Units Checker
You can create new kind annotations and unit annotations that are specific to the particular needs of your project.
An easy way to do this is by copying and adapting an existing annotation. (In addition, search for all uses of the
annotation’s name throughout the Units Checker implementation, to find other code to adapt; read on for details.)

Here is an example of a new unit annotation.

@Documented
@Retention(RetentionPolicy.RUNTIME)
@TypeQualifier
@SubtypeOf({ Time.class })
@UnitsMultiple(quantity=s.class, prefix=Prefix.nano)
public @interface ns {}

The @SubtypeOfmeta-annotation specifies that this annotation introduces an additional unit of time. The @UnitsMultiple
meta-annotation specifies that this annotation should be a nano multiple of the basic unit @s: @ns and @s(Prefix.nano)
behave equivalently and interchangeably. Most annotation definitions do not have a @UnitsMultiplemeta-annotation.

To take full advantage of the additional unit qualifier, you need to do two additional steps. (1) Provide constants
that convert from unqualified types to types that use the new unit. See class UnitsTools for examples (you will need
to suppress a checker warning in just those few locations). (2) Put the new unit in relation to existing units. Provide
an implementation of the UnitsRelations interface as a meta-annotation to one of the units.

See demonstration demos/units-extension/ for an example extension that defines Hertz (hz) as scalar per
second, and defines an implementation of UnitsRelations to enforce it.

14.3 What the Units Checker checks
The Units Checker ensures that unrelated types are not mixed.

All types with a particular unit annotation are disjoint from all unannotated types, from all types with a different
unit annotation, and from all types with the same unit annotation but a different prefix.

Subtyping between the units and the unit kinds is taken into account, as is the @UnitsMultiple meta-annotation.
Multiplying a scalar with a unit type results in the same unit type.
The division of a unit type by the same unit type results in the unqualified type.
Multiplying or dividing different unit types, for which no unit relation is known to the system, will result in a

MixedUnits type, which is separate from all other units. If you encounter a MixedUnits annotation in an error
message, ensure that your operations are performed on correct units or refine your UnitsRelations implementation.

62

14.4 Running the Units Checker
The Units Checker can be invoked by running the following commands.

• If your code uses only the SI units that are provided by the framework, simply invoke the checker:

javac -processor checkers.units.UnitsChecker MyFile.java ...

• If you define your own units, provide the name of the annotations using the -Aunits option:
javac -processor checkers.units.UnitsChecker -Aunits=myproject.quals.MyUnit,myproject.quals.MyOtherUnit MyFile.java ...

14.5 Suppressing warnings
One example of when you need to suppress warnings is when you initialize a variable with a unit type by a lit-
eral value. To remove this warning message, it is best to introduce a constant that represents the unit and to add a
@SuppressWarnings annotation to that constant. For examples, see class UnitsTools.

14.6 References
• The GNU Units tool provides a comprehensive list of units:
http://www.gnu.org/software/units/

• The F# units of measurement system inspired some of our syntax:
http://en.wikibooks.org/wiki/F Sharp Programming/Units of Measure

63

Chapter 15

Basic checker

The Basic checker enforces only subtyping rules. It operates over annotations specified by a user on the command
line. Thus, users can create a simple type checker without writing any code beyond definitions of the type qualifier
annotations.

The Basic checker can accommodate all of the type system enhancements that can be declaratively specified
(see Chapter 22). This includes type introduction rules (implicit annotations, e.g., literals are implicitly considered
@NonNull) via the @ImplicitFor meta-annotation, and other features such as flow-sensitive type qualifier inference
(Section 19.1.2) and qualifier polymorphism (Section 18.2).

The Basic checker is also useful to type system designers who wish to experiment with a checker before writing
code; the Basic checker demonstrates the functionality that a checker inherits from the Checker Framework.

If you need typestate analysis, then you can extend a typestate checker, much as you would extend the Basic
Checker if you do not need typestate analysis. For more details (including a definition of “typestate”), see Chapter 16.

For type systems that require special checks (e.g., warning about dereferences of possibly-null values), you will
need to write code and extend the framework as discussed in Chapter 22.

15.1 Using the Basic checker
The Basic checker is used in the same way as other checkers (using the -processor checkers.basic.BasicChecker
option; see Chapter 2), except that it requires an additional annotation processor argument via the standard “-A” switch:

• -Aquals: this option specifies a comma-no-space-separated list of the fully-qualified class names of the anno-
tations used as qualifiers in the custom type system. For example,
javac -processor checkers.fenum.BasicChecker

-Aquals=myproject.quals.MyQual,myproject.quals.OtherQual MyFile.java ...
It serves the same purpose as the @TypeQualifiers annotation used by other checkers (see section 22.6).
The annotations listed in -Aquals must be accessible to the compiler during compilation in the classpath. In
other words, they must already be compiled before you run the Basic checker with javac; it is not sufficient to
supply their source files on the command line.

To suppress a warning issued by the basic checker, use a @SuppressWarnings annotation, with the argument being
the unqualified, uncapitalized name of any of the annotations passed to -Aquals. This will suppress all warnings,
regardless of which of the annotations is involved in the warning. (As a matter of style, you should choose one of the
annotations as your @SuppressWarnings key and stick with it for that entire type hierarchy.)

15.2 Basic checker example
Consider a hypothetical Encrypted type qualifier, which denotes that the representation of an object (such as a String,
CharSequence, or byte[]) is encrypted. To use the Basic checker for the Encrypted type system, follow three steps.

64

1. Define an annotation for the Encrypted qualifier:

package myquals;

import checkers.quals.*;

/**
* Denotes that the representation of an object is encrypted.
* ...
*/

@TypeQualifier
@SubtypeOf(Unqualified.class)
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
public @interface Encrypted {}

Don’t forget to compile this class:

$ javac myquals/Encrypted.java

The resulting .class file should either be on your classpath, or on the processor path (set via the -processorpath
command-line option to javac).

2. Write @Encrypted annotations in your program (YourProgram.java):

import myquals.Encrypted;

...

public @Encrypted String encrypt(String text) {
// ...

}

// Only send encrypted data!
public void sendOverInternet(@Encrypted String msg) {

// ...
}

void sendText() {
// ...
@Encrypted String ciphertext = encrypt(plaintext);
sendOverInternet(ciphertext);
// ...

}

void sendPassword() {
String password = getUserPassword();
sendOverInternet(password);

}

You may also need to add @SuppressWarnings annotations to the encrypt and decrypt methods. Analyzing
them is beyond the capability of any realistic type system.

3. Invoke the compiler with the Basic checker, specifying the @Encrypted annotation using the -Aquals option.
You should add the Encrypted classfile to the processor classpath:

$ javac -processorpath myqualspath -processor checkers.basic.BasicChecker \
-Aquals=myquals.Encrypted YourProgram.java

65

YourProgram.java:42: incompatible types.
found : java.lang.String
required: @myquals.Encrypted java.lang.String

sendOverInternet(password);
ˆ

66

Chapter 16

Typestate checker

In a regular type system, a variable has the same type throughout its scope. In a typestate system, a variable’s type can
change as operations are performed on it.

The most common example of typestate is for a File object. Assume a file can be in two states, @Open and
@Closed. Calling the close() method changes the file’s state. Any subsequent attempt to read, write, or close the file
will lead to a run-time error. It would be better for the type system to warn about such problems, or guarantee their
absence, at compile time.

Just as you can extend the Basic Checker to create a type checker, you can extend a typestate checker to create a
type checker that supports typestate analysis. Two extensible typestate analyses that build on the Checker Framework
are available. One is by Adam Warski: http://www.warski.org/typestate.html. The other is by Daniel Wand:
http://typestate.ewand.de/.

16.1 Comparison to flow-sensitive type refinement
The Checker Framework’s flow-sensitive type refinement (Section 19.1.2) implements a form of typestate analysis.
For example, after code that tests a variable against null, the Nullness Checker (Chapter 3) treats the variable’s type as
@NonNull T, for some T.

For many type systems, flow-sensitive type refinement is sufficient. But sometimes, you need full typestate analy-
sis. This section compares the two. (Dependent types and unused variables (Section 19.3) also have similarities with
typestate analysis and can occasionally substitute for it. For brevity, this discussion omits them.)

A typestate analysis is easier for a user to create or extend. Flow-sensitive type refinement is built into the Checker
Framework and is optionally extended by each checker. Modifying the rules requires writing Java code in your checker.
By contrast, it is possible to write a simple typestate checker declaratively, by writing annotations on the methods (such
as close()) that change a reference’s typestate.

A typestate analysis can change a reference’s type to something that is not consistent with its original definition.
For example, suppose that a programmer decides that the @Open and @Closed qualifiers are incomparable — neither
is a subtype of the other. A typestate analysis can specify that the close() operation converts an @Open File into a
@Closed File. By contrast, flow-sensitive type refinement can only give a new type that is a subtype of the declared
type — for flow-sensitive type refinement to be effective, @Closed would need to be a child of @Open in the qualifier
hierarchy (and close() would need to be treated specially by the checker).

67

Chapter 17

Third-party checkers

The checker framework has been used to build other checkers that are not distributed together with the framework.
This chapter mentions just a few of them. If you want a reference to your checker included in this chapter, send us a
link and a short description.

17.1 Units and dimensions checker
A checker for units and dimensions is available at http://www.lexspoon.org/expannots/.

Unlike the Units Checker that is distributed with the Checker Framework (see Section 14), this checker includes
dynamic checks and permits annotation arguments that are Java expressions. This added flexibility, however, requires
that you use a special version both of the Checker Framework and of the Type Annotations compiler.

17.2 Thread locality checker
Loci, a checker for thread locality, is available at http://www.it.uu.se/research/upmarc/loci/. Developer
resources are available at the project page http://java.net/projects/loci/.

17.3 Safety-Critical Java checker
A checker for Safety-Critical Java (SCJ, JSR 302) is available at http://sss.cs.purdue.edu/projects/oscj/
checker/checker.html. Developer resources are available at the project page http://code.google.com/p/scj-jsr302/.

17.4 Generic Universe Types checker
A checker for Generic Universe Types, a lightweight ownership type system, is available from http://www.cs.
washington.edu/homes/wmdietl/ownership/.

17.5 EnerJ checker
A checker for EnerJ, an extension to Java that exposes hardware faults in a safe, principled manner to save energy with
only slight sacrifices to the quality of service, is available from http://sampa.cs.washington.edu/sampa/EnerJ.

68

Chapter 18

Generics and polymorphism

This chapter describes support for Java generics and for the analogous capability over type qualifiers.

18.1 Generics (parametric polymorphism or type polymorphism)
The Checker Framework fully supports type-qualified Java generic types (also known in the research literature as
“parametric polymorphism”). When instantiating a generic type, clients supply the qualifier along with the type
argument, as in List<@NonNull String>.

Before running any checker, we recommend that you eliminate raw types from your code (e.g., your code should
use List<...> as opposed to List). Using generics helps prevent type errors just as using a pluggable type-checker
does, and the Checker Framework has not been extensively tested on code that uses raw types.

18.1.1 Restricting instantiation of a generic class
When you define a generic class in Java, the extends or super clause of the generic type parameter restricts how
the class may be instantiated. For example, given the definition class G<T extends Number> {...}, a client can
instantiate it as G<Integer> but not G<Date>. Similarly, type qualifiers on the generic type parameters can restrict on
how the class may be instantiated. For example, a generic list class might indicate that it can hold only non-null values.
Similarly, a generic map class might indicate it requires an immutable key type, but that it supports both nullable and
non-null value types.

There are two ways to restrict the type qualifiers that may be used on the actual type argument when instantiating
a generic class.

The first technique is the standard Java approach of using the extends or super clause to supply an upper or lower
bound. For example:

MyClass<T extends @NonNull Object> { ... }

MyClass<@NonNull String> m1; // OK
MyClass<@Nullable String> m2; // error

The second technique is to write a type annotation on the declaration of a generic type parameter, which specifies
the exact annotation that is required on the actual type argument, rather than just a bound. For example:

class MyClassNN<@NonNull T> { ... }
class MyClassNble<@Nullable T> { ... }

MyClassNN<@NonNull Number> v1; // OK
MyClassNN<@Nullable Number> v2; // error

69

MyClassNble<@NonNull Number> v4; // error
MyClassNble<@Nullable Number> v3; // OK

18.1.2 A qualifier on a type parameter is like two bounds
A way to view a type annotation on a generic type parameter declaration is as syntactic sugar for the annotation on
both the extends and the super clauses of the declaration. For example, these two declarations have the same effect:

class MyClassNN<@NonNull T> { ... }
class MyClassNN<T extends @NonNull Object super @NonNull void> { ... }

except that the latter is not legal Java syntax. The syntactic sugar is necessary because of two limitations in Java
syntax: it is illegal to specify both the upper and the lower bound, and it is impossible to specify a type annotation for
a lower bound without also specifying a type (use of void is illegal).

Suppose that a type parameter declaration is annotated with @A, and a bound is also given. Then the annotation @A
applies to all bounds that have no explicit annotation. For example, the following pairs of declarations are identical.

class MyClass<@A T> { ... }
class MyClass<T extends @A Object super @A void> { ... }

class MyClass<@A T extends Number> { ... }
class MyClass<T extends @A Number super @A void> { ... }

class MyClass<@A T extends @B Number> { ... }
class MyClass<T extends @B Number super @A void> { ... }

class MyClass<@A T super Number> { ... }
class MyClass<T extends @A Object super @A Number> { ... }

class MyClass<@A T super @B Number> { ... }
class MyClass<T extends @A Object super @B Number> { ... }

18.1.3 Examples of qualifiers on a type parameters
Recall that @Nullable X is a supertype of @NonNull X, for any X. We can see from Section 18.1.2 that almost all of
the following types mean different things:

class MyList1<@Nullable T> { ... }
class MyList2<@NonNull T> { ... }
class MyList3<T extends @Nullable Object> { ... }
class MyList4<T extends @NonNull Object> { ... } // same as MyList2

MyList1 must be instantiated with a nullable type. The implementation must be able to consume (store) a null
value and produce (retrieve) a null value.

MyList2 and MyList4 must be instantiated with non-null type. The implementation has to account for only non-
null values — it does not have to account for consuming or producing null.

MyList3 may be instantiated either way: with a nullable type or a non-null type. The implementation must
consider that it may be instantiated either way — flexible enough to support either instantiation, yet rigorous enough
to impose the correct constraints of the specific instantiation. It must also itself comply with the constraints of the
potential instantiations.

One way to express the difference among MyList1, MyList2, MyList3, and MyList4 is by comparing what
expressions are legal in the implementation of the list — that is, what expressions may appear in the ellipsis, such as
inside a method’s body. Suppose each class has, in the ellipsis, these declarations:

70

T t;
@Nullable T nble; // Section "Type annotations on a use of a generic type variable", below,
@NonNull T nn; // further explains the meaning of "@Nullable T" and "@NonNull T".
void add(T arg) { ... }
T get(int i) { ... }

Then the following expressions would be legal, inside a given implementation. (Compilable source code appears as
file checker-framework/checkers/tests/nullness/GenericsExample.java.)

MyList1 MyList2 MyList3 MyList4
t = null; OK error error error
t = nble; OK error error error
nble = null; OK OK OK OK
nn = null; error error error error
t = this.get(0); OK OK OK OK
nble = this.get(0); OK OK OK OK
nn = this.get(0); error OK error OK
this.add(t); OK OK OK OK
this.add(nble); OK error error error
this.add(nn); OK OK OK OK

The differences are more significant when the qualifier hierarchy is more complicated than just @Nullable and
@NonNull.

18.1.4 Defaults for bounds
Ordinarily, a type parameter declaration with no extends clause means the type parameter can be instantiated with any
type argument at all. For example:

class C<T> { ... }
class C<T extends Object> { ... } // identical to previous line

However, instantiation may be restricted if a default qualifier is in effect (see Section 19.1.1). For example, the
Nullness Checker (Chapter 3) uses a (configurable) default of @NonNull (see Section 3.3.2). That means that either
declaration above is interpreted as

class C<T extends @NonNull Object> { ... }

and an instantiation such as C<@Nullable Number> is illegal. In such a case, to permit all type arguments, the
programmer would write

class C<T extends @Nullable Object> { ... }

It is possible to set the default qualifier for upper bounds separately from other default qualifiers, by writing an
annotation such as @DefaultQualifier(value="Nullable", locations=DefaultLocation.UPPER BOUNDS).

18.1.5 Type annotations on a use of a generic type variable
A type annotation on a use of a generic type variable overrides/ignores any type qualifier (in the same type hierarchy)
on the corresponding actual type argument. For example, suppose that T is a formal type parameter. Then using
@Nullable T within the scope of T applies the type qualifier @Nullable to the (unqualified) Java type of T. This
feature is only rarely used.

Here is an example of applying a type annotation to a generic type variable:

71

class MyClass2<T> {
...
@Nullable T myField = null;
...

}

The type annotation does not restrict how MyClass2 may be instantiated. In other words, both MyClass2<@NonNull
String> and MyClass2<@Nullable String> are legal, and in both cases @Nullable T means @Nullable String.
In MyClass2<@Interned String>, @Nullable T means @Nullable @Interned String.

18.1.6 Covariant type parameters
Java types are invariant in their type parameter. This means that A<X> is a subtype of B<Y> only if X is identi-
cal to Y. For example, ArrayList<Number> is a subtype of List<Number>, but neither ArrayList<Integer> nor
List<Integer> is a subtype of List<Number>. (If they were, there would be a type hole in the Java type system.)
For the same reason, type parameter annotations are treated invariantly. For example, List<@Nullable String> is
not a subtype of List<String>.

When a type parameter is used in a read-only way — that is, when values of that type are read but are never
assigned — then it is safe for the type to be covariant in the type parameter. Use the @Covariant annotation to
indicate this. When a type parameter is covariant, two instantiations of the class with different type arguments have
the same subtyping relationship as the type arguments do.

