
JSR 308 Type-checkers and Framework

MIT Program Analysis Group
http://pag.csail.mit.edu/jsr308/

March 21, 2008

1 Introduction

This is the documentation for the JSR 308 Type-checkers and Framework, also known as the “JSR 308
Checkers”. The JSR 308 Checkers distribution contains:

• Compiler plugins, known as checkers, that find errors or verify their absence:

1. a checker for null pointer errors (see Section 3)
2. a checker for equality testing and interning errors (see Section 4)
3. a checker for mutability errors (incorrect side effects), based on the Javari type system (see

Section 5)
4. another checker for mutability errors (incorrect side effects), based on the IGJ type system (see

Section 6)

• A framework that facilitates the writing of checker plugins.

This document is organized as follows.
Section 1.1 describes how to install the JSR 308 Checkers.
Section 2 describes how to use a checker.
The next sections give specific details for the NonNull (Section 3), Interned (Section 4), Javari (Section 5),
and IGJ (Section 6) checkers.
Section 7 describes an approach for annotating external libraries.
Section 8 describes how to write a new checker using the checkers framework.

A technical report [PAJ+07] (http://people.csail.mit.edu/mernst/pubs/custom-types-tr047.pdf) describes case
studies in which each of the four checkers found previously-unknown errors in real software.

This document uses the terms “checker”, “checker plugin”, “type-checking compiler plugin”, and “anno-
tation processor” as synonyms.

1.1 Installation

To install the JSR 308 Checkers, simply place file checkers.jar on your classpath. (You must have previously
installed the JSR 308 javac compiler.)

The following instructions give detailed steps for installing the JSR 308 Checkers.

1. Download and install the JSR 308 implementation; follow the instructions at http://groups.csail.mit.

edu/pag/jsr308/dist/README-jsr308.html#installing. JSR 308 extends the Java language to permit anno-
tations to appear on types.

2. Download the JSR 308 Checkers distribution zipfile from http://groups.csail.mit.edu/pag/jsr308/releases/

jsr308-checkers.zip, and unzip it to create a checkers directory. Example commands:
wget http://groups.csail.mit.edu/pag/jsr308/releases/jsr308-checkers.zip

unzip jsr308-checkers.zip

1

3. Add the checkers/checkers.jar file to your classpath. (If you do not do this, you will have to supply the
-cp checkers.jar option whenever you run javac and use a checker plugin.)

4. Test that everything works:

• Run the NonNull checker examples (see Section 3.3.1).
• Run ant all-tests in the checkers directory:

ant all-tests

You can use the checkers framework in an IDE such as Eclipse by setting the external builder to javac.
(A checkers implementation builds on standard mechanisms such as JSR 269 annotation processing, but also
accesses the compiler’s AST. In the long run, a checker built using the checkers framework should not be
dependent on any compiler specifics.) If you do not place the annotations in comments, as in /*@NonNull*/

String, then you should also disable Eclipse’s on-the-fly syntax checking.

1.1.1 Building

Building (compiling) the checkers and framework from source creates the checkers.jar file. A pre-compiled
checkers.jar is included in the distribution, so building it is optional. It is mostly useful for people who are
developing compiler plug-ins (type-checkers). If you only want to use the compiler and existing plug-ins, it
is sufficient to use the pre-compiled version.

First, edit checkers/build.properties file so that the compiler.lib property specifies the location of the JSR
308 javac.jar library. (If you also installed the JSR 308 compiler from source, and you made the checkers

and langtools directories siblings, then you don’t need to edit checkers/build.properties.)
To build checkers.jar, run ant in the checkers directory:

cd checkers

ant

2 Using a checker

Finding bugs with a checker plugin is a two-step process:

1. The programmer writes annotations, such as @NonNull and @Interned, that specify additional information
about Java types.

2. The checker reports whether the program contains any erroneous code — that is, code that is incon-
sistent with the annotations.