For example, consider Iterator. Its elements can be read but not written, so Iterator<@Nullable String>
can be a subtype of Iterator<String> without introducing a hole in the type system. Therefore, its type parameter
is annotated with @Covariant. The first type parameter of Map.Entry is also covariant. Another example would be
the type parameter of a hypothetical class ImmutableList.

The @Covariant annotation is trusted but not checked. If you incorrectly specify as covariant a type parameter
that that can be written (say, the class performs a set operation or some other mutation on an object of that type), then
you have created an unsoundness in the type system. For example, it would be incorrect to annotate the type parameter
of ListIterator as covariant, because ListIterator supports a set operation.

18.2 Qualifier polymorphism
The Checker Framework also supports type qualifier polymorphism for methods, which permits a single method to
have multiple different qualified type signatures. This is similar to Java’s generics, but is used in situations where you
cannot use Java generics.

To use a polymorphic qualifier, just write it on a type. For example, you can write @PolyNull anywhere in a
method that you would write @NonNull or @Nullable. A polymorphic qualifiers can be used on a method signature
or body. It may not be used on a class or field.

A method written using a polymorphic qualifier conceptually has multiple versions, somewhat like a template in
C++ or the generics feature of Java. In each version, each instance of the polymorphic qualifier has been replaced by
the same other qualifier from the hierarchy. See the examples below in Section 18.2.1.

The method body must type-check with all signatures. A method call is type-correct if it type-checks under any
one of the signatures. If a call matches multiple signatures, then the compiler uses the most specific matching signature
for the purpose of type-checking. This is the same as Java’s rule for resolving overloaded methods.

To define a polymorphic qualifier, mark the definition with @PolymorphicQualifier. For example, @PolyNull
is a polymorphic type qualifier for the Nullness type system:

@PolymorphicQualifier
@Target(ElementType.TYPE_USE)
public @interface PolyNull { }

See Section 18.2.5 for a way you can sometimes avoid defining a new polymorphic qualifier.

72

18.2.1 Examples of using polymorphic qualifiers
As an example of the use of @PolyNull, method Class.cast returns null if and only if its argument is null:

@PolyNull T cast(@PolyNull Object obj) { ... }

This is like writing:

@NonNull T cast(@NonNull Object obj) { ... }
@Nullable T cast(@Nullable Object obj) { ... }

except that the latter is not legal Java, since it defines two methods with the same Java signature.
As another example, consider

// Returns null if either argument is null.
@PolyNull T max(@PolyNull T x, @PolyNull T y);

which is like writing

@NonNull T max(@NonNull T x, @NonNull T y);
@Nullable T max(@Nullable T x, @Nullable T y);

At a call site, the most specific applicable signature is selected.
Another way of thinking about which one of the two max variants is selected is that the nullness annotations of (the

declared types of) both arguments are unified to a type that is a supertype of both, also known as the least upper bound
or lub. If both arguments are @NonNull, their unification (lub) is @NonNull, and the method return type is @NonNull.
But if even one of the arguments is @Nullable, then the unification (lub) is @Nullable, and so is the return type.

18.2.2 Relationship to subtyping and generics
Qualifier polymorphism has the same purpose and plays the same role as Java’s generics. If a method is written using
generics, it usually does not need qualifier polymorphism. If you have legacy code that is not written generically, and
you cannot change it to use generics, then you can use qualifier polymorphism to achieve a similar effect, with respect
to type qualifiers only. The base Java types are still treated non-generically.

Why not use ordinary subtyping to handle qualifier polymorphism? Ordinarily, when you want a method to work
on multiple types, you can just use Java’s subtyping. For example, the equals method is declared to take an Object
as its first formal parameter, but it can be called on a String or a Date because those are subtypes of Object.

In most cases, the same subtyping mechanism works with type qualifiers. String is a supertype of @Interned
String, so a method toUpperCase that is declared to take a String parameter can also be called on a @Interned
String argument.

You use qualifier polymorphism in the same cases when you would use Java’s generics. (If you can use Java’s
generics, then that is often better and you don’t also need to use qualifier polymorphism.) One example is when you
want a method to operate on collections with different types of elements. Another example is when you want two
different formal parameters to be of the same type, without constraining them to be one specific type.

18.2.3 Using multiple polymorphic qualifiers in a method signature
Usually, it does not make sense to write only a single instance of a polymorphic qualifier in a method definition: if you
write one instance of (say) @PolyNull, then you should use at least two. (An exception is a polymorphic qualifier on
an array element type; this section ignores that case, but see below for further details.)

For example, there is no point to writing

void m(@PolyNull Object obj)

which expands to

73

void m(@NonNull Object obj)
void m(@Nullable Object obj)

This is no different (in terms of which calls to the method will type-check) than writing just

void m(@Nullable Object obj)

The benefit of polymorphic qualifiers comes when one is used multiple times in a method, since then each instance
turns into the same type qualifier. Most frequently, the polymorphic qualifier appears on at least one formal parameter
and also on the return type. It can also be useful to have polymorphic qualifiers on (only) multiple formal parameters,
especially if the method side-effects one of its arguments. For example, consider

void moveBetweenStacks(Stack<@PolyNull Object> s1, Stack<@PolyNull Object> s2) {
s1.push(s2.pop());

}

In this example, if it is acceptable to rewrite your code to use Java generics, the code can be even cleaner:

<T> void moveBetweenStacks(Stack<T> s1, Stack<T> s2) {
s1.push(s2.pop());

}

18.2.4 Using a single polymorphic qualifier on an element type
There is an exception to the general rule that a polymorphic qualifier should be used multiple times in a signature. It
can make sense to use a polymorphic qualifier just once, if it is on an array or generic element type.

For example, consider a routine that returns the index, in an array, of a given element:

public static int indexOf(@PolyNull Object[] a, @Nullable Object elt) { ... }

If @PolyNull were replaced with either @Nullable or @NonNull, then one of these safe client calls would be
rejected:

@Nullable Object[] a1;
@NonNull Object[] a2;

indexOf(a1, someObject);
indexOf(a2, someObject);

Of course, it would be better style to use a generic method, as in either of these signatures:

public static <T extends @Nullable Object> int indexOf(T[] a, @Nullable Object elt) { ... }
public static <T extends @Nullable Object> int indexOf(T[] a, T elt) { ... }

The examples in this section use arrays, but analogous collection examples exist.
These examples show that use of a single polymorphic qualifier may be necessary in legacy code, but can often be

avoided by use of better code style.

18.2.5 The @PolyAll qualifier applies to every type system
Ordinarily, you have to create a new polymorphic type qualifier for each type system you write. This can be tedious.
More seriously, it can lead to an explosion in the number of type annotations, if some method is qualifier-polymorphic
over multiple type qualifier hierarchies.

For example, a method that only performs == on array elements will work no matter what the array’s element types
are:

74

/** Searches for the first occurrence of the given element in the array,
* testing for equality using == (not the equals method). */

public static int indexOfEq(@PolyAll Object[] a, @Nullable Object elt) {
for (int i=0; i<a.length; i++)

if (elt == a[i])
return i;

return -1;
}

The @PolyAll qualifier takes an optional argument so that you can specify multiple, independent polymorphic
type qualifiers. For example, the method also works no matter what the type argument on the second argument is. This
signature is overly restrictive:

/** Returns true if the arrays are elementwise equal,
* testing for equality using == (not the equals method). */

public static int eltwiseEqualUsingEq(@PolyAll Object[] a, @PolyAll Object elt) {
for (int i=0; i<a.length; i++)

if (elt != a[i])
return false;

return true;
}

That signature requires the element type annotation to be identical for the two arguments. For example, it forbids this
invocation:

@Mutable Object[] x;
@Immutable Object y;
... indexOf(x, y) ...

A better signature lets the two arrays’ element types vary independently:

public static int eltwiseEqualUsingEq(@PolyAll(1) Object[] a, @PolyAll(2) Object elt)

Note that in this case, the @Nullable annotation on elt’s type is no longer necessary, since it is subsumed by
@PolyAll.

The @PolyAll annotation applies to every type qualifier hierarchy for which no explicit qualifier is written. For
example, a declaration like @PolyAll @NonNull Object elt is polymorphic over every type system except the
nullness type system, for which the type is fixed at @NonNull. That would be the proper declaration for elt if the
body had used elt.equals(a[i]) instead of elt == a[i].

75

Chapter 19

Advanced type system features

This chapter describes features that are automatically supported by every checker written with the Checker Framework.
You may wish to skim or skip this chapter on first reading. After you have used a checker for a little while and want
to be able to express more sophisticated and useful types, or to understand more about how the Checker Framework
works, you can return to it.

19.1 The effective qualifier on a type (defaults and inference)
A checker sometimes treats a type as having a slightly different qualifier than what is written on the type — especially
if the programmer wrote no qualifier at all. Most readers can skip this section on first reading, because you will
probably find the system simply “does what you mean”, without forcing you to write too many qualifiers in your
program. In particular, qualifiers in method bodies are extremely rare.

Most of this section is applicable only to source code that is being checked by a checker.
The following steps determine the effective qualifier on a type — the qualifier that the checkers treat as being

present.

1. The type system adds implicit qualifiers. Implicit qualifiers can be built into a type system (Section 22.4), in
which case the type system’s documentation should explain all of the type system’s implicit qualifiers. Or, a
programmer may introduce an implicit annotation on each use of class C by writing a qualifier on the declaration
of class C.

• Example 1 (built-in): In the Nullness type system, enum values are never null, nor is a method receiver.
• Example 2 (built-in): In the Interning type system, string literals and enum values are always interned.

2. If a type qualifier is present in the source code, that qualifier is used.
If the type has an implicit qualifier, then it is an error to write an explicit qualifier that is equal to (redundant
with) or a supertype of (weaker than) the implicit qualifier. A programmer may strengthen (write a subtype of)
an implicit qualifier, however.

3. If there is no implicit or explicit qualifier on a type, then a default qualifier may be applied; see Section 19.1.1.
At this point (after step 3), every type has a qualifier.

4. The type system may refine a qualified type on a local variable — that is, treat it as a subtype of how it was
declared or defaulted. This refinement is always sound and has the effect of eliminating false positive error
messages. See Section 19.1.2.

19.1.1 Default qualifier for unannotated types
A type system designer, or an end-user programmer, can cause unannotated references to be treated as if they had a
default annotation.

76

There are several defaulting mechanisms, for convenience and flexibility. When determining the default qualifier
for a use of a type, the following rules are used in order, until one applies.

• Use the innermost user-written @DefaultQualifier, as explained in this section.
• Use the default specified by the type system designer (Section 22.3.3).
• Use @Unqualified, which the framework inserts to avoid ambiguity and simplify the programming interface

for type system designers. Users do not have to worry about this detail, but type system implementers can rely
on the fact that some qualifier is present.

The end-user programmer specifies a default qualifier by writing the @DefaultQualifier annotation on a pack-
age, class, method, or variable declaration. The argument to @DefaultQualifier is the String name of an anno-
tation. It may be a short name like "NonNull", if an appropriate import statement exists. Otherwise, it should be
fully-qualified, like "checkers.nullness.quals.NonNull". The optional second argument indicates where the de-
fault applies. If the second argument is omitted, the specified annotation is the default in all locations. See the Javadoc
of DefaultQualifier for details.

For example, using the Nullness type system (Chapter 3):

import checkers.quals.*; // for DefaultQualifier[s]
import checkers.nullness.quals.NonNull;

@DefaultQualifier("NonNull")
class MyClass {

public boolean compile(File myFile) { // myFile has type "@NonNull File"
if (!myFile.exists()) // no warning: myFile is non-null

return false;
@Nullable File srcPath = ...; // must annotate to specify "@Nullable File"
...
if (srcPath.exists()) // warning: srcPath might be null

...
}

@DefaultQualifier("Mutable")
public boolean isJavaFile(File myfile) { // myFile has type "@Mutable File"

...
}

}

If you wish to write multiple @DefaultQualifier annotations at a single location, use @DefaultQualifiers
instead. For example:

@DefaultQualifiers({
@DefaultQualifier("NonNull"),
@DefaultQualifier("Mutable")

})

If @DefaultQualifier[s] is placed on a package (via the package-info.java file), then it applies to the given
package and all subpackages.

Recall that an annotation on a class definition indicates an implicit qualifier (Section 19.1) that can only be strength-
ened, not weakened. This can lead to unexpected results if the default qualifier applies to a class definition. Thus, you
may want to put explicit qualifiers on class declarations (which prevents the default from taking effect), or exclude
class declarations from defaulting.

When a programmer omits an extends clause at a declaration of a type parameter, the default still applies to the
implicit upper bound. For example, consider these two declarations:

77

class C<T> { ... }
class C<T extends Object> { ... } // identical to previous line

The two declarations are treated identically by Java, and the default qualifier applies to the Object upper bound
whether it is implicit or explicit. (The @NonNull default annotation applies only to the upper bound in the extends
clause, not to the lower bound in the inexpressible implicit super void clause.)

19.1.2 Automatic type refinement (flow-sensitive type qualifier inference)
In order to reduce your burden of annotating types in your program, the checkers soundly treat certain variables and
expressions as having a subtype of their declared or defaulted (Section 19.1.1) type. This functionality never introduces
unsoundness nor causes an error to be missed.

By default, all checkers, including new checkers that you write, can take advantage of this functionality. Most of
the time, users don’t have to think about, and may not even notice, this feature of the framework. The checkers simply
do the right thing even when a programmer omits an annotation on a local variable, or when a programmer writes an
unnecessarily general type in a declaration.

The functionality has a variety of names: automatic type refinement, flow-sensitive type qualifier inference, local
type inference, and sometimes just “flow”.

If you are curious or want more details about this feature, then read on.
As an example, the Nullness checker (Chapter 3) can automatically determine that certain variables are non-null,

even if they were explicitly or by default annotated as nullable. The checker treats a variable or expression as @NonNull

• starting at the time that it is either assigned a non-null value or checked against null (e.g., via an assertion, if
statement, or being dereferenced)

• until it might be re-assigned (e.g., via an assignment that might affect this variable, or via a method call that
might affect this variable).

As with explicit annotations, the implicitly non-null types permit dereferences and assignments to non-null types,
without compiler warnings.

Consider this code, along with comments indicating whether the Nullness checker (Chapter 3) issues a warning.
Note that the same expression may yield a warning or not depending on its context.

// Requires an argument of type @NonNull String
void parse(@NonNull String toParse) { ... }

// Argument does NOT have a @NonNull type
void lex(@Nullable String toLex) {

parse(toLex); // warning: toLex might be null
if (toLex != null) {

parse(toLex); // no warning: toLex is known to be non-null
}
parse(toLex); // warning: toLex might be null
toLex = new String(...);
parse(toLex); // no warning: toLex is known to be non-null

}

If you find examples where you think a value should be inferred to have (or not have) a given annotation, but the
checker does not do so, please submit a bug report (see Section 25.2) that includes a small piece of Java code that
reproduces the problem.

The inference indicates when a variable can be treated as having a subtype of its declared type — for instance,
when an otherwise nullable type can be treated as a @NonNull one. The inference never treats a variable as a supertype
of its declared type (e.g., an expression of @NonNull type is never inferred to be treated as possibly-null).

78

Type inference is never performed for method parameters of non-private methods, nor for non-private fields. More
generally, the inferred information is never written to the .class file as user-written annotations are. If the checker
did inference in externally-visible locations and wrote it to the .class file, then the resulting .class file would
be different depending on whether an annotation processor had been run or not. It is a design goal that the same
annotations appear in the .class file regardless of whether the class is compiled with or without the checker, and this
requires that any public signature be fully annotated by the user rather than inferred.

19.1.3 Fields and flow sensitivity analysis
Flow sensitivity analysis infers the type of fields in some restricted cases:

• A final initialized field: Type inference is performed for final fields that are initialized to a compile-time constant
at the declaration site; so the type of protocol is @NonNull String in the following declaration:

public final String protocol = "https";

Please note that such inferred type may leak to the public interface of the class. To override such behavior, you
can explicitly insert the desired annotation, e.g.,

public final @Nullable String protocol = "https";

• Within method bodies: Type inference is performed for fields in the context of method bodies, like local vari-
ables, but method invocations invalidate any inferred information. Consider the following example, where
updatedAt is a nullable field:

class DBObject {
@Nullable Date updatedAt;

void persistData() {
... // write to disk or other non-volatile memory
updatedAt = null;

}

void update() {
if (updatedAt == null)

updatedAt = new Date();
// updatedAt is nonnull
log("Updating object at " + updatedAt.getTime());

persistData();
// updatedAt is nullable again
log.debug("Saved object updated at " + updatedAt.getTime()); // invalid!

}
}

Here the call to persistData() invalidates the inferred non-null type of updatedAt.
When methods do not modify any object state or have any identity side-effects (e.g., log() method here), you
can annotate these methods as Pure. When a method is annotated as Pure, the flow analyzer carries the inferred
types across the method invocation boundary.

19.1.4 Inherited defaults
In certain situations, it would be convenient for an annotation on a superclass member to be automatically inherited
by subclasses that override it. This feature would reduce both annotation effort and program comprehensibility. In
general, a program is read more often than it is edited/annotated, so the Checker Framework does not currently support
this feature. Here are more detailed justifications:

79

• Currently, a user can determine the annotation on a parameter or return value by looking at a single file. If
annotations could be inherited from supertypes, then a user would have to examine all supertypes to understand
the meaning of an unannotated type in a given file.

• Different annotations might be inherited from a supertype and an interface, or from two interfaces. Presumably,
the subtype’s annotations would be stronger than either (the greatest lower bound in the type system), or an error
would be thrown if no such annotations existed.