2.1 Writing annotations

The syntax of type qualifier annotations is specified by JSR 308 [EC07]. Ordinary Java permits annotations
on declarations. JSR 308 permits annotations anywhere that you would write a type, including generics and
casts. You can also write annotations to indicate type qualifiers for array levels and receivers. Here are a
few examples:

@Interned String intern() { ... } // return value

int compareTo(@NonNull String other) { ... } // argument

String toString() @ReadOnly { ... } // receiver

@NonNull List<@Interned String> messages; // generic argument

@NonNull String[@Interned] messages; // non-null array of interned Strings

myDate = (@ReadOnly Date) readonlyObject; // cast

For backward compatibility, you may write any annotation inside a /*. . . */ Java comment. The JSR
308 compiler will recognize such an annotation, but your code will still compile with pre-JSR-308 compilers.
This is useful when your code needs to be compilable by people who are not using the JSR 308 compiler.

When writing source code with annotations, typically you will add

2

import checkers.quals.*;

at the top of the source file, so that you can write annotations such as @NonNull instead of @checkers.quals.NonNull.

2.2 Running a checker

To run a checker plugin, run the JSR 308 compiler javac as usual, but pass the -typeprocessor plugin class

command-line option. Two concrete examples (using the NonNull checker) are:

javac -typeprocessor checkers.nonnull.NonNullChecker MyFile.java

javac -typeprocessor checkers.nonnull.NonNullChecker -sourcepath checkers/jdk/nonnull/src MyFile.java

For a discussion of the -sourcepath argument, see Section 7.1.2.
You can always compile the code without the -typeprocessor command-line option, but in that case no

checking of the type annotations is performed.

2.3 Checking against unannotated code

A checker plugin reads annotations from the source code or .class files of classes that are used by the
code being compiled and checked. If annotated code uses unannotated code (e.g., libraries or the JDK),
then the checker may issue warnings. For example, the NonNull checker (Section 3) will warn whenever an
unannotated library call result is used in a non-null context:

@NonNull myvar = library_call(); // WARNING: library_call may return a null value

If the library call can return null, you should fix the bug in your program by removing the @NonNull

annotation. If the library call never returns null, there are two general ways to prevent compiler warnings:
add the missing annotations (Section 2.3.1), or suppress the warnings (Section 2.4).

2.3.1 Adding library annotations

You may be able to obtain a version of the library that contains the annotations, or a set of external anno-
tations that describe the library. For example, the JSR 308 Checkers distribution contains such annotations
for popular libraries, such as the JDK. Section 7.1.2 describes how to use them.

Otherwise, you will need to annotate the library, using one of these techniques:

• If source code is available, you can annotate the source code and re-compile the library.
• If no source code is available, or if you do not want to edit and recompile the library, you can use the

skeleton class generation tool; see Section 7.
• You can annotate the compiled .jar or .class files by using the annotation file utilities (http://groups.

csail.mit.edu/pag/jsr308/annotation-file-utilities/) to express the annotations textually and then insert
them in the compiled library classfiles.

If you annotate additional libraries, please share them with us so that we can distribute the annotations
with the JSR 308 Checkers; see Section 2.7.

2.4 Suppressing warnings

You may wish to suppress checker warnings because of un-annotated libraries or un-annotated portions of
your own code, because of application invariants that are beyond the capabilities of the type system, because
of checker limitations, because you are interested in only some of the guarantees provided by a checker, or
for other reasons. You can suppress warnings via

• the javac -Alint command-line option,
• the @SuppressWarnings annotation, or

3

• the checkers.skipClasses Java property.

You can suppress an entire class of warnings via javac’s -Alint command-line option. Following -Alint=,
write a list of option names. If the option name is preceded by a hyphen (-), that disables the option;
otherwise it enables it. For example: -Alint=-dotequals causes the Interned checker (Section 4) not to output
advice about when a.equals(b) could be replaced by a==b.

You can suppress specific errors and warnings by use of the @SuppressWarnings("annotationname ") annotation,
for example @SuppressWarnings("interned"). This may be placed on program elements such as a class, method,
or local variable declaration. It is good practice to suppress warnings in the smallest possible scope.

You can suppress errors and warnings pertaining to un-annotated (or other) classes by setting the
checkers.skipClasses Java property to a regular expression that matches classes for which warnings and
errors should be suppressed. For example, if you use “-Dcheckers.skipClasses=^java\.” on the command line
when invoking javac, then the checkers will suppress warnings relating to uses of classes in the java package.
(Note that if your javac is a script rather than a binary, it may not support JVM flags such as -D; in that
case, you may need to edit javac script itself to pass the -D flag. This is a flaw in the OpenJDK build process,
which we will try to correct in a future release.)