If these issues can be resolved, then the feature may be added in the future. Or, it may be added optionally, and
each type-checker implementation can enable it if desired.

19.2 Writing Java expressions as annotation arguments
Sometimes, it is necessary to write a Java expression as the argument to an annotation. As of this writing, the annota-
tions that take a Java expression as an argument are:

• @KeyFor
• @NonNullOnEntry
• @AssertNonNullAfter
• @AssertNonNullIfTrue
• @AssertNonNullIfFalse

The expression is a subset of legal Java expressions:

• the receiver object, this.
• a formal parameter. Write # followed by the one-based parameter index. For example: #1, #3. It is not permitted

to write #0; use this instead.
• a local variable. This is not applicable for method annotations, but is applicable to type annotations such as
@KeyFor. Write the variable name. For example: myLocalVar.

• a static variable. Write the class name and the variable, as in System.out.
Within the class itself, just write the field name — do not write the class name.

• a field of any expression. For example: next, this.next, #0.next, myLocalVar.next.
• a method invocation on any expression. The method must be pure and have no formal parameters. For example:
myClass.getPackage(), myClass.getSuperclass(), myClass.getComponentType().
Warning: currently, annotations that use method calls are not checked. The annotation is trusted, and other
code will rely on it, but it is not verified that other code establishes or maintains the validity of the annotation.
Such expressions are still useful if a human verifies their correctness. They are used in the JDK annotations, for
example.

You may optionally omit a leading “this.”, just as in Java. Thus, this.next and next are equivalent, assuming
that there is no shadowing definition of next.

Limitation: Currently, only one level of field access can be checked; the checker cannot handle, for example,
"this.field1.field2".

(A side note: The formal parameter syntax #0 may seem less convenient than writing the formal parameter name.
This syntax is necessary because in the .class file, no parameter name information is available. Running the compiler
without a checker should create legal annotations in the .class file, so we cannot rely on the checker to translate names
to indices.)

19.3 Unused fields and dependent types
In an inheritance hierarchy, subclasses often introduce new methods and fields. For example, a Marsupial (and its
subclasses such as Kangaroo) might have a variable indicating the size of the animal’s pouch. Because such variables
would not exist in superclasses such as Mammal and Animal, any attempt to use them would be a compile-time error.

80

If you cannot use subtypes but wish to enforce similar requirements using type qualifiers, you can do so. To
restrict which methods may be invoked, you can write an annotation on a method receiver; then the method may only
be invoked on an expression whose type has the given annotation (or one of its subtypes). Section 19.3.1 describes how
to restrict which fields may be accessed: in other words, a given field may only be accessed from an expression whose
type has a given qualifier. Then, Section 19.3.2 describes an even more powerful mechanism, by which the qualifier
of a field depends on the qualifier of the expression from which the field was accessed. (Also see the discussion of
typestate checkers, in Chapter 16.)

19.3.1 Unused fields
A Java subtype can have more fields than its supertype. For example:

class Mammal extends Animal { ... }
class Marsupial extends Mammal {

...
int pouchSize; // pouch capacity, in cubic centimeters
...

}

You can simulate the same effect for type qualifiers: a given field may not be accessed via a reference with a
supertype qualifier, but can be accessed via a reference with a subtype qualifier. For example:

@interface Mammal { }
@interface Marsupial { }
class Animal {

@Unused(when=Mammal.class)
int pouchSize; // pouch capacity, in cubic centimeters
...

}

@Marsupial Animal joey = ...;
... joey.pouchSize ... // OK
@Mammal Animal mae = ...;
... mae.pouchSize ... // compile-time error

The @Unused annotation on a field declares that the field may not be accessed via a receiver of the given qualified
type (or any supertype).

(It would probably be clearer to replace @Unused by an annotation that indicates when the field may be used.)

19.3.2 Dependent types
A variable has a dependent type if its type depends on some other value or type.

The Checker Framework supports a form of dependent types, via the @Dependent annotation. This annotation
changes the type of a field or variable, based on the qualified type of the receiver (this). This can be viewed as a more
expressive form of polymorphism (see Section 18). It can also be seen as a way of linking the meanings of two type
qualifier hierarchies.

Here is a restatement of the example of Section 19.3.1, using @Dependent:

@interface Mammal { }
@interface Marsupial { }
class Animal { ...

// pouch capacity, in cubic centimeters
// (non-null if this animal is a marsupial)

81

@Nullable @Dependent(result=NonNull.class, when=Marsupial.class) Integer pouchSize;
...

}

@Marsupial Animal joey = ...;
... joey.pouchSize.intValue() ... // OK
@Mammal Animal mae = ...;
... mae.pouchSize.intValue() ... // compile-time error:

// dereference of possibly-null mae.pouchSize

However, when the @Unused annotation is sufficient, you should use it instead of @Dependent.

82

Chapter 20

Handling warnings and legacy code

Section 2.4.1 describes a methodology for applying annotations to legacy code. This chapter tells you what to do if,
for some reason, you cannot change your code in such a way as to eliminate a checker warning.

Also recall that you can convert checker errors into warnings via the -Awarns command-line option; see Sec-
tion 2.2.1.

20.1 Checking partially-annotated programs: handling unannotated code
Sometimes, you wish to type-check only part of your program. You might focus on the most mission-critical or error-
prone part of your code. When you start to use a checker, you may not wish to annotate your entire program right
away. You may not have enough knowledge to annotate poorly-documented libraries that your program uses.

If annotated code uses unannotated code, then the checker may issue warnings. For example, the Nullness checker
(Chapter 3) will warn whenever an unannotated method result is used in a non-null context:

@NonNull myvar = unannotated_method(); // WARNING: unannotated_method may return null

If the call can return null, you should fix the bug in your program by removing the @NonNull annotation in your
own program.

If the library call never returns null, there are several ways to eliminate the compiler warnings.

1. Annotate unannotated method in full. This approach provides the strongest guarantees, but may require you
to annotate additional methods that unannotated method calls. See Chapter 21 for a discussion of how to
annotate libraries for which you have no source code.

2. Annotate only the signature of unannotated method, and suppress warnings in its body. Two ways to sup-
press the warnings are via a @SuppressWarnings annotation or by not running the checker on that file (see
Section 20.2).

3. Suppress all warnings related to uses of unannotated method via the skipUses processor option (see Sec-
tion 20.2). Since this can suppress more warnings than you may expect, it is usually better to annotate at least
the method’s signature. If you choose the boundary between the annotated and unannotated code wisely, then
you only have to annotate the signatures of a limited number of classes/methods (e.g., the public interface to a
library or package).

Chapter 21 discusses adding annotations to signatures when you do not have source code available. Section 20.2
discusses suppressing warnings.

If you annotate a third-party library, please share it with us so that we can distribute the annotations with the
Checker Framework; see Section 25.2.

83

20.2 Suppressing warnings
You may wish to suppress checker warnings because of unannotated libraries or un-annotated portions of your own
code, because of application invariants that are beyond the capabilities of the type system, because of checker limita-
tions, because you are interested in only some of the guarantees provided by a checker, or for other reasons. You can
suppress warnings via

1. the @SuppressWarnings annotation,
2. the -AskipUses command-line option,
3. the -AskipDefs command-line option,
4. the -Alint command-line option,
5. not using the -processor command-line option, or
6. checker-specific mechanisms.

We now explain these mechanisms in turn.

20.2.1 @SuppressWarnings annotation
You can suppress specific errors and warnings by use of the @SuppressWarnings("checkername") annotation, for
example @SuppressWarnings("interning") or @SuppressWarnings("nullness"). The argument checkername
is in lower case and is derived from the way you invoke the checker; for example, if you invoke a checker as javac
-processor MyNiftyChecker ..., then you would suppress its error messages with @SuppressWarnings("mynifty").
(An exception is the Basic Checker, for which you use the annotation name; see Section 15.1).

A @SuppressWarnings annotation may be placed on program elements such as a local variable declaration, a
method, or a class. It suppresses all warnings related to the given checker, for that program element.

For instance, one common use is to suppress warnings at a cast that you know is safe. Here is an example that uses
the Tainting Checker (Section 9):

@SuppressWarnings("tainting")
String myvar = (@Untainted String) expr; // expr has type: @Tainted String

It is good practice to suppress warnings in the smallest possible scope. For example, if a particular expression
causes a false positive warning, you should extract that expression into a local variable and place a @SuppressWarnings
annotation on the variable declaration. As another example, if you have annotated the signatures but not the bodies of
the methods in a class or package, put a @SuppressWarnings annotation on the class declaration or on the package’s
package-info.java file.

Another good practice is to use the most specific possible argument to @SuppressWarnings. The string can be of
the form checkername or or checkername:messagekey. The checkername part is as described above. The messagekey
part suppresses only errors/warnings relating to the given message key. For example, cast.unsafe is the key for
warnings about an unsafe cast, and cast.redundant to the key for warnings about a redundant cast.

Thus, the above example could have been written as:

@SuppressWarnings("tainting") // suppresses all tainting-related warnings
@SuppressWarnings("tainting:cast.unsafe") // suppresses tainting warnings about unsafe casts
@SuppressWarnings("tainting:cast") // suppresses tainting warnings about casts

For a list of the message keys, see the messages.properties files in
checker-framework/checkers/src/checkers/checkername/messages.properties. Each checker is built
on the basetype checker and inherits its properties. Thus, to find all the error keys for a checker, you usually need to
examine its own messages.properties file and that of basetype.

If a checker produces a warning/error and you want to determine its message key, you can re-run the checker,
passing the the -Anomsgtext command-line option (Section 22.8).

84

20.2.2 -AskipUses command-line option
You can suppress all errors and warnings at all uses of a given class (but the class itself is still type-checked, unless
you also use the -AskipDefs command-line option, see 20.2.3). Set the -AskipUses command-line option to a
regular expression that matches class names (not file names) for which warnings and errors should be suppressed.
For example, suppose that you use “-AskipUses=ˆjava\.” on the command line (with appropriate quoting) when
invoking javac. Then the checkers will suppress all warnings related to classes whose fully-qualified name starts with
java., such as all warnings relating to invalid arguments and all warnings relating to incorrect use of the return value.

To suppress all errors and warnings related to multiple classes, you can use the regular expression alternative op-
erator “|”, as in “-AskipUses="java\.lang\.|java\.util\."” to suppress all warnings related to uses of classes
belong to the java.lang or java.util packages.

20.2.3 -AskipDefs command-line option
You can suppress all errors and warnings in the definition of a given class (but uses of the class are still type-checked,
unless you also use the -AskipUses command-line option, see 20.2.2). Set the -AskipDefs command-line option
to a regular expression that matches class names (not file names) in whose definition warnings and errors should be
suppressed. For example, if you use “-AskipDefs=ˆmypackage\.” on the command line (with appropriate quoting)
when invoking javac, then the definitions of classes whose fully-qualified name starts with mypackage. will not be
checked.

Another way not to type-check a file is not to pass it on the compiler command-line: the Checker Framework
type-checks only files that are passed to the compiler on the command line, and does not type-check any file that is not
passed to the compiler. The -AskipDefs command-line option is intended for situations in which the build system is
hard to understand or change. In such a situation, a programmer may find it easier to supply an extra command-line
argument, than to change the set of files that is compiled.

20.2.4 -Alint command-line option
The -Alint option enables or disables optional checks, analogously to javac’s -Xlint option. Each of the distributed
checkers supports at least the following lint options:

• cast:unsafe (default: on) warn about unsafe casts that are not checked at run time, as in ((@NonNull String)
myref). Such casts are generally not necessary when flow-sensitive local type refinement is enabled.

• cast:redundant (default: on) warn about redundant casts that are guaranteed to succeed at run time, as in
((@NonNull String) "m"). Such casts are not necessary, because the target expression of the cast already has
the given type qualifier.

• cast Enable or disable all cast-related warnings.
• all Enable or disable all lint warnings, including checker-specific ones if any. Examples include nulltest for

the Nullness Checker (see Section 1) and dotequals for the Interning Checker (see Section 4.3). This option
does not enable/disable the checker’s standard checks, just its optional ones.

• none The inverse of all: disable or enable all lint warnings, including checker-specific ones if any.

To activate a lint option, write -Alint= followed by a comma-delimited list of check names. If the option is preceded
by a hyphen (-), the warning is disabled. For example, to disable all lint options except redundant casts, you can pass
-Alint=-all,cast:redundant on the command line.

20.2.5 No -processor command-line option
You can also compile parts of your code without use of the -processor switch to javac. No checking is done during
such compilations.

85

20.2.6 Checker-specific mechanisms
Finally, some checkers have special rules. For example, the Nullness checker (Chapter 3) uses assert statements
that contain null checks, and the special castNonNull method, to suppress warnings (Section 3.4.1). This manual
also explains special mechanisms for suppressing warnings issued by the Fenum checker (Section 8.4) and the Units
checker (Section 14.5).

20.3 Backward compatibility with earlier versions of Java
Sometimes, your code needs to be compiled by people who are not using a compiler that supports type annotations.
Sections 20.3.1–20.3.3 discuss this situation, which you can handle by writing annotations in comments.

In other cases, your code needs to be run by people who are not using a Java 8 JVM. Section 20.3.4 discusses this
situation, which you can handle by passing the -target 5 command-line argument.

(Note: These are features of the Type Annotations compiler that is distributed along with the Checker Framework.
They are not supported by the mainline OpenJDK compiler. These features are the key difference between the Type
Annotations compiler and the OpenJDK compiler on which it is built.)

20.3.1 Annotations in comments
A Java 4 compiler does not permit use of annotations, and a Java 5/6/7 compiler only permits annotations on declara-
tions (but not on generic arguments, casts, extends clauses, method receiver, etc.).

So that your code can be compiled by any Java compiler (for any version of the Java language), you may write
any annotation inside a /*. . .*/ Java comment, as in List</*@NonNull*/ String>. The Type Annotations compiler
treats the code exactly as if you had not written the /* and */. In other words, the Type Annotations compiler will
recognize the annotation, but your code will still compile with any other Java compiler.

This feature only works if you provide no -source command-line argument to javac, or if the -source argument
is 1.8 or 8.

In a single program, you may write some annotations in comments, and others outside of comments.
By default, the compiler ignores any comment that contains spaces at the beginning or end, or between the @ and

the annotation name. In other words, it reads /*@NonNull*/ as an annotation but ignores /* @NonNull*/ or /*@
NonNull*/ or /*@NonNull */. This feature enables backward compatibility with code that contains comments that
start with @ but are not annotations. (The ESC/Java [FLL+02], JML [LBR06], and Splint [Eva96] tools all use “/*@”
or “/* @” as a comment marker.) Compiler flag -XDTA:spacesincomments causes the compiler to parse annotation
comments even when they contain spaces. You may need to use -XDTA:spacesincomments if you use Eclipse’s
“Source > Correct Indentation” command, since it inserts space in comments. But the annotation comments are less
readable with spaces, so you may wish to disable inserting spaces: in the Formatter preferences, in the Comments tab,
unselect the “enable block comment formatting” checkbox.

There is no way to turn off the annotations in comments feature. If you don’t want this feature, you can use a
standard Java 8 compiler that supports type annotations but not annotations in comments. If your code already contains
comments of the form /*@...*/ that look like type annotations, and you want the Type Annotations compiler not to
try to interpret them, then you can add spaces to the comments.

There is a more powerful mechanism that permits arbitrary code to be written in a comment that is formatted
as “/*>>>. . .*/”, with the first three characters of the comment being greater-than signs. As with annotations in
comments, the commented code is ignored by ordinary compilers but is treated like ordinary code by the UW Type
Annotations compiler. This mechanism is intended only to support writing import statements and the new receiver
(“this”) syntax, as in

public boolean getResult(/*>>> @ReadOnly MyClass this*/) { ... }
public boolean getResult(/*>>> @ReadOnly MyClass this, */ String argument) { ... }

for a method that does not modify its receiver.
It would be possible to abuse this mechanism to inject code only when using the Type Annotations compiler. Doing

so is not a sanctioned use of the mechanism.

86

20.3.2 Implicit import statements
When writing source code with annotations, it is more convenient to write a short form such as @NonNull instead of
@checkers.nullness.quals.NonNull. Here are ways to achieve this goal.

• The traditional way to do this is to write an import statement like “import checkers.nullness.quals.*;”.
This works, but everyone who compiles the code (no matter what compiler they use, and even if the annotations
are in comments) must have the annotation definitions (e.g., the checkers.jar or checkers-quals.jar file)
on their classpath. The reason is that a Java compiler issues an error if an imported package is not on the
classpath. See Section 2.1.1.

• Write an import statement in a comment, just as for annotations in comments:

/*>>> import checkers.nullness.quals.*; */

• An alternative is to set the shell environment variable jsr308 imports when you compile the code. The Type
Annotations compiler treats this as if the given packages/classes were imported, but other compilers ignore
the jsr308 imports environment variable — they do not need it, since they do not support annotations in
comments. Thus, your code can compile whether or not the Type Annotations compiler is being used.
You can specify multiple packages/classes separated by the classpath separator (same as the file path separator: ;
for Windows, and : for Unix and Mac). For example, to implicitly import the Nullness and Interning qualifiers,
set jsr308 imports to checkers.nullness.quals.*:checkers.interning.quals.*.
Three ways to set an environment variable are:

– Set the environment variable in your shell. For example, in bash, you could do export jsr308 imports=’checkers.nullness.quals.*’.
This takes effect for all subsequent commands in that shell. To take effect for all shells that you run, put
the command in your ˜/.bashrc file.

– Set the environment variable for a single command. For example, in bash prefix the javac command by
jsr308 imports=’checkers.nullness.quals.*’.

– Set the environment variable for a single command, via a javac argument. Use the javac command-line
argument -J-Djsr308 imports=’checkers.nullness.quals.*’.

If you issue the javac command from the command line or in a Makefile, you may need to add quotes (as shown
above), to prevent your shell from expanding the * character. If you supply the -J-Djsr308 imports argument
via an Ant buildfile, you do not need the extra quoting.

• If it is not possible to set the environment variable (for example, Maven bug PLXCOMP-190 makes it impossible
to use the -J-Djsr308 imports command-line argument), you can instead use a different javac command-
line argument: -jsr308 imports ... or -Djsr308.imports=... (they have the same effect). The same
syntax for the packages/classes, and the same warnings about quoting from the command line, apply as for the
jsr308 imports environment variable.

20.3.3 Migrating away from annotations in comments
Suppose that your codebase currently uses annotations in comments, but you wish to remove the comment characters
around your annotations, because in the future you will use only compilers that support type annotations. This Unix
command removes the comment characters, for all Java files in the current working directory or any subdirectory.

// TODO: This doesn’t handle the ¿¿¿ comments. I should adapt it to do so.

find . -type f -name ’*.java’ -print \
| xargs grep -l -P ’/*\s*@([ˆ */]+)\s**/’ \
| xargs perl -pi.bak -e ’s|/*\s*@([ˆ */]+)\s**/|@\1|g’

You can customize this command:

• To process comments with embedded spaces and asterisks, change two instances of “[ˆ */]” to “[ˆ/]”.
• To ignore comments with leading or trailing spaces, remove the four instances of “\s*”.
• To not make backups, remove “.bak”.

87

If your code used implicit import statements (Section 20.3.2), then after uncommenting the annotations, you may
also need to introduce explicit import statements into your code.

20.3.4 Annotations in Java 5 .class files
If you supply the -target 5 command-line argument along with no -source argument (or -source 8, which is
equivalent), then the Type Annotations compiler creates a .class file that can be run on a Java 5 JVM, but that
contains the type annotations. (It does not matter whether the type annotations were written in comments or not.) The
fact that the .class file contains the type annotations is useful when type-checking client code. If you try to type-
check client code against a library that lacks type annotations, then spurious warnings can result. So, use of -target
5 gives backward compatibility with earlier JVMs while still permitting pluggable type-checking.

Ordinary Java compilers do not let you use a -target command-line argument with a value less than the -source
argument.

Use of the -source 5 command-line argument produces a .class file that does not contain type annotations. One
reason you might want to periodically compile with the -source 5 argument is to ensure that your code does not use
any Java 8 features other than type annotations in comments.

88

Chapter 21

Annotating libraries

When annotated code uses an unannotated library, a checker may issue warnings. As described in Section 20.1,
the best way to correct this problem is to add annotations to the library. (Alternately, you can instead suppress all
warnings related to an unannotated library by use of the -AskipUses command-line option; see Section 20.2.) If you
have source code for the library, you can easily add the annotations. This chapter tells you how to add annotations to
a library for which you have no source code, because the library is distributed only in binary form (as .class files,
possibly packaged in a .jar file). This chapter is also useful if you do not wish to edit the library’s source code.

You can make the annotations known to the checkers in two ways.

• You can write annotations in a “stub file” containing classes with no method bodies. Section 21.2 describes how
to create and use stub files.

• You can insert annotations in the compiled .class files of the library. You would express the annotations tex-
tually, typically as an annotation index file, and then insert them in the library by using the Annotation File
Utilities (http://types.cs.washington.edu/annotation-file-utilities/). See the Annotation File
Utilities documentation for full details.

The Checker Framework distribution contains annotations for popular libraries, such as the JDK. It uses both of
the above mechanisms. The Nullness, Javari, IGJ, and Interning Checkers use an annotated JDK (Section 21.3), and
all other checkers use stub files (Section 21.2).

If you annotate additional libraries, please share them with us so that we can distribute the annotations with the
Checker Framework; see Section 25.2. You can determine the correct annotations for a library either automatically by
running an inference tool, or manually by reading the documentation. Presently, type inference tools are available for
the Nullness (Section 3.3.4) and Javari (Section 6.2.2) type systems.

21.1 Choosing between stub files and annotated .class files
A checker can read annotations either from a stub file or from a library’s .class files. This section helps you choose
between the two alternatives.

Once created, a stub file can be used directly; this makes it an easy way to get started with library annotations.
When provided by the author of the checker, a stub file is used automatically, with no need for the user to supply a
command-line option.

Inserting annotations in a library’s .class files takes an extra step using an external tool, the Annotation File
Utilities (http://types.cs.washington.edu/annotation-file-utilities/). However, this process does not
suffer the limitations of stub files (Section 21.2.4).

89

21.2 Using stub classes
A stub file contains “stub classes” that contain annotated signatures, but no method bodies. A checker uses the
annotated signatures at compile time, instead of or in addition to annotations that appear in the library.

Section 21.2.1 describes how to create stub classes. Section 21.2.2 describes how to use stub classes. These
sections illustrate stub classes via the example of creating a @Interned-annotated version of java.lang.String.
You don’t need to repeat these steps to handle java.lang.String for the Interning Checker, but you might do
something similar for a different class and/or checker.

21.2.1 Creating a stub file
If you have access to the Java source code

Every Java file is a stub file. If you have access to the Java file, then you can use the Java file as the stub file,
without removing any of the parts that the stub file format permits you to. Just add annotations to the signatures,
leaving the method bodies unchanged. Optionally (but highly recommended!), run the type-checker to verify that your
annotations are correct. When you run the type-checker on your annotations, there should not be any stub file that
also contains annotations for the class. In particular, if you are type-checking the JDK itself, then you should use the
-Aignorejdkastub command-line option.

This approach retains the original documentation and source code, making it easier for a programmer to double-
check the annotations. It also enables creation of diffs, easing the process of upgrading when a library adds new
methods. And, the annotations are in a format that the library maintainers can even incorporate.

The downside of this approach is that the stub files are larger. This can slow down parsing. Furthermore, a
programmer must search the stub file for a given method rather than just skimming a few pages of method signatures.

If you do not have access to the Java source code

If you do not have access to the library source code, then you can create a stub file from the class file (Section 21.2.1),
and then annotate it. The rest of this section describes this approach.

1. Create a stub file by running the stub class generator. (checkers.jar must be on your classpath.)

cd nullness-stub
java checkers.util.stub.StubGenerator java.lang.String > String.astub

Supply it with the fully-qualified name of the class for which you wish to generate a stub class. The stub class
generator prints the stub class to standard out, so you may wish to redirect its output to a file.

2. Add import statements for the annotations. So you would need to add the following import statement at the
beginning of the file:

import checkers.interning.quals.*;

The stub file parser silently ignores any annotations that it cannot resolve to a type, so don’t forget the import
statement.

3. Add annotations to the stub class. For example, you might annotate the String.intern() method as follows:

@Interned String intern();

You may also remove irrelevant parts of the stub file; see Section 21.2.3.

21.2.2 Using a stub file
The -Astubs argument causes the Checker Framework to read annotations from annotated stub classes in preference
to the unannotated original library classes. For example:
javac -processor checkers.interning.InterningChecker -Astubs=String.astub:stubs MyFile.java MyOtherFile.java ...

90

Each stub path entry is a file or a directory; specifying a directory is equivalent to specifying every file in it whose
name ends with .astub. The stub path entries are delimited by File.pathSeparator (‘:’ for Linux and Mac, ‘;’
for Windows).

A checker automatically reads the stub file jdk.astub. (The checker author should place it in the same directory
as the Checker class, i.e., the subclass of BaseTypeVisitor.) Programmers should only use the -Astubs argument
for additional stub files they create themselves.

21.2.3 Stub file format
Every Java file is a valid stub file. However, you can omit information that is not relevant to pluggable type-checking;
this makes the stub file smaller and easier for people to read and write.

As an illustration, a stub file for the Interning type system (Chapter 4) could be:

import checkers.interning.quals.Interned;
package java.lang;
@Interned class Class<T> { }
class String {

@Interned String intern();
}

The stub file format is allowed to differ from Java source code in the following ways:

Method bodies: The stub class does not require method bodies for classes; any method body may be replaced by a
semicolon (;), as in an interface or abstract method declaration.

Method declarations: You only have to specify the methods that you need to annotate. Any method declaration may
be omitted, in which case the checker reads its annotations from library’s .class files. (If you are using a stub
class, then typically the library is unannotated.)

Declaration specifiers: Declaration specifiers (e.g., public, final, volatile) may be omitted.
Import statements: The only required import statements are the ones to import type annotations. Such imports must

be at the beginning of the file. Other import statements are optional.
Multiple classes and packages: The stub file format permits having multiple classes and packages. The packages

are separated by a package statement: package my.package;. Each package declaration may occur only once;
in other words, all classes from a package must appear together.

21.2.4 Limitations
The stub file reader has several limitations:

• It does not handle enums.
• It does not handle nested classes. To work around this, it permits a top-level class to be written with a $ in its

name, and applies the annotations to the appropriate nested class.

If these limitations are a problem, then you should insert annotations in the library’s .class files instead.

21.3 Using distributed annotated JDKs
The Checker Framework distribution contains annotated JDKs at the path checkers/jdk/jdk.jar. The javac that
is distributed with the Checker Framework uses the annotated JDKs by default.

If you use a different javac, then you must add a -Xbootclasspath/p: argument, which causes the compiler
to read annotations from annotated JDK classes in preference to the unannotated original library classes. Supply
-Xbootclasspath/p: in addition to whatever other arguments you usually use, including -classpath. For example:

javac -processor checkers.nullness.NullnessChecker -Xbootclasspath/p:${CHECKERS}/jdk/jdk.jar my_source_files

91

If you do not supply the -Xbootclasspath/p: option, the checker will print a message warning you to do so. In
the unlikely event that you want to suppress this warning, use -Anocheckjdk.

The annotated JDK should not be in your classpath at run time, only at compile time.
The supplied annotated JDK is a version of JDK 6. If you wish to have an annotated version of JDK 7, you will

need to create it yourself. Running ant jdk.jar from the checkers/ directory will perform this process.

21.4 Troubleshooting/debugging annotated libraries
Sometimes, it may seem that a checker is treating a library as unannotated even though the library has annotations. The
compiler has two flags that may help you in determining whether library files are read, and if they are read whether
the library’s annotations are parsed.

-verbose Outputs info about compile phases — when the compiler reads/parses/attributes/writes any file. Also
outputs the classpath and sourcepath paths.

-XDTA:parser (which is equivalent to -XDTA:reader plus -XDTA:writer) Sets the internal debugJSR308 flag,
which output information about reading and writing.

92

Chapter 22

How to create a new checker

This chapter describes how to create a checker — a type-checking compiler plugin that detects bugs or verifies their
absence. After a programmer annotates a program, the checker plugin verifies that the code is consistent with the
annotations. If you only want to use a checker, you do not need to read this chapter.

Writing a simple checker is easy! For example, here is a complete, useful type checker:

@TypeQualifier
@SubtypeOf(Unqualified.class)
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
public @interface Encrypted {}

This checker is so short because it builds on the Basic Checker (Chapter 15). See Section 15.2 for more details
about this particular checker. When you wish to create a new checker, it is often easiest to begin by building it
declaratively on top of the Basic Checker, and then return to this chapter when you need more expressiveness or power
than the Basic Checker affords.

You can also create your own checker by customizing a different existing checker. Specific checkers that are
designed for extension (besides the Basic Checker) include the Fake Enumeration Checker (Chapter 8, page 45), the
Units Checker (Chapter 14, page 61), and the typestate checkers (Chapter 16, page 67). Or, you can copy and then
modify a different existing checker — whether one distributed with the Checker Framework or a third-party one.

You can place your checker’s source files wherever you like. When you compile your checker, $CHECKERS/binary/jsr308-all.jar
should be on your classpath. (If you wish to modify an existing checker in place, or to place the source code for your
new checker in your own private copy of the Checker Framework source code, then you need to be able to re-compile
the Checker Framework, as described in Section 25.3.)

The rest of this chapter contains many details for people who want to write more powerful checkers. You do not
need all of the details, at least at first. In addition to reading this chapter of the manual, you may find it helpful to
examine the implementations of the checkers that are distributed with the Checker Framework. You can even create
your checker by modifying one of those. The Javadoc documentation of the framework and the checkers is in the
distribution and is also available online at http://types.cs.washington.edu/checker-framework/current/
doc/.

If you write a new checker and wish to advertise it to the world, let us know so we can mention it in the Checker
Framework manual, link to it from the webpages, or include it in the Checker Framework distribution. For examples,
see Chapters 16 and 17.

22.1 Relationship of the Checker Framework to other tools
This table shows the relationship among various tools. All of the tools use the Type Annotations (JSR 308) syntax.
You use the Checker Framework to build pluggable type systems, and the Annotation File Utilities to manipulate
.java and .class files.

93

Basic
Checker

Nullness
Checker

Mutation
Checker

Tainting
Checker

. . . Your
Checker

Base Checker
(enforces subtyping rules)

Type
inference

Other
tools

Checker Framework
(enables creation of pluggable type-checkers)

Annotation File Utilities
(.java↔ .class files)

Type Annotations syntax and classfile format (“JSR 308”)
(no built-in semantics)

The Base Checker enforces the standard subtyping rules on extended types. The Basic Checker is a simple use of
the Base Checker that supports providing type qualifiers on the command line. You usually want to build your checker
on the Base Checker.

22.2 The parts of a checker
The Checker Framework provides abstract base classes (default implementations), and a specific checker overrides as
little or as much of the default implementations as necessary. Sections 22.3–22.6 describe the components of a type
system as written using the Checker Framework:

22.3 Type qualifiers and hierarchy. You define the annotations for the type system and the subtyping relationships
among qualified types (for instance, that @NonNull Object is a subtype of @Nullable Object).

22.4 Type introduction rules. For some types and expressions, a qualifier should be treated as implicitly present
even if a programmer did not explicitly write it. For example, in the Nullness type system every literal other
than null has a @NonNull type; examples of literals include "some string" and java.util.Date.class.

22.5 Type rules. You specify the type system semantics (type rules), violation of which yields a type error. There
are two types of rules.

• Subtyping rules related to the type hierarchy, such as that every assignment and pseudo-assignment satisfies
a subtyping relationship. Your checker automatically inherits these subtyping rules from the Base Checker
(Chapter 15).
• Additional rules that are specific to your particular checker. For example, in the Nullness type system,

only references with a @NonNull type may be dereferenced. You write these additional rules yourself.

22.6 Interface to the compiler. The compiler interface indicates which annotations are part of the type system,
which command-line options and @SuppressWarnings annotations the checker recognizes, etc.

22.3 Annotations: Type qualifiers and hierarchy
A type system designer specifies the qualifiers in the type system and the type hierarchy that relates them.

Type qualifiers are defined as Java annotations [Dar06]. In Java, an annotation is defined using the Java @interface
keyword. For example:

// Define an annotation for the @NonNull type qualifier.
@TypeQualifier
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
public @interface NonNull { }

Write the @TypeQualifier meta-annotation on the annotation definition to indicate that the annotation represents a
type qualifier and should be processed by the checker. Also write a @Target meta-annotation to indicate where the
annotation may be written. (An annotation that is written on an annotation definition, such as @TypeQualifier, is
called a meta-annotation.)

The type hierarchy induced by the qualifiers can be defined either declaratively via meta-annotations (Section 22.3.1),
or procedurally through subclassing QualifierHierarchy or TypeHierarchy (Section 22.3.2).

94

22.3.1 Declaratively defining the qualifier and type hierarchy
Declaratively, the type system designer uses two meta-annotations (written on the declaration of qualifier annotations)
to specify the qualifier hierarchy.

• @SubtypeOf denotes that a qualifier is a subtype of another qualifier or qualifiers, specified as an array of class
literals. For example, for any type T , @NonNull T is a subtype of @Nullable T :

@TypeQualifier
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
@SubtypeOf({ Nullable.class })
public @interface NonNull { }

@SubtypeOf accepts multiple annotation classes as an argument, permitting the type hierarchy to be an arbitrary
DAG. For example, in the IGJ type system (Section 5.2), @Mutable and @Immutable induce two mutually
exclusive subtypes of the @ReadOnly qualifier.
All type qualifiers, except for polymorphic qualifiers (see below and also Section 18.2), need to be properly
annotated with SubtypeOf.
The top qualifier is annotated with @SubtypeOf({ }). The top qualifier is the qualifier that is a supertype of
all other qualifiers. For example, @Nullable is the top qualifier of the Nullness type system, hence is defined
as:

@TypeQualifier
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
@SubtypeOf({ })
public @interface Nullable { }

If the top qualifier of the hierarchy is the unqualified type, then its children will use @SubtypeOf(Unqualified.class),
but no @SubtypeOf({ }) annotation on the top qualifier is necessary. For an example, see the Encrypted
type system of Section 15.2.

• @PolymorphicQualifier denotes that a qualifier is a polymorphic qualifier. For example:

@TypeQualifier
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
@PolymorphicQualifier
public @interface PolyNull { }

For a description of polymorphic qualifiers, see Section 18.2. A polymorphic qualifier needs no @SubtypeOf
meta-annotation and need not be mentioned in any other @SubtypeOf meta-annotation.

The declarative and procedural mechanisms for specifying the hierarchy can be used together. In particular, when
using the @SubtypeOf meta-annotation, further customizations may be performed procedurally (Section 22.3.2) by
overriding the isSubtype method in the checker class (Section 22.6). However, the declarative mechanism is sufficient
for most type systems.

22.3.2 Procedurally defining the qualifier and type hierarchy
While the declarative syntax suffices for many cases, more complex type hierarchies can be expressed by overriding,
in BaseTypeChecker, either createQualifierHierarchy or createTypeHierarchy (typically only one of these
needs to be overridden). For more details, see the Javadoc of those methods and of the classes QualifierHierarchy
and TypeHierarchy.