You can also compile parts of your code without use of the -typeprocessor switch to javac. No checking is
done during such compilations.

Finally, some checkers have special rules. For example, the NonNull checker (Section 3) uses assert

statements that contain null checks, along with the flow-sensitive type inference (Section 2.5), to suppress
warnings.

You can also compile parts of your code without use of the -typeprocessor switch to javac. No checking is
done during such compilations.

2.5 Implicitly annotated types (flow-sensitive type qualifier inference)

In order to reduce the burden of annotating types in your program, some checkers treat certain variables and
expressions as being annotated, even if you have not annotated them. For instance, the NonNull checker
(Section 3) can automatically determine that certain variables are nonnull, without you having to annotate
them. The Interned checker (Section 4) also has this functionality, and new checkers that you write can also
take advantage of it.

For example, a variable or expression can be treated as @NonNull from the time that it is either assigned
a non-null value or checked against null (e.g., via an assertion, if statement, or being dereferenced), until it
might be re-assigned (e.g., via an assignment that might affect this variable, or via a method call that might
affect this variable).

As with explicit annotations, the implicitly non-null types permit dereferences, and assignments to ex-
plicitly non-null types, without compiler warnings.

For example, consider this code, along with comments indicating whether the NonNull checker issues a
warning. Note that the same expression may yield a warning or not depending on its context.

// Requires an argument of type @NonNull String

void parse(@NonNull String toParse) { ... }

// Argument does NOT have a @NonNull type

void lex(String toLex) {

parse(toLex); // warning: toLex might be null

if (toLex != null) {

parse(toLex); // no warning: toLex is known to be non-null

}

parse(toLex); // warning: toLex might be null

toLex = new String(...);

parse(toLex); // no warning: toLex is known to be non-null

}

4

If you find instances where you think a value should be inferred to have (or not have) a given annotation,
but the checker does not do so, please submit a bug report (see Section 2.7) that includes a small piece of
Java code that reproduces the problem.

Type inference is never performed for method parameters of non-private methods and for non-private
fields, because unknown client code could use them in arbitrary ways. The inferred information is never
written to the .class file as user-written annotations are.

The inference indicates when a variable can be treated as having a subtype of its declared type; for
instance, when an otherwise nullable type can be treated as a @NonNull one. The inference never treats a
variable as a supertype of its declared type (e.g., an expression of @NonNull type is never inferred to be treated
as possibly-null).

2.6 What the checker guarantees

A checker can guarantee that a particular property holds throughout the code. For example, the non-null
checker (Section 3) guarantees that every expression whose type is a @NonNull type never evaluates to null.
The interned checker (Section 4) guarantees that every expression whose type is an @Interned type evaluates
to an interned value. The checker makes its guarantee by examining every part of your program and verifying
that no part of the program violates the guarantee.

There are some limitations to the guarantee.

• Native methods and reflection can behave in a manner that is impossible for a compiler plugin to check.
Such constructs they may violate the property being checked. Similarly, deserialization and cloning
can create objects that could not result from normal constructor calls, and that therefore may violate
the property being checked.

• A compiler plugin can check only those parts of your program that you run it on. If you compile some
parts of your program without the -typeprocessor switch or with the checkers.skipClasses property (in
other words, without running the checker), or if you use the @SuppressWarnings annotation to suppress
some errors or warnings, then there is no guarantee that the entire program satisfies the property being
checked. An analogous situation is using an external library that was compiled without being checked
by the compiler plugin.

• The checkers framework does not yet support annotations on intersection types (see JLS §4.9). As a
result, checkers cannot provide guarantees about intersection types.

• The checkers framework does not yet support annotations on an array that is a varargs parameter.
(Annotating the elements of a varargs parameter is supported, however.)

• Specific checkers may have other limitations; see their documentation for details.

A checker can be useful in finding bugs or in verifying part of a program, even if the checker is unable to
verify the correctness of an entire program.

2.7 How to report bugs

If you have any problems with any checker, or with the checkers framework, please let us know at jsr308-bugs@lists.csail.mit.edu.
In addition to bug reports, we welcome suggestions, annotated libraries, bug fixes, new features, new checker
plugins, and other improvements.

Please ensure that your bug report is clear and that it is complete. Otherwise, we may be unable to
understand it or to reproduce it, either of which would prevent us from fixing the bug. Your bug report will
be most helpful if you:

• Indicate exactly what you did. Show the exact commands (don’t merely describe them in words).
Don’t skip any steps.

• Include all files that are necessary to reproduce the problem. This includes every file that is used by
any of the commands you reported, and possibly other files as well.

5

• Indicate exactly what the result was (don’t merely describe it in words). Also indicate what you
expected the result to be — remember, a bug is a difference between desired and actual outcomes.

• Indicate which version of the JSR 308 compiler and JSR 308 Checkers you are using. You can determine
the JSR 308 version by running javac -version.

2.8 Credits and changelog

The JSR 308 Checkers distribution was developed in the MIT Program Analysis Group. The JSR 308
checkers framework was implemented by Matthew M. Papi. The non-null checker was implemented by
Matthew M. Papi. The interned checker was implemented by Matthew M. Papi. The Javari checker was
implemented by Telmo Correa. The IGJ checker was implemented by Mahmood Ali. Many users have
provided valuable feedback.

Differences from previous versions of the checkers and framework can be found in the changelog-checkers.txt

file. This file is included in the checkers distribution and is also available on the web at http://groups.csail.

mit.edu/pag/jsr308/dist/changelog-checkers.txt.

3 NonNull checker

If the NonNull checker issues no warnings for a given program, then running that program will never throw
a null pointer exception. This guarantee enables a programmer to prevent errors from occurring when his
program is run. See Section 3.4 for caveats to the guarantee.

3.1 Annotating your code with @NonNull

In order to perform checking, you must annotate your code. You can write the @NonNull type annotation,
which indicates a type that does not include the null value, or the @Nullable type annotation, which indicates
a type that does include null. You only have to write one of these, depending on whether you choose the
default qualifier (for unannotated references; see Section 3.2) to be @NonNull or @Nullable.

A variable of type Boolean always has one of the values TRUE, FALSE, or null. By contrast, a variable of
type @NonNull Boolean always has one of the values TRUE or FALSE — never null. Dereferencing an expression
of type @NonNull Boolean can never cause a null pointer exception.

The checker issues a warning in two cases:

1. When an expression of non-@NonNull type is dereferenced, because it might cause a null pointer excep-
tion.

2. When an expression of @NonNull type might become null, because it is a misuse of the type: the null
value could flow to a dereference that the checker does not warn about.

This example shows both sorts of problems:

Object obj; // might be null

@NonNull Object nnobj; // never null

...

nnobj.toString() // checker warning: dereference might cause null pointer exception

nnobj = obj; // checker warning: nnobj may become null

Parameter passing and return values are checked analogously to assignments.
You can control the behavior of the NonNull checker via the -Alint options flow, cast, and cast:redundant.

3.2 Default annotations and @Nullable annotation

By default, the NonNull checker regards unannotated types as possibly-null (or “nullable”). This behavior
may be overridden for individual classes or methods using the @checkes.quals.Default annotation.

6

The @Default annotation has a single argument for the fully qualified String name of an annotation. If
the NonNull checker finds a @Default("checkers.quals.NonNull") annotation enclosing the scope in which it is
currently checking, it treats all types in that scope as though they are annotated with @NonNull. The @Nullable

annotation may be used to locally override the effects of the @Default annotation.
This example illustrates the use of the @Default and @Nullable annotations:

@Default("checkers.quals.NonNull")

public boolean compile(File file) {

if (!file.exists()) // no warning: file is @NonNull by default

return false;

@Nullable File srcPath = ...;

// ...

if (srcPath.exists()) // warning: srcPath might be null

// ...

}

The @checkers.quals.Default provides a second type of default, known as “NonNull Except Locals” (NNEL).
NNEL is specified via an additional argument to the @Default annotation: @Default(value="checkers.quals.NonNull",

types={DefaultLocation.ALL EXCEPT LOCALS}). If the NonNull checker finds this annotation enclosing the scope
in which it is currently checking, it treats all types in that scope as though they are annotated with @NonNull

unless the type is the raw type of a local variable. The NNEL default reduces the programmer’s annotation
burden, especially in conjunction with the flow-sensitive type inference in Section 2.5.