The QualifierHierarchy class represents the qualifier hierarchy (not the type hierarchy), e.g., Mutable is a
subtype of ReadOnly. A type-system designer may subclass QualifierHierarchy to express customized qualifier
relationships (e.g., relationships based on annotation arguments).

The TypeHierarchy class represents the type hierarchy — that is, relationships between annotated types, rather
than merely type qualifiers, e.g., @Mutable Date is a subtype of @ReadOnly Date. The default TypeHierarchy
uses QualifierHierarchy to determine all subtyping relationships. The default TypeHierarchy handles generic

95

type arguments, array components, type variables, and wildcards in a similar manner to the Java standard subtype
relationship but with taking qualifiers into consideration. Some type systems may need to override that behavior. For
instance, the Java Language Specification specifies that two generic types are subtypes only if their type arguments
are identical: for example, List<Date> is not a subtype of List<Object>, or of any other generic List. (In the
technical jargon, the generic arguments are “invariant” or “novariant”.) The Javari type system overrides this behavior
to allow some type arguments to change covariantly in a type-safe manner (e.g., List<@Mutable Date> is a subtype
of List<@QReadOnly Date>).

22.3.3 Defining a default annotation
A type system designer may set a default annotation. A user may override the default; see Section 19.1.1.

The type system designer may specify a default annotation declaratively, using the @DefaultQualifierInHierarchy
meta-annotation. Note that the default will apply to any source code that the checker reads, including stub libraries,
but will not apply to compiled .class files that the checker reads.

Alternately, the type system designer may specify a default procedurally, by calling the QualifierDefaults.addAbsoluteDefault
method. You may do this even if you have declaratively defined the qualifier hierarchy; see the Nullness checker’s
implementation for an example.

Recall that defaults are distinct from implicit annotations; see Sections 19.1 and 22.4.

22.3.4 Completeness of the type hierarchy
Bottom qualifier It is usually a good idea to have a bottom qualifier in your type hierarchy — a qualifier that is a
(direct or indirect) subtype of every other qualifier. For instance, the hierarchy of Figure 5.1 lacks a bottom qualifier,
because there is no qualifier that is a subtype of both @Immutable and @Mutable. The bottom qualifier is the natural
type for the null value, which can be viewed as having any type at all. Without a bottom qualifier, type-checking
becomes less precise. Users should never write the bottom qualifier explicitly; it is merely used for the null value.

The actual IGJ hierarchy does contain a (non-user-visible) bottom qualifier, defined like this:

@TypeQualifier
@SubtypeOf({Mutable.class, Immutable.class, I.class})
@Target({}) // forbids a programmer from writing it in a program
@ImplicitFor(trees = { Kind.NULL_LITERAL, Kind.CLASS, Kind.NEW_ARRAY },

typeClasses = { AnnotatedPrimitiveType.class })
@interface IGJBottom { }

Top qualifier Similarly, it is usually a good idea to have a top qualifier in your type hierarchy — a qualifier that is a
(direct or indirect) supertype of every other qualifier. When a type system lacks a top qualifier (or any other qualifier),
then users lose flexibility in expressing defaults.

For instance, the @Encrypted type system of Section 15.2 lacks an explicit top qualifier:

@TypeQualifier
@SubtypeOf(Unqualified.class)
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
public @interface Encrypted {}

The default is @Unqualified, and there is no way for a user to change that. (A user could not specify @DefaultQualifier(Unqualified.class),
because many type systems share @Unqualified and it is not clear which type system the annotation is intended to
refer to.)

By contrast, the Nullness type system has an explicit qualifier for every possible meaning: both @Nullable and
@NonNull. Because it has no built-in meaning for unannotated types; a user may specify a default qualifier. This
greater flexibility for the user is usually preferable.

96

There are reasons to omit the top qualifier. The ability to omit the top qualifier is a convenience when writing a
type system, because it reduces the number of qualifiers that must be defined; this is especially convenient when using
the Basic Checker (Section 15). More importantly, omitting the top qualifier restricts the user in ways that the type
system designer may have intended.

22.4 Type factory: Implicit annotations
For some types and expressions, a qualifier should be treated as present even if a programmer did not explicitly write
it. For example, every literal (other than null) has a @NonNull type.

The implicit annotations may be specified declaratively and/or procedurally.

22.4.1 Declaratively specifying implicit annotations
The @ImplicitFor meta-annotation indicates implicit annotations. When written on a qualifier, ImplicitFor speci-
fies the trees (AST nodes) and types for which the framework should automatically add that qualifier.

In short, the types and trees can be specified via any combination of five fields in ImplicitFor:

• trees: an array of com.sun.source.tree.Tree.Kind, e.g., NEW ARRAY or METHOD INVOCATION
• types: an array of TypeKind, e.g., ARRAY or BOOLEAN
• treeClasses: an array of class literals for classes implementing Tree, e.g., LiteralTree.class or ExpressionTree.class
• typeClasses: an array of class literals for classes implementing javax.lang.model.type.TypeMirror, e.g.,
javax.lang.model.type.PrimitiveType. Often you should use a subclass of AnnotatedTypeMirror.

• stringPatterns: an array of regular expressions that will be matched against string literals, e.g., "[01]+" for
a binary number. Useful for annotations that indicate the format of a string.

For example, consider the definitions of the @NonNull and @Nullable type qualifiers:
@TypeQualifier
@SubtypeOf({ Nullable.class })
@ImplicitFor(
types={TypeKind.PACKAGE},
typeClasses={AnnotatedPrimitiveType.class},
trees={
Tree.Kind.NEW_CLASS,
Tree.Kind.NEW_ARRAY,
Tree.Kind.PLUS,
// All literals except NULL_LITERAL:
Tree.Kind.BOOLEAN_LITERAL, Tree.Kind.CHAR_LITERAL, Tree.Kind.DOUBLE_LITERAL, Tree.Kind.FLOAT_LITERAL,
Tree.Kind.INT_LITERAL, Tree.Kind.LONG_LITERAL, Tree.Kind.STRING_LITERAL

})
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
public @interface NonNull { }

@TypeQualifier
@SubtypeOf({})
@ImplicitFor(trees={Tree.Kind.NULL_LITERAL})
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
public @interface Nullable { }

For more details, see the Javadoc for the ImplicitFor annotation, and the Javadoc for the javac classes that are
linked from it. You only need to understand a small amount about the javac AST, such as the Tree.Kind and TypeKind
enums. All the information you need is in the Javadoc, and Section 22.9 can help you get started.

22.4.2 Procedurally specifying implicit annotations
The Checker Framework provides a representation of annotated types, AnnotatedTypeMirror, that extends the stan-
dard TypeMirror interface but integrates a representation of the annotations into a type representation. A checker’s

97

type factory class, given an AST node, returns the annotated type of that expression. The Checker Framework’s ab-
stract base type factory class, AnnotatedTypeFactory, supplies a uniform, Tree-API-based interface for querying the
annotations on a program element, regardless of whether that element is declared in a source file or in a class file. It
also handles default annotations, and it optionally performs flow-sensitive local type inference.

AnnotatedTypeFactory inserts the qualifiers that the programmer explicitly inserted in the code. Yet, certain
constructs should be treated as having a type qualifier even when the programmer has not written one. The type system
designer may subclass AnnotatedTypeFactory and override annotateImplicit(Tree,AnnotatedTypeMirror)
and annotateImplicit(Element,AnnotatedTypeMirror) to account for such constructs.

22.4.3 Flow-sensitive type qualifier inference
The Checker Framework provides automatic type refinement as described in Section 19.1.2.

Class BasicAnnotatedTypeFactory provides a 3 parameter constructor that allows subclasses to disable flow in-
ference. By default the 2 parameter constructor performs flow inference. To disable flow inference, call super(checker,
root, false); in your subtype of BasicAnnotatedTypeFactory.

22.5 Visitor: Type rules
A type system’s rules define which operations on values of a particular type are forbidden. These rules must be defined
procedurally, not declaratively.

The Checker Framework provides a base visitor class, BaseTypeVisitor, that performs type-checking at each
node of a source file’s AST. It uses the visitor design pattern to traverse Java syntax trees as provided by Oracle’s Tree
API, and it issues a warning whenever the type system is violated.

A checker’s visitor overrides one method in the base visitor for each special rule in the type qualifier system.
Most type-checkers override only a few methods in BaseTypeVisitor. For example, the visitor for the Nullness type
system of Chapter 3 contains a single 4-line method that warns if an expression of nullable type is dereferenced, as in:

myObject.hashCode(); // invalid dereference

By default, BaseTypeVisitor performs subtyping checks that are similar to Java subtype rules, but taking the
type qualifiers into account. BaseTypeVisitor issues these errors:

• invalid assignment (type.incompatible) for an assignment from an expression type to an incompatible type. The
assignment may be a simple assignment, or pseudo-assignment like return expressions or argument passing in a
method invocation
In particular, in every assignment and pseudo-assignment, the left-hand side of the assignment is a supertype of
(or the same type as) the right-hand side. For example, this assignment is not permitted:

@Nullable Object myObject;
@NonNull Object myNonNullObject;
...
myNonNullObject = myObject; // invalid assignment

• invalid generic argument (generic.argument.invalid) when a type is bound to an incompatible generic type vari-
able

• invalid method invocation (method.invocation.invalid) when a method is invoked on an object whose type is
incompatible with the method receiver type

• invalid overriding parameter type (override.parameter.invalid) when a parameter in a method declaration is in-
compatible with that parameter in the overridden method’s declaration

• invalid overriding return type (override.return.invalid) when a parameter in a method declaration is incompatible
with that parameter in the overridden method’s declaration

• invalid overriding receiver type (override.receiver.invalid) when a receiver in a method declaration is incompat-
ible with that receiver in the overridden method’s declaration

98

22.5.1 AST traversal
The Checker Framework needs to do its own traversal of the AST even though it operates as an ordinary annotation
processor [Dar06]. Annotation processors can utilize a visitor for Java code, but that visitor only visits the public
elements of Java code, such as classes, fields, methods, and method arguments — it does not visit code bodies or
various other locations. The Checker Framework hardly uses the built-in visitor — as soon as the built-in visitor starts
to visit a class, then the Checker Framework’s visitor takes over and visits all of the class’s source code.

Because there is no standard API for the AST of Java code1, the Checker Framework uses the javac implemen-
tation. This is why the Checker Framework is not deeply integrated with Eclipse, but runs as an external tool (see
Section 23.6).

22.5.2 Avoid hardcoding
It may be tempting to write a type-checking rule for method invocation, where your rule checks the name of the
method being called and then treats the method in a special way. This is usually the wrong approach. It is better to
write annotations, in a stub file (Chapter 21), and leave the work to the standard type-checking rules.

22.6 The checker class: Compiler interface
A checker’s entry point is a subclass of BaseTypeChecker. This entry point, which we call the checker class, serves
two roles: an interface to the compiler and a factory for constructing type-system classes.

Because the Checker Framework provides reasonable defaults, oftentimes the checker class has no work to do.
Here are the complete definitions of the checker classes for the Interning and Nullness checkers:

@TypeQualifiers({ Interned.class, PolyInterned.class })
@SupportedLintOptions({"dotequals"})
public final class InterningChecker extends BaseTypeChecker { }

@TypeQualifiers({ Nullable.class, Raw.class, NonNull.class, PolyNull.class })
@SupportedLintOptions({"flow", "cast", "cast:redundant"})
public class NullnessChecker extends BaseTypeChecker { }

The checker class must be annotated by @TypeQualifiers, which lists the annotations that make up the type
hierarchy for this checker (including polymorphic qualifiers), provided as an array of class literals. Each one is a
type qualifier whose definition bears the @TypeQualifier meta-annotation (or is returned by the BaseTypeChecker-
.getSupportedTypeQualifiers method).

The checker class bridges between the compiler and the rest of the checker. It invokes the type-rule check visitor
on every Java source file being compiled, and provides a simple API, report, to issue errors using the compiler error
reporting mechanism.

Also, the checker class follows the factory method pattern to construct the concrete classes (e.g., visitor, fac-
tory) and annotation hierarchy representation. It is a convention that, for a type system named Foo, the com-
piler interface (checker), the visitor, and the annotated type factory are named as FooChecker, FooVisitor, and
FooAnnotatedTypeFactory. BaseTypeChecker uses the convention to reflectively construct the components. Oth-
erwise, the checker writer must specify the component classes for construction.

A checker can customize the default error messages through a Properties-loadable text file named messages.properties
that appears in the same directory as the checker class. The property file keys are the strings passed to report (like
type.incompatible) and the values are the strings to be printed ("cannot assign ..."). The messages.properties
file only need to mention the new messages that the checker defines. It is also allowed to override messages defined in
superclasses, but this is rarely needed. For more details about message keys, see Section 20.2.1 (page 84).

1Actually, there is a standard API for Java ASTs — JSR 198 (Extension API for Integrated Development Environments) [Cro06]. If tools were
to implement it (which would just require writing wrappers or adapters), then the Checker Framework and similar tools could be portable among
different compilers and IDEs.

99

22.6.1 Bundling multiple checkers
To run a checker, a user supplies the -processor command-line option. There are two ways to run multiple related
checkers as a unit.

1. A user can pass multiple -processor command-line options, like:

javac -processor DistanceUnitChecker -processor SpeedUnitChecker ... files ...

This is verbose, and it is also error-prone, since a user might omit one of several related checkers that are
designed to be run together.

2. You can define an aggregate checker class that combines multiple checkers. Extend AggregateChecker and
override the getSupportedTypeCheckers method, like the following:

public class UnitCheckers extends AggregateChecker {
protected Collection<Class<? extends SourceChecker>> getSupportedCheckers() {

return Arrays.asList(DistanceUnitChecker.class, SpeedUnitChecker.class);
}

}

Now, a user can pass a single -processor argument on the command line:

javac -processor UnitCheckers ... files ...

22.6.2 Providing command-line options
A checker can provide two kinds of command-line options: boolean flags and named string values (the standard
annotation processor options).

Boolean flags

To specify a simple boolean flag, add:

@SupportedLintOptions({"flag"})

to your checker subclass. The value of the flag can be queried using

checker.getLintOption("flag", false)

The second argument sets the default value that should be returned.
To pass a flag on the command line, call javac as follows:

javac -processor Mine -Alint=flag

Named string values

For more complicated options, one can use the standard annotation processing SupportedOptions annotation on the
checker, as in:

@SupportedOptions({"info"})

The value of the option can be queried using

env.getOptions().get("info")

where env is the current ProcessingEnvironment.
To pass an option on the command line, call javac as follows:

javac -processor Mine -Ainfo=p1,p2

The value is returned as a single string and you have to perform the required parsing of the option.

100

22.7 Testing framework
The Checker Framework comes with a testing framework that is used for testing the distributed checkers. It is easy to
use this testing framework to ensure correctness of your checker!

You first need to provide a subclass of ParameterizedCheckerTest that determines the checker to use and all
command-line options that should be provided. This class can be run as a JUnit test runner. Note that you always need
to use the -Anomsgtext option to suppress the substitution of message keys by human-readable values. See the test
setup classes in directory tests/src/tests/ for examples.

Locate all your test cases in a subdirectory of the tests directory. The individual test cases are normal Java files
that use stylized comments to indicate expected error messages. For example, consider this test case from the Nullness
checker:

//:: error: (dereference.of.nullable)
s.toString();

An expected error message is introduced by the //:: comment. The next token is either error: or warning:,
distinguishing what kind of message is expected. Finally, the message key for the expected message is given.

Multiple expected messages can be given using the ”//:: A :: B :: C” syntax.
As an alternative, expected errors can be specified in a separate file using the .out file extension. These files are

of the following format:

:19: error: (dereference.of.nullable)

The number between the colons is the line number of the expected error message. This format is a lot harder to
maintain and we suggest using the in-line comment format.

22.8 Debugging options
The Checker Framework provides debugging options that can be helpful when writing a checker. These are provided
via the standard javac “-A” switch, which is used to pass options to an annotation processor.

• -Anomsgtext: use message keys (such as “type.invalid”) rather than full message text when reporting errors
or warnings

• -Ashowchecks: print debugging information for each pseudo-assignment check (as performed by BaseTypeVisitor;
see Section 22.5 above)

• -Afilenames: print the name of each file before type-checking it
• -AprintErrorStack: print a stack trace together with internal Checker Framework error messages
• -AprintAllQualifiers: print all type qualifiers, including qualifiers like @Unqualified which are usually

not shown. (Use the @InvisibleQualifier meta-annotation on a qualifier to hide it.)
• -Aignorejdkastub: ignore the jdk.astub file in the checker directory. Files passed through the -Astubs op-

tion are still processed. This is useful when compiling the source code that is described by the stub file and
experimenting with an alternative stub file.

The following example demonstrates how these options are used:
$ javac -processor checkers.interning.InterningChecker \

examples/InternedExampleWithWarnings.java -Ashowchecks -Anomsgtext -Afilenames

[InterningChecker] InterningExampleWithWarnings.java
success (line 18): STRING_LITERAL "foo"

actual: DECLARED @checkers.interning.quals.Interned java.lang.String
expected: DECLARED @checkers.interning.quals.Interned java.lang.String

success (line 19): NEW_CLASS new String("bar")
actual: DECLARED java.lang.String

expected: DECLARED java.lang.String

101

examples/InterningExampleWithWarnings.java:21: (not.interned)
if (foo == bar)

ˆ
success (line 22): STRING_LITERAL "foo == bar"

actual: DECLARED @checkers.interning.quals.Interned java.lang.String
expected: DECLARED java.lang.String

1 error

You can use any standard debugger to observe the execution of your checker. Set the execution main class to
com.sun.tools.javac.Main, and insert the JSR 308 javac.jar (resides in .../jsr308-langtools/dist/lib/javac.jar).
If using an IDE, it is recommended that you add .../jsr308-langtools as a project, so you can step into its source
code if needed.

22.9 javac implementation survival guide
A checker built using the Checker Framework makes use of a few interfaces from the underlying compiler (Oracle’s
OpenJDK javac). This section describes those interfaces.

22.9.1 Checker access to compiler information
The compiler uses and exposes three hierarchies to model the Java source code and classfiles.

Types - Java Language Model API

A TypeMirror represents a Java type.
There is a TypeMirror interface to represent each type kind, e.g., PrimitiveType for primitive types, ExecutableType

for method types, and NullType for the type of the null literal.
TypeMirror does not represent annotated types though. Checkers should use the Checker Framework types API,

AnnotatedTypeMirror, instead. AnnotatedTypeMirror parallels the TypeMirror API, but also present the type
annotations associated with the type.

The Checker Framework and the checkers use the types API extensively.

Elements - Java Language Model API

An Element represents a potentially-public declaration that can be accessed from elsewhere: classes, interfaces,
methods, constructors, and fields. Element represents elements found in both source code and bytecode.

There is an Element interface to represent each construct, e.g., TypeElement for class/interfaces, ExecutableElement
for methods/constructors, VariableElement for local variables and method parameters.

If you need to operate on the declaration level, always use elements rather than trees (see below). This allows the
code to work on both source and bytecode elements.

Example: retrieve declaration annotations, check variable modifiers (e.g., strictfp, synchronized)

Trees - Compiler Tree API

A Tree represents a syntactic unit in the source code, like a method declaration, statement, block, for loop, etc.
Trees only represent source code to be compiled (or found in -sourcepath); no tree is available for classes read from
bytecode.

There is a Tree interface for each Java source structure, e.g., ClassTree for class declaration, MethodInvocationTree
for a method invocation, and ForEachTree for an enhanced-for-loop statement.

You should limit your use of trees. Checkers use Trees mainly to traverse the source code and retrieve the type-
s/elements corresponding to them. Then, the checker performs any needed checks on the types/elements instead.

102

Using the APIs

The three APIs use some common idioms and conventions; knowing them will help you to create your checker.
Type-checking: Do not use instanceof to determine the class of the object, because you cannot necessarily predict

the run-time type of the object that implements an interface. Instead, use the getKind() method. The method returns
TypeKind, ElementKind, and Tree.Kind for the three interfaces, respectively.

Visitors and Scanners: The compiler and the Checker Framework use the visitor pattern extensively. For example,
visitors are used to traverse the source tree (BaseTypeVisitor extends TreePathScanner) and for type checking
(TreeAnnotator implements TreeVisitor).

Utility classes: Some useful methods appear in a utility class. The Oracle convention is that the utility class for
a Foo hierarchy is Foos (e.g., Types, Elements, and Trees). The Checker Framework uses a common Utils suffix
instead (e.g., TypesUtils, TreeUtils, ElementUtils), with one notable exception: AnnotatedTypes.

22.9.2 How a checker fits in the compiler as an annotation processor
The Checker Framework builds on the Annotation Processing API introduced in Java 6. A type annotation processor
is one that extends AbstractTypeProcessor; these get run on each class source file after the compiler confirms that
the class is valid Java code.

The most important methods of AbstractTypeProcessor are typeProcess and getSupportedSourceVersion.
The former class is where you would insert any sort of method call to walk the AST, and the latter just returns a constant
indicating that we are targeting version 8 of the compiler. Implementing these two methods should be enough for a
basic plugin; see the Javadoc for the class for other methods that you may find useful later on.

The Checker Framework uses Oracle’s Tree API to access a program’s AST. The Tree API is specific to the Oracle
OpenJDK, so the Checker Framework only works with the OpenJDK javac, not with Eclipse’s compiler ecj or with
gcj. This also limits the tightness of the integration of the Checker Framework into other IDEs such as IntelliJ IDEA.
An implementation-neutral API would be preferable. In the future, the Checker Framework can be migrated to use the
Java Model AST of JSR 198 (Extension API for Integrated Development Environments) [Cro06], which gives access
to the source code of a method. But, at present no tools implement JSR 198. Also see Section 22.5.1.

Learning more about javac

Sun’s javac compiler interfaces can be daunting to a newcomer, and its documentation is a bit sparse. The Checker
Framework aims to abstract a lot of these complexities. You do not have to understand the implementation of
javac to build powerful and useful checkers. Beyond this document, other useful resources include the Java In-
frastructure Developer’s guide at http://wiki.netbeans.org/Java_DevelopersGuide and the compiler mail-
ing list archives at http://news.gmane.org/gmane.comp.java.openjdk.compiler.devel (subscribe at http:
//mail.openjdk.java.net/mailman/listinfo/compiler-dev).

103

Chapter 23

Integration with external tools

This chapter discusses how to run a checker from your favorite IDE.
Or, if your favorite isn’t here, you should customize how it runs the javac command on your behalf. See the IDE

documentation to learn how to customize it, adapting the instructions for javac in Section 2.2. If you make another
tool support running a checker, please inform us via the mailing list or issue tracker so we can add it to this manual.

This chapter also discusses type inference tools (see Section 23.8).

23.1 Javac Compiler
If you use javac compiler from the command line, then you can use the Type annotations compiler (a variant of the
OpenJDK javac) that is bundled with the Checker Framework. The bundled javac recognizes type annotations, and
annotations in comments (see Section 20.3.1). (Eventually, you will be able to use any Java compiler, such as the
OpenJDK compiler, but Oracle has been slow to incorporate all the patches, so the bundled javac is superior, for the
purpose of pluggable type-checking, and is equivalent in all other respects.)

This section describes how you can install and use the bundled javac, using either Unix/Linux/MacOS (see Sec-
tion 23.1.1) or Windows (see Section 23.1.2). The instructions are identical to those of Section 1.2, but are given as
commands that you can cut and paste into your command shell.

23.1.1 Unix/Linux/MacOS installation
These instructions assume that you use the bash or sh shell. If you use a different shell, you may need to slightly adjust
the commands.

1. Download the latest Checker Framework distribution and unzip it. You can put it anywhere you like by changing
the definition of environment variable JSR308 below; a standard place is in a new directory named jsr308.

export JSR308=$HOME/jsr308
mkdir -p ${JSR308}
cd ${JSR308}
or: wget http://types.cs.washington.edu/checker-framework/current/checkers.zip
curl -O http://types.cs.washington.edu/checker-framework/current/checkers.zip
unzip checkers.zip
chmod +x checker-framework/checkers/binary/javac
checker-framework/checkers/binary/javac -version

The output of the last command should be:

javac 1.7.0-jsr308-1.3.1

2. Place the following commands in your .bashrc file:

104

export JSR308=$HOME/jsr308
export CHECKERS=$JSR308/checker-framework/checkers
export PATH=$CHECKERS/binary:${PATH}

Also execute them on the command line, or log out and back in. Then, verify that the installation works. From
the command line, run:

javac -version

The output should be:

javac 1.7.0-jsr308-1.3.1

That’s all there is to it! Now you are ready to start using the checkers with the new javac compiler.

23.1.2 Windows installation
1. Download the latest Checker Framework distribution and unzip it to create a checkers directory. You can put

it anywhere you like; a standard place is in a new directory under C:\Program Files.

(a) Save the file http://types.cs.washington.edu/checker-framework/current/checkers.zip to your
Desktop.

(b) Double-click the checkers.zip file on your computer. Click on the checkers directory, then Select
Extract all files, and use C:\Program Files as the destination. You will obtain a new C:\Program
Files\checker-framework folder.

(c) Verify that the installation works. From a Windows command prompt, run:
set CHECKERS = C:\Program Files\checker-framework\checkers
java -Xbootclasspath/p:%CHECKERS%\binary\jsr308-all.jar -jar C:%CHECKERS%\binary\jsr308-all.jar -version

The output should be:
javac 1.7.0-jsr308-1.3.1

2. In order to use the updated compiler when you type javac, add the directory C:\Program Files\checker-framework\checkers\binary
to the beginning of your path variable. Also set a CHECKERS variable.
To set an environment variable, you have two options: make the change temporarily or permanently.

• To make the change temporarily, type at the command shell prompt:
path = newdir;%PATH%
For example:
set CHECKERS = C:\Program Files\checker-framework\checkers
path = %CHECKERS%\binary;%PATH%

This is a temporary change that endures until the window is closed, and you must re-do it every time you
start a new command shell.
• To make the change permanently, Right-click the My Computer icon and select Properties. Select

the Advanced tab and click the Environment Variables button. You can set the variable as a “System
Variable” (visible to all users) or as a “User Variable” (visible to just this user). Both work; the instructions
below show how to set as a “System Variable”. In the System Variables pane, select Path from the list
and click Edit. In the Edit System Variable dialog box, move the cursor to the beginning of the string
in the Variable Value field and type the full directory name (not using the %CHECKERS% environment
variable) followed by a semicolon (;).
Similarly, set the CHECKERS variable.
This is a permanent change that only needs to be done once ever.

Now, verify that the installation works. From the command line, run:

javac -version

The output should be:

javac 1.7.0-jsr308-1.3.1

105

23.2 Ant task
If you use the Ant build tool to compile your software, then you can add an Ant task that runs a checker. We assume
that your Ant file already contains a compilation target that uses the javac task.

1. Set the jsr308javac property:
<property environment="env"/>

<dirname property="checkers" file="${env.CHECKERS}" />

<presetdef name="jsr308.javac">
<javac fork="yes">
<!-- JSR308 related compiler arguments -->
<compilerarg value="-version"/>
<!-- optional, so .class files work with older JVMs: <compilerarg line="-target 5"/> -->
<compilerarg value="-implicit:class"/>
<!-- optional, to issue warnings instead of errors: <compilerarg line="-Awarns -Xmaxwarns 10000"/> -->
<compilerarg value="-J-Xbootclasspath/p:${checkers}/binary/jsr308-all.jar"/>

<classpath>
<pathelement location="${checkers}/checkers.jar"/>

</classpath>
</javac>

</presetdef>

2. Duplicate the compilation target, then modify it slightly as indicated in this example:
<target name="check-nullness"

description="Check for null pointer dereferences"
depends="clean,...">

<!-- use jsr308.javac instead of javac -->
<jsr308.javac ... >
<compilerarg line="-processor checkers.nullness.NullnessChecker"/>
<compilerarg value="-Xbootclasspath/p:${checkers}/jdk/jdk.jar"/>
<!-- optional, for implicit imports: <compilerarg value="-J-Djsr308_imports=checkers.nullness.quals.*"/> -->
<!-- optional, to not check uses of library methods: <compilerarg value="-AskipUses=ˆ(java\.awt\.|javax\.swing\.)"/> -->
...

</jsr308.javac>
</target>

Fill in each ellipsis (. . .) from the original compilation target. But, don’t include any -source argument with
value other than 1.8 or 8. Doing so will disable the annotations in comments feature (see Section 20.3.1,
page 86).
In the example, the target is named check-nullness, but you can name it whatever you like.

23.2.1 Explanation
This section explains each part of the Ant task.

1. Definition of jsr308.javac:
The fork field of the javac task ensures that an external javac program is called. Otherwise, Ant will run javac
via a Java method call, and there is no guarantee that it will get the JSR 308 version that is distributed with the
Checker Framework.
The -version compiler argument is just for debugging; you may omit it.
The -target 5 compiler argument is optional, if you use Java 5 in ordinary compilation when not performing
pluggable type-checking (see Section 20.3.4, page 88).
The -implicit:class compiler argument causes annotation processing to be performed on implicitly compiled
files. (An implicitly compiled file is one that was not specified on the command line, but for which the source
code is newer than the .class file.) This is the default, but supplying the argument explicitly suppresses a
compiler warning.

106

The -Awarns ... compiler argument is optional, and causes the checker to treat errors as warnings so that
compilation does not fail even if pluggable type-checking fails; see Section 2.2.1.

2. The check-nullness target:
The target assumes the existence of a clean target that removes all .class files. That is necessary because
Ant’s javac target doesn’t re-compile .java files for which a .class file already exists.
The -processor ... compiler argument indicates which checker to run. You can supply additional arguments
to the checker as well.

23.3 Maven plugin
If you use the Maven project tool, then you can specify the distributed checkers as part of your build process.

1. First, you need to add the repositories in your pom.xml file:

<repositories>
<repository>

<id>checker-framework-repo</id>
<url>http://types.cs.washington.edu/m2-repo</url>

</repository>
</repositories>
<pluginRepositories>

<pluginRepository>
<id>checker-framework-repo</id>
<url>http://types.cs.washington.edu/m2-repo</url>

</pluginRepository>
</pluginRepositories>

2. Then, to use the annotations used by the distributed checkers, you’ll have to declared as a dependency:

<dependencies>
<!-- annotations for the standard checkers: nullness, interning, mutability -->
<dependency>

<groupId>types.checkers</groupId>
<artifactId>checkers-quals</artifactId>
<version>1.1.1</version>

</dependency>

<!-- other dependencies -->
</dependencies>

3. And finally, you need to attach the plugin to your build lifecycle:

<build>
<plugins>

<plugin>
<groupId>types.checkers</groupId>
<artifactId>checkersplugin</artifactId>
<version>0.1</version>
<executions>

<execution>
<!-- run the checkers after compilation; this can also be any later phase -->
<phase>process-classes</phase>
<goals>

<goal>check</goal>
</goals>

107

</execution>
</executions>
<configuration>

<!-- required configuration options -->
<!-- a list of processors to run -->
<processors>

<processor>checkers.nullness.NullnessChecker</processor>
<processor>checkers.interning.InterningChecker</processor>

</processors>

<!-- other optional configuration -->
<!-- full path to a java executable that should be used to create the forked JVM -->
<executable>/opt/java1.6/bin/java</executable>
<!-- should an error reported by a checker cause a build failure, or only be logged as a warning; defaults to true -->
<failOnError>true|false</failOnError>
<!-- a list of patterns to include, in the standard maven syntax; defaults to **/*.java -->
<includes>

<include>org/company/important/**/*.java</include>
</includes>
<!-- a list of patterns to exclude, in the standard maven syntax; defaults to an empty list -->
<excludes>

<exclude>org/company/notimportant/**/*.java</exclude>
</excludes>
<!-- additional parameters passed to the JSR308 java compiler -->
<javacParams>-Alint</javacParams>
<!-- additional parameters to pass to the forked JVM -->
<javaParams>-Xdebug</javaParams>
<!-- versions of checkers to use; defaults to the current newest version: 1.0.6 -->
<checkersVersion>0.8.8</checkersVersion>

</configuration>
</plugin>

</plugins>
</build>

The plugin was contributed by Adam Warski.

23.4 Gradle
Gradle lets you add command-line arguments to a javac invocation by setting the compilerArgs property of the
compiler options. This is adequate for running the Checker Framework, because it is run by specifying command-line
arguments. See the instructions elsewhere in this manual for a list of command-line arguments.

To specify command-line arguments, set compile.options.compilerArgs. Here is a possible example:

allprojects {
tasks.withType(Compile).allTasks { Compile compile ->

compile.options.debug = true
compile.options.compilerArgs = [

’-version’,
’-implicit:class’,
’-J-Xbootclasspath/p:${env.CHECKERS}/binary/jsr308-all.jar’,

108

’-processor’, ’checkers.nullness.NullnessChecker’,
’-Xbootclasspath/p:${env.CHECKERS}/jdk/jdk.jar’]

}
}

You don’t need to use a special version of javac; you only need to give the -J-Xbootclasspath/p:... argument.
If you choose to use a special version of javac instead of supplying the command-line argument, then you can do so
in the following way:

tasks.withType(Compile).allObjects { compile ->
compile.options.fork.executable = "$CHECKERS/binary/javac"

}

23.5 IntelliJ IDEA
IntelliJ IDEA (Maia release) supports the Type Annotations (JSR-308) syntax. See http://blogs.jetbrains.com/
idea/2009/07/type-annotations-jsr-308-support/.

23.6 Eclipse
There are two ways to run a checker from within the Eclipse IDE: via Ant or using an Eclipse plug-in.

Using an Ant task Add an Ant target as described in Section 23.2. You can run the Ant target by executing
the following steps (instructions copied from http://www.eclipse.org/documentation/?topic=/org.eclipse.
platform.doc.user/gettingStarted/qs-84_run_ant.htm):

1. Select build.xml in one of the navigation views and choose Run As > Ant Build... from its context menu.
2. A launch configuration dialog is opened on a launch configuration for this Ant buildfile.
3. In the Targets tab, select the new ant task (e.g., check-interning).
4. Click Run.
5. The Ant buildfile is run, and the output is sent to the Console view.

Eclipse plug-in for the Checker Framework The Checker Plugin is an Eclipse plugin that enables the use of
the Checker Framework. Its website (http://types.cs.washington.edu/checker-framework/eclipse/). The
website contains instructions for installing and using the plugin.

Eclipse plug-in for Type Annotations A prototype version of Type Annotations support for Eclipse is available
from the Eclipse project. The goal is to enable full support for writing type annotations outside of comments. You do
not need this to run the Checker Framework, whether or not you write your type annotations in comments.

(Update: this apparently needs a username and password, so it may not be publicly available.) Use the following
information to check out the CVS repository:

Host: dev.eclipse.org
Repository path: /cvsroot/eclipse
Module name: org.eclipse.jdt.core
Branch: JSR 308

23.7 tIDE
tIDE, an open-source Java IDE, supports the Checker Framework. See its documentation at http://tide.olympe-network.
com/.