3.3 Examples

3.3.1 Tiny examples

To try the @NonNull checker on a source file that uses the @NonNull qualifier, use the following command (where
javac is the JSR 308 compiler):

javac -typeprocessor checkers.nonnull.NonnullChecker examples/NonNullExample.java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations (and therefore the possibility of a null

pointer exception at run time), use the following command:

javac -typeprocessor checkers.nonnull.NonnullChecker examples/NonNullExampleWithWarnings.java

The compiler will issue three warnings regarding violation of the semantics of @NonNull.

3.3.2 Annotated library

The NonNull checker itself is annotated with @NonNull.
In addition, you can run the NonNull checker on the annotation scene library, another library that

has been fully annotated with @NonNull. To run the NonNull checker on the annotation scene library, first
download the scene library suite (which includes build dependencies for the scene library as well as its source
code) and extract it into your checkers installation. The checker can then be run on the annotation scene
library with Apache Ant using the following commands:

cd checkers

ant -f scene-lib-test.xml

You can view the annotated source code, which contains @NonNull annotations, in the checkers/scene-lib-test/src/annotations/

directory.

7

3.4 Caveats to the guarantee of no null pointer errors

The NonNull checker prevents null pointer errors in your code. In addition to the caveats for any checker
(Section 2.6), there are two additional caveats:

• The NonNull checker assumes that assertions are enabled, so that no null pointer exception can occur
in code such as assert x != null; ... x.f If the JVM is run with assertions disabled, then a null
pointer exception could occur.

• The NonNull checker does not check whether a variable is initialized. That means that code executing
before a variable is initialized — for example, in a constructor — can yield a null pointer exception
that the checker does not warn about.

3.5 Related work

The JSR 308 Checkers @NonNull annotation is similar, but not identical, to the @NotNull annotation of IntelliJ
IDEA, the @NonNull annotation of FindBugs, the non null modifier of JML, and annotations proposed by JSR
305, among others.

4 Interned checker

If the Interned checker issues no warnings for a given program, then all reference equality tests (i.e., “==”) in
that program operate on interned types. Interning can save memory and can speed up testing for equality
by permitting use of ==; however, use of == on non-interned values can result in subtle bugs. For example:

Integer x = new Integer(22);

Integer y = new Integer(22);

System.out.println(x == y); // prints false!

The Interned checker helps programmers to prevent such bugs. The Interned checker also helps to prevent
performance problems that result from failure to use interning. (See Section 2.6 for caveats to the checker’s
guarantees.)

4.1 Annotating your code with @Interned

In order to perform checking, you must annotate your code with the @Interned type annotation, which
indicates a type for the canonical representation of an object:

String s1 = ...; // type is (uninterned) "String"

@Interned String s2 = ...; // Java type is "String", but checker treats as "Interned String"

The type system enforced by the checker plugin ensures that only interned values can be assigned to s2.
To specify that all objects of a given type are interned, annotate the class declaration:

public @Interned class MyInternedClass { ... }

This is equivalent to annotating every use of MyInternedClass, in a declaration or elsewhere. For example,
enum classes are implicitly so annotated.

4.2 What the Interned checker checks

Objects of an @Interned type may be safely compared using the “==” operator.
The checker issues a warning in two cases:

1. When a reference (in)equality operator (“==” or “!=”) has an operand of non-@Interned type.
2. When a non-@Interned type is used where an @Interned type is expected.

8

This example shows both sorts of problems:

Object obj;

@Interned Object iobj;

...

if (obj == iobj) { ... } // checker warning: reference equality test is unsafe

iobj = obj; // checker warning: iobj’s referent may no longer be interned

String literals and the null literal are always considered interned, and object creation expressions (using
new) are never considered @Interned unless they are annotated as such, as in

@Interned Double internedDoubleZero = new @Interned Double(0); // canonical representation for Double zero

The checker also issues a warning when .equals is used where == could be safely used. You can disable
this behavior via the javac -Alint command-line option, like so: -Alint=-dotequals.

4.3 Examples

To try the @Interned checker on a source file that uses the @Interned qualifier, use the following command
(where javac is the JSR 308 compiler):

javac -typeprocessor checkers.interned.InternedChecker examples/InternedExample.java

Compilation will complete without warnings.
To see the checker warn about incorrect usage of annotations, use the following command:

javac -typeprocessor checkers.interned.InternedChecker examples/InternedExampleWithWarnings.java

The compiler will issue a warning regarding violation of the semantics of @Interned.
The Daikon invariant detector (http://groups.csail.mit.edu/pag/daikon/) is also annotated with @Interned.

5 Javari checker

IGJ is a Java language extension that helps programmers to avoid mutation errors that result from unintended
side effects. If the Javari checker issues no warnings for a given program, then that program will never change
objects that should not be changed. This guarantee enables a programmer to detect and prevent mutation-
related errors. (See Section 2.6 for caveats to the guarantee.) The Javari webpage (http://groups.csail.mit.
edu/pag/javari/) gives pointers to papers that explain the Javari language and type system.

The Javari webpage also contains a separate program, the Javarifier (http://groups.csail.mit.edu/pag/
javari/javarifier/), which infers Javari types for an existing program. The Javarifier inserts Javari annota-
tions in a Java program or in .class files. This has two benefits: it relieves the programmer of the tedium of
writing annotations (though the programmer can always refine the inferred annotations), and it annotates
libraries, permitting checking of programs that use those libraries. (Annotation of libraries is not as critical
for other type systems such as the NonNull checker (Section 3) and the Interned checker (Section 4).)

5.1 Annotation Javari dialect

The Javari checker uses an annotation-based dialect of the Javari language.
The supported annotations are @ReadOnly, @Mutable, @Assignable, @QReadOnly and @RoMaybe, that correspond

to the Javari keywords readonly, mutable, assignable, ? readonly, and romaybe, respectively.
The @ReadOnly type annotation indicates that a reference provides only read-only access. The checker

issues an error whenever mutation happens through a readonly reference, when fields of a readonly reference
which are not explicitly marked with @Assignable are reassigned, or when a readonly expression is assigned
to a mutable variable. The checker also emits a warning when casts increase the mutability access of a
reference.

9

The @Mutable annotation ensures that a reference is mutable, no matter the inherited mutability.
The @QReadOnly annotation is a mutability wildcard that can be applied to types (for example, List<@QReadOnly

Date>). As such, it allows only the operations which are allowed for both readonly and mutable types.
The @RoMaybe annotation simulates mutability overloading. It can be applied to methods and parameters.

Read the @RoMaybe Javadoc for more details.

5.2 Examples

To try the Javari checker on a source file that uses the Javari qualifier, use the following command, where
javac is the JSR 308 compiler, or specify just one of the test files.

javac -typeprocessor checkers.javari.JavariChecker tests/javari/*.java

The compiler should issue the errors and warnings (if any) specified in the .out files with same name.
To run the test suite for the Javari checker, use ant javari-tests.
The Javari checker itself is also annotated with Javari annotations.

6 IGJ checker

IGJ is a Java language extension that helps programmers to avoid mutation errors that result from unintended
side effects. If the IGJ checker issues no warnings for a given program, then that program will never change
objects that should not be changed. This guarantee enables a programmer to detect and prevent mutation-
related errors. (See Section 2.6 for caveats to the guarantee.)

6.1 IGJ and Mutability

IGJ permits a programmer to express that a particular object should never be modified via any reference
(object immutability), or that a reference should never be used to modify its referent (reference immutability).
Once a programmer has expressed these facts, an automatic checker analyzes the code to either locate
mutability bugs or to guarantee that the code contains no such bugs.

To learn the details of the IGJ language and type system, please see the ESEC/FSE 2007 paper “Object
and reference immutability using Java generics” [ZPA+07]. The IGJ checker supports Annotation IGJ
(Section 6.3), which is slightly different dialect of IGJ than that described in the ESEC/FSE paper.

6.2 Supported Annotations

The supported annotations are @ReadOnly, @Mutable, @Immutable, @Assignable, and @AssignsFields, as specified in
the IGJ paper. The @I(string) annotation is added to mimic the template behavior of generics.

The @ReadOnly type annotation indicates that a reference provides only read-only access. The checker
issues an error whenever mutation happens through a readonly reference, when fields of a readonly reference
which are not explicitly marked with @Assignable are reassigned, or when a readonly expression is assigned
to a mutable variable. The checker also emits a warning when casts increase the mutability access of a
reference.

The @Mutable annotation ensures that a reference is mutable, no matter the inherited mutability. @AssignsFields

similar, but permits only limited mutation — assignment of fields — and is for use by constructor helper
methods.