109

23.8 Type inference tools

23.8.1 Varieties of type inference
There are two different tasks that are commonly called “type inference”.

1. Type inference during type checking (Section 19.1.2): During type checking, if certain variables have no type
qualifier, the type-checker determines whether there is some type qualifier that would permit the program to
type check. If so, the type checker uses that type qualifier, but never tells the programmer what it was. Each
time the type checker runs, it re-infers the type qualifier for that variable. If no type qualifier exists that permits
the program to type-check, the type-checker issues a type warning.
This variety of type inference is built into the Checker Framework. Every checker can take advantage of it at no
extra effort. However, it only works within a method, not across method boundaries.
Advantages of this variety of type inference include:

• If the type qualifier is obvious to the programmer, then omitting it can reduce annotation clutter in the
program.
• The type inference can take advantage of only the code currently being compiled, rather than having to be

correct for all possible calls. Additionally, if the code changes, then there is no old annotation to update.

2. Type inference to annotate a program (Section 23.8.2): As a separate step before type checking, a type inference
tool takes the program as input, and outputs a set of type qualifiers that would type-check. These qualifiers are
inserted into the source code or the class file. They can be viewed and adjusted by the programmer, and can be
used by tools such as the type checker.
This variety of type inference must be provided by a separate tool. It is not built into the Checker Framework.
Advantages of this variety of type inference include:

• The program contains documentation in the form of type qualifiers, which can aid programmer under-
standing.
• Error messages may be more comprehensible. With type inference during type checking, error messages

can be obscure, because the compiler has already inferred (possibly incorrect) types for a number of
variables.
• A minor advantage is speed: type-checking can be modular, which can be faster than re-doing type infer-

ence every time the program is type-checked.

Advantages of both varieties of inference include:

• Less work for the programmer.
• The tool chooses the most general type, whereas a programmer might accidentally write a more specific, less

generally-useful annotation.

Each variety of type inference has its place. When using the Checker Framework, type inference during type
checking is performed only within a method (Section 19.1.2). Every method signature (arguments and return values)
and field must be explicitly annotated, either by the programmer or by a separate type checking tool (Section 23.8.2).
This choice reduces programmer effort (typically, a programmer does not have to write any qualifiers inside the body
of a method) while still retaining modular checking and documentation benefits.

23.8.2 Type inference to annotate a program
This section lists tools that take a program and output a set of annotations for it.

Section 3.3.4 lists several tools that infer annotations for the Nullness Checker.
Section 6.2.2 lists a tool that infers annotations for the Javari Checker, which detects mutation errors.

110

Chapter 24

Frequently Asked Questions (FAQs)

These are some common questions about the Checker Framework and about pluggable type-checking in general. Feel
free to suggest improvements to the answers, or other questions to include here.

There is a separate FAQ for the type annotations syntax (http://types.cs.washington.edu/jsr308/jsr308-faq.
html).

Contents:
24.1: Are type annotations easy to read and write?
24.2: Will my code become cluttered with type annotations?
24.3: I don’t make type errors, so would pluggable type checking help me?
24.4: What should I do if a checker issues a warning about my code?
24.5: Can a pluggable type-checker give an absolute guarantee of correctness?
24.6: How do I make compilation succeed even if a checker issues errors?
24.7: Will using the Checker Framework slow down my program? Will it slow down the compiler?
24.8: How can I do run-time monitoring of properties that were not statically checked?
24.9: How do I get started annotating an existing program?
24.10: How do I shorten the command line when invoking a checker?
24.11: When should I use type qualifiers, and when should I use subclasses?
24.12: How do I create a new checker?
24.13: Why is there no declarative syntax for writing type rules?
24.14: Why not just use a bug detector (like FindBugs)?
24.15: How does pluggable type-checking compare with JML?
24.16: Why shouldn’t a qualifier apply to both types and declarations?
24.17: What is the meaning of array annotations such as @NonNull Object @Nullable []?
24.18: Why are the type parameters to List and Map annotated as @NonNull?
24.19: Is the Checker Framework an official part of Java?

24.1 Are type annotations easy to read and write?
The paper “Practical pluggable types for Java” [PAC+08] discusses case studies in which programmers found type
annotations to be natural to read and write. The code continued to feel like Java, and the type-checking errors were
easy to comprehend and often led to real bugs.

You don’t have to take our word for it, though. You can try the Checker Framework for yourself.
The difficulty of adding and verifying annotations depends on your program. If your program is well-designed and

-documented, then skimming the existing documentation and writing type annotations is extremely easy. Otherwise,
you may find yourself spending a lot of time trying to understand, reverse-engineer, or fix bugs in your program, and

111

then just a moment writing a type annotation that describes what you discovered. This process inevitably improves
your code. You must decide whether it is a good use of your time. For code that is not causing trouble now and is
unlikely to do so in the future (the code is bug-free, and you do not anticipate changing it or using it in new contexts),
then the effort of writing type annotations for it may not be justified.

24.2 Will my code become cluttered with type annotations?
As with any language feature, it is possible to write ugly code that over-uses annotations. However, in normal use,
very few annotations need to be written. Figure 1 of the paper Practical pluggable types for Java [PAC+08] reports
data for over 350,000 lines of type-annotated code:

• 1 annotation per 62 lines for nullness annotations (@NonNull, @Nullable, etc.)
• 1 annotation per 1736 lines for interning annotations (@Interned)
• 1 annotation per 27 lines for immutability annotations (IGJ type system)

These numbers are for annotating existing code. New code that is written with the type annotation system in mind
is cleaner and more correct, so it requires even fewer annotations.

Each annotation that a programmer writes replaces a sentence or phrase of English descriptive text that would oth-
erwise have been written in the Javadoc. So, use of annotations actually reduces the overall size of the documentation,
at the same time as making it less ambiguous and machine-processable.

In summary: annotations do not clutter code; they are used much less frequently than generic types, which Java
programmers find acceptable; and they reduce the overall volume of documentation that a codebase needs.

24.3 I don’t make type errors, so would pluggable type checking help me?
Occasionally, a developer says that he makes no errors that typechecking could catch, or that any such errors are
unimportant because they have low impact and are easy to fix. When I investigate the claim, I invariably find that the
developer is mistaken.

Very frequently, the developer has underestimated what typechecking can discover. Not every type error leads to
an exception being thrown; and even if an exception is thrown, it may not seem related to classical types. Remember
that a type system can discover null pointer dereferences, incorrect side effects, security errors such as information
leakage or SQL injection, partially-initialized data, wrong units of measurement, and many other errors. Even where
type-checking does not discover a problem directly, it can indicate code with bad smells, thus revealing problems,
improving documentation, and making future maintenance easier.

There are other ways to discover errors, including extensive testing and debugging. You should continue to use
these. But type-checking is a good complement to these. Type-checking is more effective for some problems, and
less effective for other problems. It can reduce (but not eliminate) the time and effort that you spend on other ap-
proaches. There are many important errors that type checking and other automated approaches cannot find; pluggable
typechecking gives you more time to focus on those.

24.4 What should I do if a checker issues a warning about my code?
For a discussion of this issue, see Section 2.4.7.

24.5 Can a pluggable type-checker give an absolute guarantee of correct-
ness?

Each checker looks for certain errors. You can use multiple checkers, but even then your program might still contain
other kinds of errors.

112

If you run a pluggable checker on only part of the code of a program, then you do not get a guarantee that all parts
of the program satisfy the type system (that is, are error-free). An example is a framework that clients are intended to
extend. In this case, you should recommend that clients run the pluggable checker. There is no way to force users to
do so, so you may want to retain dynamic checks or use other mechanisms to detect errors.

There are other circumstances in which a static type-checker may fail to detect a possible type error. In Java, these
include arrays, casts, raw types, reflection, separate compilation (bytecodes from unverified sources), native code, etc.
(For details, see section 2.3.) Java uses dynamic checks for most of these, so that the type error cannot cause a security
vulnerability or a crash. The pluggable type-checkers inherit many (not all) of these weaknesses of Java type-checking,
but do not currently have built-in dynamic checkers. Writing dynamic checkers would be an interesting and valuable
project.

Even if a tool such as a pluggable checker cannot give an ironclad guarantee of correctness, it is still useful. It
can finding errors, excluding certain types of possible problems (e.g., restricting the possible class of problems), and
increasing confidence in a piece of software.

24.6 How do I make compilation succeed even if a checker issues errors?
Section 2.2 describes the -Awarns command-line option that turns checker errors into warnings, so type-checking
errors will not cause javac to exit with a failure status.

24.7 Will using the Checker Framework slow down my program? Will it
slow down the compiler?

Using the Checker Framework has no impact on the execution of your program: the Type Annotations compiler
emits the identical bytecodes as the Java 8 compiler and so there is no run-time effect. Because there is no run-time
representation of type qualifiers, there is no way to use reflection to query the qualifier on a given object, though you
can use reflection to examine a class/method/field declaration.

Using the Checker Framework does increase compilation time. In theory it should only add a few percent overhead,
but our current implementation can double the compilation time — or more, if you run many pluggable type-checkers
at once. This is especially true if you run pluggable type-checking on every file (as we recommend) instead of
just on the ones that have recently changed. Nonetheless, compilation with pluggable type-checking still feels like
compilation, and you can do it as part of your normal development process.

24.8 How can I do run-time monitoring of properties that were not statically
checked?

Some properties are not checked statically (see Chapter 20 for reasons that code might not be statically checked). In
such cases, it would be desirable to check the property dynamically, at run time. Currently, the Checker Framework
has no support for adding code to perform run-time checking.

Adding such support would be an interesting and valuable project. An example would be an option that causes
the Checker Framework to automatically insert a run-time check anywhere that static checking is suppressed. If
you are able to add run-time verification functionality, we would gladly welcome it as a contribution to the Checker
Framework.

Some checkers have library methods that you can explicitly insert in your source code. Examples include the
Nullness Checker’s NullnessUtils.castNonNull method (see Section 3.4.1) and the Regex Checker’s RegexUtil
class (see Section 11.2.4). But, it would be better to have more general support that does not require the user to
explicitly insert method calls.

113

24.9 How do I get started annotating an existing program?
See Section 2.4.1.

24.10 How do I shorten the command line when invoking a checker?
The compile options to javac can be a pain to type; for example, javac -processor checkers.nullness.NullnessChecker
.... See Section 2.2.2 for a way to avoid the need for the -processor command-line option.

24.11 When should I use type qualifiers, and when should I use subclasses?
In brief, use subtypes when you can, and use type qualifiers when you cannot use subtypes. For more details, see
section 2.4.6.

24.12 How do I create a new checker?
In addition to using the checkers that are distributed with the Checker Framework, you can write your own checker to
check specific properties that you care about. Thus, you can find and prevent the bugs that are most important to you.

Chapter 22 gives complete details regarding how to write a checker. It also suggests places to look for more help,
such as the Checker Framework API documentation (Javadoc) and the source code of the distributed checkers.

To whet your interest and demonstrate how easy it is to get started, here is an example of a complete, useful type
checker.

@TypeQualifier
@SubtypeOf(Unqualified.class)
@Target({ElementType.TYPE_PARAMETER, ElementType.TYPE_USE})
public @interface Encrypted { }

Section 15.2 explains this checker and tells you how to run it.

24.13 Why is there no declarative syntax for writing type rules?
A type system implementer can declaratively specify the type qualifier hierarchy (Section 22.3.1) and the type in-
troduction rules (Section 22.4.1). However, the Checker Framework uses a procedural syntax for specifying type-
checking rules (Section 22.5). A declarative syntax might be more concise, more readable, and more verifiable than a
procedural syntax.

We have not found the procedural syntax to be the most important impediment to writing a checker.
Previous attempts to devise a declarative syntax for realistic type systems have failed; see a technical paper [PAC+08]

for a discussion. When an adequate syntax exists, then the Checker Framework can be extended to support it.

24.14 Why not just use a bug detector (like FindBugs)?
Pluggable type-checking finds more bugs than a bug detector does, for any given variety of bug.

A bug detector like FindBugs [HP04, HSP05], Jlint [Art01], or PMD [Cop05] aims to find some of the most
obvious bugs in your program. It uses a lightweight analysis, then uses heuristics to discard some of its warnings.
Thus, even if the tool prints no warnings, your code might still have errors — maybe the analysis was too weak to find
them, or the tool’s heuristics classified the warnings as likely false positives and discarded them.

114

A type checker aims to find all the bugs (of certain varieties). It requires you to write type qualifiers in your
program, or to use a tool that infers types. Thus, it requires more work from the programmer, and in return it gives
stronger guarantees.

Each tool is useful in different circumstances, depending on how important your code is and your desired level of
confidence in your code. For more details on the comparison, see section 25.5. For a case study that compared the
nullness analysis of FindBugs, Jlint, PMD, and the Checker Framework, see section 6 of the paper “Practical pluggable
types for Java” [PAC+08].

24.15 How does pluggable type-checking compare with JML?
JML, the Java Modeling Language [LBR06], is a language for writing formal specifications. JML aims to be more
expressive than pluggable type-checking. JML is not as practical as pluggable type-checking.

A programmer can write a JML specification that describes arbitrary facts about program behavior. Then, the
programmer can use formal reasoning or a theorem-proving tool to verify that the code meets the specification. Run-
time checking is also possible. By contrast, pluggable type-checking can express a more limited set of properties about
your program.

The JML toolset is less mature. For instance, if your code uses generics or other features of Java 5, then you cannot
use JML. However, JML has a run-time checker, which the Checker Framework currently lacks.

24.16 Why shouldn’t a qualifier apply to both types and declarations?
It is bad style for an annotation to apply to both types and declarations. In other words, every annotation should have a
@Target meta-annotation, and the @Target meta-annotation should list either only declaration locations or only type
annotations. (It’s OK for an annotation to target both ElementType.TYPE PARAMETER and ElementType.TYPE USE,
but no other declaration location along with ElementType.TYPE USE.)

Sometimes, it may seem tempting for an annotation to apply to both type uses and (say) method declarations. Here
is a hypothetical example:

“Each Widget type may have a @Version annotation. I wish to prove that versions of widgets don’t get
assigned to incompatible variables, and that older code does not call newer code (to avoid problems when
backporting).

A @Version annotation could be written like so:

@Version("2.0") Widget createWidget(String value) { ... }

@Version("2.0") on the method could mean that the createWidget method only appears in the 2.0
version. @Version("2.0") on the return type could mean that the returned Widget should only be used
by code that uses the 2.0 API of Widget. It should be possible to specify these independently, such as a
2.0 method that returns a value that allows the 1.0 API method invocations.”

Both of these are type properties and should be specified with type annotations. No method annotation is necessary
or desirable. The best way to require that the receiver has a certain property is to use a type annotation on the receiver
of the method. (Slightly more formally, the property being checked is compatibility between the annotation on the
type of the formal parameter receiver and the annotation on the type of the actual receiver.)

Another example of a type-and-declaration annotation that represents poor design is JCIP’s @GuardedBy annota-
tion [GPB+06]. As discussed in Section 7.1.3, it means two different things when applied to a field or a method. To
reduce confusion and increase expressiveness, the Lock Checker (see Chapter 7) uses the @Holding annotation for
one of these meanings, rather than overloading @GuardedBy with two distinct meanings.

115

24.17 What is the meaning of array annotations such as @NonNull Object
@Nullable []?

You should parse this as: (@NonNull Object) (@Nullable []). Each annotation precedes the component of
the type that it qualifies.

Thus, @NonNull Object @Nullable [] is a possibly-null array of non-null objects. Note that the first token in
the type, “@NonNull”, applies to the element type Object, not to the array type as a whole. The annotation @Nullable
applies to the array ([]).

Similarly, @Nullable Object @NonNull [] is a non-null array of possibly-null objects.

24.18 Why are the type parameters to List and Map annotated as @NonNull?
The annotation on java.util.Collection only allows non-null elements:

public interface Collection<E extends @NonNull Object> {
...

}

Thus, you will get a type error if you write code like Collection<@Nullable Object>. A nullable type parameter
is also forbidden for certain other collections, including AbstractCollection, List, Map, and Queue.

The extends @NonNull Object bound is a direct consequence of the design of the collections classes; it merely
formalizes the Javadoc specification. The Javadoc for Collection states:

Some list implementations have restrictions on the elements that they may contain. For example, some
implementations prohibit null elements, . . .

Here are some consequences of the requirement to detect all nullness errors at compile time. If even one subclass of
a given collection class may prohibit null, then the collection class and all its subclasses must prohibit null. Conversely,
if a collection class is specified to accept null, then all its subclasses must honor that specification.

The Checker Framework’s annotations make apparent a flaw in the JDK design, and helps you to avoid problems
that might be caused by that flaw.

Justification from type theory Suppose B is a subtype of A. Then an overriding method in B must have a stronger
(or equal) signature than the overridden method in A. In a stronger signature, the formal parameter types may be
supertypes, and the return type may be a subtype. Here are examples:

class A { @NonNull Object Number m1(@NonNull Object arg) { ... } }
class B extends A { @Nullable Object Number m1(@NonNull Object arg) { ... } } // error!
class C extends A { @NonNull Object Number m1(@Nullable Object arg) { ... } } // OK
class D { @Nullable Object Number m2(@Nullable Object arg) { ... } }
class E extends D { @NonNull Object Number m2(@Nullable Object arg) { ... } } // OK
class F extends D { @Nullable Object Number m2(@NonNull Object arg) { ... } } // error!

According to these rules, since some subclasses of Collection do not permit nulls, then Collection cannot
either:

// does not permit null elements
class PriorityQueue<E> implements Collection<E> {

boolean add(E);
...

}
// must not permit null elements, or PriorityQueue would not be a subtype of Collection

116

interface Collection<E> {
boolean add(E);
...

}

Justification from checker behavior Suppose that you changed the bound in the Collection declaration to extends
@Nullable Object. Then, the checker would issue no warning for this method:

static void addNull(Collection l) {
l.add(null);

}

However, calling this method can result in a null pointer exception, for instance caused by the following code:

addNull(new PriorityQueue());

Therefore, the bound must remain as extends @NonNull Object.
By contrast, this code is OK because ArrayList is documented to support null elements:

static void addNull(ArrayList l) {
l.add(null);

}

Therefore, the upper bound in ArrayList is extends @Nullable Object. Any subclass of ArrayList must also
support null elements.

Suppressing warnings Suppose your program has a list variable, and you know that any list referenced by that
variable will definitely support null. Then, you can suppress the warning:

@SuppressWarnings("nullness:generic.argument")
static void addNull(List l) {

l.add(null);
}

You need to use @SuppressWarnings("nullness:generic.argument") whenever you use a collection that may
contain null elements in contradiction to its documentation. Fortunately, such uses are relatively rare.

For more details on suppressing nullness warnings, see Section 3.4.

24.19 Is the Checker Framework an official part of Java?
The Checker Framework is not an official part of Java, though it relies on type annotations, which are part of Java 8.
See the Type Annotations (JSR 308) FAQ for more details.

117

Chapter 25

Troubleshooting and getting help

Please read the entire manual, including this chapter and the FAQ (Chapter 24), because the manual might already an-
swer your question. If not, you can use the mailing list, checker-framework-discuss@googlegroups.com, to ask
other users for help. For archives and to subscribe, see http://groups.google.com/group/checker-framework-discuss.
To report bugs, use the issue tracker at http://code.google.com/p/checker-framework/issues/list. If you
want to help out, you can choose a bug and fix it, or select a project from the ideas list at http://code.google.com/
p/checker-framework/wiki/Ideas.

25.1 Common problems and solutions
• To verify that you are using the compiler you think you are, you can add -version to the command line. For

instance, instead of running javac -g MyFile.java, you can run javac -version -g MyFile.java. Then,
javac will print out its version number in addition to doing its normal processing.

25.1.1 Unable to run the checker, or checker crashes
If you are unable to run the checker, or if the checker or the compiler crashes, then the problem may be a problem with
your environment. This section describes some possible problems and solutions.

• If you get the error
com.sun.tools.javac.code.Symbol$CompletionFailure: class file for com.sun.source.tree.Tree not found

then you are using the source installation and file tools.jar is not on your classpath. See the installation
instructions (Section 1.2).

• If you get an error such as

package checkers.nullness.quals does not exist

despite no apparent use of import checkers.nullness.quals.*; in the source code, then perhaps jsr308 imports
is set as a Java system property, a shell environment variable, or a command-line option (see Section 20.3.2). You
can solve this by unsetting the variable/option, or by ensuring that the checkers.jar file is on your classpath.
If the error is

package ’checkers.nullness.quals does not exist

(note the extra apostrophe!), then you have probably misused quoting when supplying the jsr308 imports
environment variable.

• If you get an error like the following when using the Ant task (Section 23.2),
...\build.xml:59: Error running ${env.CHECKERS}\binary\javac.bat compiler

then the problem may be that you have not set the CHECKERS environment variable, as described in Sec-
tion 23.1.2. Or, maybe you made it a user variable instead of a system variable.

118

• If you get one of these errors:
The hierarchy of the type ClassName is inconsistent

The type com.sun.source.util.AbstractTypeProcessor cannot be resolved.
It is indirectly referenced from required .class files",

then you are missing jsr308-all.jar from your classpath.
• If you get the error

java.lang.ArrayStoreException: sun.reflect.annotation.TypeNotPresentExceptionProxy

then an annotation is not present at run time that was present at compile time. For example, maybe when you
compiled the code, the @Nullable annotation was available, but it was not available at run time. You can use
JDK 8 at run time, or compile with a Java 7 compiler that will ignore the annotations in comments.

• A “class file not found” error may be due to a JDK version mismatch. For instance, you might be using JDK 7,
but you get an error that refers to a class that was in a previous version of the JDK but has subsequently been
removed, such as:

class file for java.io.File$LazyInitialization not found
class file for java.util.Hashtable$EmptyIterator not found
java.lang.NoClassDefFoundError: java/util/Hashtable$EmptyEnumerator

Or, you might be using JDK 6, but you get an error that refers to a class that has been introduced in a newer
version of the JDK, such as:

class file for java.util.Vector$Itr not found

This problem occurs when your classpath contains code that was compiled with one version of the JDK and
refers to its implementation details, but your classpath does not contain that version of the JDK itself.
You can solve the problem by re-generating jdk/jdk.jar and binary/jdk.jar. You can do this by running

cd checkers
ant jdk.jar bindist

• A NoSuchFieldError such as this:

java.lang.NoSuchFieldError: NATIVE_HEADER_OUTPUT

Field NATIVE HEADER OUTPUT was added in JDK 8. The error message suggests that you’re not executing with
the right bootclasspath: some classes were compiled with the JDK 8 version and expect the field, but you’re
executing the compiler on a JDK without the field.
One possibility is that you are not running the Type Annotations compiler — use javac -version to check
this, then use the right one. (Maybe the Type Annotations javac is at the end rather than the beginning of your
path.)
If you are using Ant, then one possibility is that the javac compiler is using the same JDK as Ant is using.
You can correct this by being sure to use fork="yes" (see Section 23.2) and/or setting the build.compiler
property to extJavac.
If you are building from source, you might need to rebuild the Annotation File Utilities before recompiling or
using the Checker Framework.

• If you get an error that contains lines like these:

Caused by: java.util.zip.ZipException: error in opening zip file
at java.util.zip.ZipFile.open(Native Method)
at java.util.zip.ZipFile.<init>(ZipFile.java:131)

then one possibility is that you have installed the Checker Framework in a directory that contains special char-
acters that Java’s ZipFile implementation cannot handle. For instance, if the directory name contains “+”, then
Java 1.6 throws a ZipException, and Java 1.7 throws a FileNotFoundException and prints out the directory name
with “+” replaced by blanks.

119

25.1.2 Unexpected type-checking results
This section describes possible problems that can lead the type-checker to give unexpected results.

• If the Checker Framework is unable to verify a property that you know is true, then it is helpful to formulate
an argument about why the property is true. Recall that the Checker Framework does modular verification, one
procedure at a time; it observes the specifications, but not the implementations, of other methods.
If any aspects of your argument are not expressed as annotations, then you may need to write more annotations.
If any aspects of your argument are not expressible as annotations, then you may need to extend the type-checker.

• If a checker seems to be ignoring the annotation on a method, then it is possible that the checker is reading the
method’s signature from its .class file, but the .class file was not created by the JSR 308 compiler. You can
check whether the annotations actually appear in the .class file by using the javap tool.
If the annotations do not appear in the .class file, here are two ways to solve the problem:

– Re-compile the method’s class with the Type Annotations compiler. This will ensure that the type annota-
tions are written to the class file, even if no type-checking happens during that execution.

– Pass the method’s file explicitly on the command line when type-checking, so that the compiler reads its
source code instead of its .class file.

• If the compiler reports that it cannot find a method from the JDK or another external library, then maybe the
stub/skeleton file for that class is incomplete. You can edit it to add the missing method. The libraries appear,
for example, at checkers/jdk/nullness/src/ for the Nullness checker.
The error might take one of these forms:

method sleep in class Thread cannot be applied to given types
cannot find symbol: constructor StringBuffer(StringBuffer)

25.1.3 Unable to build the checker, or to run programs
An error like this

Unsupported major.minor version 51.0

means that you have compiled some files into the Java 7 format (version 51.0), but you are trying to run them
with Java 6. Run java -version to determine the version of Java you are using and use a newer version, and/or use
the -target command-line option to javac to specify the version of the class files that are created, such as javac
-target 6

25.2 How to report problems (bug reporting)
If you have a problem with any checker, or with the Checker Framework, please file a bug at http://code.google.
com/p/checker-framework/issues/list. (First, check whether there is an existing bug report for that issue.)

Alternately (especially if your communication is not a bug report), you can send mail to checker-framework-
dev@googlegroups.com. We welcome suggestions, annotated libraries, bug fixes, new features, new checker plugins,
and other improvements.

Please ensure that your bug report is clear and that it is complete. Otherwise, we may be unable to understand it
or to reproduce it, either of which would prevent us from fixing the bug. Your bug report will be most helpful if you:

• Add -version -verbose -AprintErrorStack -printAllQualifiers to the javac options. This causes the
compiler to output debugging information, including its version number.

• Indicate exactly what you did. Don’t skip any steps, and don’t merely describe your actions in words. Show the
exact commands by attaching a file or using cut-and-paste from your command shell;

• Include all files that are necessary to reproduce the problem. This includes every file that is used by any of the
commands you reported, and possibly other files as well.

120

• Indicate exactly what the result was by attaching a file or using cut-and-paste from your command shell (don’t
merely describe it in words). Also indicate what you expected the result to be — remember, a bug is a difference
between desired and actual outcomes.

A particularly useful format for a test case is as a new file, or a diff to an existing file, for the existing Checker
Framework test suite. For instance, for the Nullness Checker, see directory checker-framework/checkers/tests/nullness/.
But, please report your bug even if you do not report it in this format.

25.3 Building from source
The Checker Framework release (Section 1.2) contains everything that most users need, both to use the distributed
checkers and to write your own checkers. This section describes how to compile its binaries from source. You will be
using the latest development version of the Checker Framework, rather than an official release.

25.3.1 Obtain the source
Obtain the latest source code from the version control repository:

export JSR308=$HOME/jsr308
mkdir -p $JSR308
cd $JSR308
hg clone https://code.google.com/p/jsr308-langtools/ jsr308-langtools
hg clone https://code.google.com/p/checker-framework/ checker-framework
hg clone https://code.google.com/p/annotation-tools/ annotation-tools

(Alternately, you could use the version of the source code that is packaged in the Checker Framework release.)

25.3.2 Build the Type Annotations compiler
1. Set the JAVA HOME environment variable to the location of your JDK 7 installation (not the JRE installation,

and not JDK 6). This needs to be an Oracle JDK. (The JAVA HOME environment variable might already be set,
because it is needed for Ant to work.)
In the bash shell, the following command sometimes works (it might not because java might be the version in
the JDK or in the JRE):

export JAVA_HOME=${JAVA_HOME:-$(dirname $(dirname $(dirname $(readlink -f $(/usr/bin/which java)))))}

2. Compile the Type Annotations javac compiler and the javap tool:

cd $JSR308/jsr308-langtools/make
ant clean build-javac build-javap

3. Add the jsr308-langtools/dist/bin directory to the front of your PATH environment variable. Example
command:

export PATH=$JSR308/jsr308-langtools/dist/bin:${PATH}

25.3.3 Build the Annotation File Utilities
This is simply done by:

cd $JSR308/annotation-tools
ant

You do not need to add the Annotation File Utilities to the path, as the Checker Framework build finds it using
relative paths.

121

25.3.4 Build the Checker Framework
1. Run ant to create checkers.jar:

cd $JSR308/checker-framework/checkers
ant

2. Add tools.jar and checkers.jar to your classpath. (If you do not do this, you will have to supply the -cp
option whenever you run javac and use a checker plugin.) Example command:
export CLASSPATH=${CLASSPATH}:$JAVA_HOME/lib/tools.jar:$JSR308/checker-framework/checkers/checkers.jar

3. Test that everything works:

• Run ant all-tests in the checkers directory:
cd $JSR308/checker-framework/checkers
ant all-tests

• Run the Nullness checker examples (see Section 3.8, page 29).

25.3.5 Build the Checker Framework manual (this document)
1. To build the manual you will need plume-bib (http://code.google.com/p/plume-bib/) and HEVEA (http:

//hevea.inria.fr/) installed.
2. Run make in the checkers/manual directory to build both the PDF and HTML versions of the manual.

25.4 Learning more
The technical paper “Practical pluggable types for Java” [PAC+08] (http://www.cs.washington.edu/homes/mernst/
pubs/pluggable-checkers-issta2008.pdf) gives more technical detail about many aspects of the Checker Frame-
work and its implementation. The technical paper also describes case studies in which each of the checkers found
previously-unknown errors in real software.

The paper “Building and using pluggable type-checkers” [DDE+11] (http://www.cs.washington.edu/homes/
mernst/pubs/pluggable-checkers-icse2011.pdf) discusses further experience with the Checker Framework,
increasing the number of lines of verified code to 3 million.

In addition to these papers that discuss use the Checker Framework directly, other academic papers use the Checker
Framework in their implementation or evaluation. Most educational use of the Checker Framework is never published,
and most commercial use of the Checker Framework is never discussed publicly.

25.5 Comparison to other tools
A pluggable type-checker, such as those created by the Checker Framework, aims to help you prevent or detect all
errors of a given variety. An alternate approach is to use a bug detector such as FindBugs, Jlint, or PMD.

A pluggable type-checker differs from a bug detector in several ways:

• A type-checker aims to find all errors. Thus, it can verify the absence of errors: if the type checker says there
are no null pointer errors in your code, then there are none. (This guarantee only holds for the code it checks, of
course; see Section 2.3.)
A bug detector aims to find some of the most obvious errors. Even if it reports no errors, then there may still be
errors in your code.
Both types of tools may issue false positive warnings; see Section 20.2.

• A type-checker requires you to annotate your code with type qualifiers, or to run an inference tool that does so
for you. A bug detector may not require annotations. This means that it may be easier to get started running a
bug detector.

122

• A type-checker may use a more sophisticated and complete analysis. A bug detector typically does a more
lightweight analysis, coupled with heuristics to suppress false positives.
As one example, a type-checker can take advantage of annotations on generic type parameters, such as List<@NonNull
String>, permitting it to be much more precise for code that uses generics.

A case study [PAC+08, §6] compared the Checker Framework’s nullness checker with those of FindBugs, Jlint,
and PMD. The case study was on a well-tested program in daily use. The Checker Framework tool found 8 nullness
errors (that is, null pointer dereferences). None of the other tools found any errors.

Also see the JSR 308 [Ern08] documentation for a detailed discussion of related work.

25.6 Credits and changelog
The key developers of the Checker Framework are Mahmood Ali, Telmo Correa, Werner M. Dietl, Michael D. Ernst,
and Matthew M. Papi. Many other developers have also contributed, for example by writing the checkers that are
distributed with the Checker Framework. Many, many users to list have provided valuable feedback, for which we are
grateful.

Differences from previous versions of the checkers and framework can be found in the changelog-checkers.txt
file. This file is included in the Checker Framework distribution and is also available on the web at http://types.
cs.washington.edu/checker-framework/current/changelog-checkers.txt.

123

Bibliography

[Art01] Cyrille Artho. Finding faults in multi-threaded programs. Master’s thesis, Swiss Federal Institute of
Technology, March 15, 2001.

[Cop05] Tom Copeland. PMD Applied. Centennial Books, November 2005.

[Cro06] Jose Cronembold. JSR 198: A standard extension API for Integrated Development Environments. http:
//jcp.org/en/jsr/detail?id=198, May 8, 2006.

[Dar06] Joe Darcy. JSR 269: Pluggable annotation processing API. http://jcp.org/en/jsr/detail?id=269,
May 17, 2006. Public review version.

[DDE+11] Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kıvanç Muşlu, and Todd Schiller. Building and using
pluggable type-checkers. In ICSE’11, Proceedings of the 33rd International Conference on Software
Engineering, pages 681–690, Waikiki, Hawaii, USA, May 25–27, 2011.

[Ern08] Michael D. Ernst. Type Annotations specification (JSR 308). http://types.cs.washington.edu/
jsr308/, September 12, 2008.

[Eva96] David Evans. Static detection of dynamic memory errors. In PLDI 1996, Proceedings of the SIGPLAN
’96 Conference on Programming Language Design and Implementation, pages 44–53, Philadelphia, PA,
USA, May 21–24, 1996.

[FL03] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types in an object-oriented
language. In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA 2003),
pages 302–312, Anaheim, CA, USA, November 6–8, 2003.

[FLL+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and Raymie Stata.
Extended static checking for Java. In PLDI 2002, Proceedings of the ACM SIGPLAN 2002 Conference
on Programming Language Design and Implementation, pages 234–245, Berlin, Germany, June 17–19,
2002.

[Goe06] Brian Goetz. The pseudo-typedef antipattern: Extension is not type definition. http://www.ibm.com/
developerworks/java/library/j-jtp02216/, February 21, 2006.

[GPB+06] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes, and Doug Lea. Java Concur-
rency in Practice. Addison-Wesley, 2006.

[HP04] David Hovemeyer and William Pugh. Finding bugs is easy. In Companion to Object-Oriented Program-
ming Systems, Languages, and Applications (OOPSLA 2004), pages 132–136, Vancouver, BC, Canada,
October 26–28, 2004.

[HSP05] David Hovemeyer, Jaime Spacco, and William Pugh. Evaluating and tuning a static analysis to find
null pointer bugs. In ACM SIGPLAN/SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE 2005), pages 13–19, Lisbon, Portugal, September 5–6, 2005.

124

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. ACM SIGSOFT Software Engineering Notes, 31(3), March 2006.

[PAC+08] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D. Ernst. Practical
pluggable types for Java. In ISSTA 2008, Proceedings of the 2008 International Symposium on Software
Testing and Analysis, pages 201–212, Seattle, WA, USA, July 22–24, 2008.

[QTE08] Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst. Inference of reference immutability. In
ECOOP 2008 — Object-Oriented Programming, 22nd European Conference, pages 616–641, Paphos,
Cyprus, July 9–11, 2008.

[TE05] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference immutability to Java. In Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA 2005), pages 211–230, San
Diego, CA, USA, October 18–20, 2005.

[ZPA+07] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieżun, and Michael D. Ernst. Object
and reference immutability using Java generics. In ESEC/FSE 2007: Proceedings of the 11th European
Software Engineering Conference and the 15th ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 75–84, Dubrovnik, Croatia, September 5–7, 2007.

125