The @Immutable annotation ensures that a reference is to an immutable object.
The @I annotation simulates mutability overloading. It can be applied to classes, methods and parameters.

See Section 6.3.3.

10

6.3 Annotation IGJ Dialect

The IGJ checker supports the Annotation IGJ dialect of IGJ. The syntax of Annotation IGJ is based on
JSR 308 annotations.

The syntax of the original IGJ dialect [ZPA+07] was based on Java 5’s generics and annotation mecha-
nisms. The original IGJ dialect was not backward-compatible with Java (either syntactically or semantically).
The dialect of IGJ checked by the IGJ checker corrects these problems.

The differences between the Annotation IGJ dialect and the original IGJ dialect are as follows.

6.3.1 Semantic Changes

• Annotation IGJ does not permit covariant changes in generic type arguments, for backward compati-
bility with Java. In ordinary Java, types with different generic type arguments, such as Vector<Integer>

and Vector<Number>, have no subtype relationship, even if the arguments (Integer and Number) do. The
original IGJ dialect changed the Java subtyping rules to permit safely varying a type argument covari-
antly in certain circumstances. For example,

Vector<Mutable, Integer> <: Vector<ReadOnly, Integer>

<: Vector<ReadOnly, Number>

<: Vector<ReadOnly, Object>

• Annotation IGJ supports array immutability. The original IGJ dialect did not permit the (im)mutability
of array elements to be specified, because the generics syntax used by the original IGJ dialect cannot
be applied to array elements.

6.3.2 Syntax Changes

• Immutability is specified through JSR 308 [EC07] annotations (Section 6.2), not through a combination
of generics and annotations. Use of JSR 308 annotations makes Annotation IGJ backward compatible
with Java syntax.

• Templating over Immutability: The annotation @I(id) is used to template over immutability. See
Section 6.3.3.

6.3.3 Templating Over Immutability: @I

@I is a template annotation over IGJ Immutability annotations. It acts similarly to type variables in Java’s
generic types, and the name @I mimics the standard <I> type variable name used in code written in the
original IGJ dialect. The annotation value string is used to distinguish between multiple instances of @I —
in the generics-based original dialect, these would be expressed as two type variables <I> and <J>.

Usage on classes A class annotated with @I could be declared with any IGJ Immutability annotation. The
actual immutability that @I is resolved to dictates the immutability type for all the non-static appearances
of @I with the same value as the class declaration.

Example:

@I

public class FileDescriptor {

private @Immutable Date creationData;

private @I Date lastModData;

public @I Date getLastModDate() @ReadOnly { }

}

...

void useFileDescriptor() {

@Mutable FileDescriptor file =

new @Mutable FileDescriptor(...);

...

11

@Mutable Data date = file.getLastModDate();

}

In the last example, @I was resolved to @Mutable for the instance file.

Usage on methods For example, it could be used for method parameters, return values, and the actual
IGJ immutability value would be resolved based on the method invocation.

For example, method getMidpoint returns a Point with the same immutability type as the passed parameters
if p1 and p2 match in immutability, otherwise @I is resolved to @ReadOnly:

static @I Point getMidpoint(@I Point p1, @I Point p2) { ... }

The @I annotation value distinguishes between @I declarations. So, method findUnion returns a collection
of the same immutability type as the first collection parameter:

static <E> @I("Second") Collection<E> findUnion(@I("First") Collection<E> col1,

@I("Second") Collection<E> col2) { ... }

6.4 Examples

To try the IGJ checker on a source file that uses the IGJ qualifier, use the following command, where javac

is the JSR 308 compiler.

javac -typeprocessor checkers.igj.IGJChecker examples/IGJExample.java

The IGJ checker itself is also annotated with IGJ annotations.

7 Annotating libraries with the skeleton class generator

When annotated code uses unannotated code (e.g., libraries such as the JDK), a checker may issue warnings
(see Section 2.3). As described in Section 2.3.1, the best way to correct this problem is to add annotations
to the library.

One way to do so is to annotate a “skeleton class” version of the library and use it during compilation
(only). A skeleton class has trivial method bodies that always throw an exception.

7.1 Creating and using a skeleton class

There are two steps to creating, and two steps to using, a skeleton class. We illustrate them via the example
of creating a @NonNull-annotated version of java.lang.Set. (You don’t need to repeat these steps, since such a
skeleton class is already included in the JSR 308 Checkers distribution.)

First, you must install the skeleton class generator (Section 7.2).

7.1.1 Creating a skeleton class

1. Create a skeleton class by running the skeleton class generator.
cd checkers/jdk/nonnull/src

java checkers.util.skel.Skeleton java.util.Set > java/util/Set.java

Supply it with the fully-qualified name of the class for which you wish to generate a skeleton class.
The skeleton class generator prints the skeleton class to standard out, so you may wish to redirect its
output to a file. See Section 7.2 for installation instructions for the skeleton class generator.

2. Add annotations to the skeleton class. For example, you might annotate the Set.iterator() method as
follows:

public abstract @NonNull java.util.Iterator<E> iterator();

12

7.1.2 Using a skeleton class

1. Use javac’s -sourcepath argument to indicate where to find the skeleton classes. The checker will read
annotations from the annotated skeleton class instead of the unannotated original library class.

javac -typeprocessor checkers.nonnull.NonnullChecker -sourcepath checkers/jdk/nonnull/src my_source_files

2. When you run the compiled code, do not include the skeleton files on the classpath. If a skeleton method
is called instead of the true library method, then your program will throw a RuntimeException.

7.2 Installing the skeleton class generator

Source code for the skeleton class generator tool is included in the checkers distribution, but because the
tool has additional dependencies, the provided build script does not build the tool by default.

Follow these steps to install the skeleton class generator:

1. Install the annotation file utilities, using the instructions at http://groups.csail.mit.edu/pag/jsr308/

annotation-file-utilities/. Per those instructions, the annotation-file-utilities.jar file should be on
your classpath.

2. Update the build.properties file in the checkers distribution so that the annotation-utils.lib property
specifies the location of the annotation-file-utilities.jar library.

3. Build the skeleton class generator tool by running ant skeleton-util dist in the checkers directory. This
updates the checkers.jar file to contain the skeleton class generator. checkers.jar should already be on
your classpath (see Section 1.1).

8 How to write a checker plugin

This section describes how to write a checker — a type-checking compiler plugin that detects bugs or verifies
their absence. After a programmer annotates a program using JSR 308 annotations, the checker plug-in
verifies that the code is consistent with the annotations. If you only want to use a checker, you do not need
to read this section.

In addition to reading this section of the manual, you may find it helpful to examine the implementations
of the checkers that are distributed with the Checkers Framework, or to create your checker by modifying
another one.

8.1 Classes in a checker plugin

A checker consists of three classes: a visitor, a type factory, and a compiler interface. The Checkers Frame-
work provides abstract base classes (default implementations), and a specific checker overrides as little or as
much of the default implementations as necessary (see Sections 8.2, 8.3, and 8.4).

The visitor class performs type-checking at each node of the source file’s AST. The abstract base visitor
issues a warning whenever the type system induced by the type qualifier is violated. For example, it is
illegal to assign a supertype to a subtype in Java, so this assignment is not permitted (assuming the obvious
variable declarations):

myNonNullObject = myObject; // invalid assignment

In addition to assignments, the base visitor checks method arguments, receivers, return values, overriding,
and other Java constructs. The base visitor also provides hooks that are called by the annotation processing
facility [Dar06], and it reports errors via the Java compiler’s messaging mechanism [vdA06].

The type factory class, given an AST node, returns the annotated type of that expression. The abstract
base type factory class provided by the Checkers Framework supplies a uniform, Tree-API-based interface for
querying the annotations on a program element, regardless of whether that element is declared in a source
file or in a class file. It also handles default annotations, and it optionally performs flow-sensitive local type
inference.

13

The compiler interface class performs all subtyping tests, including accounting for arrays, generics, wild-
cards, etc. A programmer supplies the compiler interface class name as a javac -typeprocessor argument, so
the compiler interface usually has a name like NonNullChecker or InternedChecker.

8.2 Extending the visitor class SourceVisitor

The visitor class uses the visitor design pattern to traverse Java source syntax trees (as provided by the semi-
public Tree API and not the internal javac tree representation). The abstract base class checkers.source.SourceVisitor

type-checks each AST node as it is visited.
The visitor overrides one method in the base visitor for each special rule in the type qualifier system. For

example, the visitor for the Nullness type system of Section 3 consists of a single 4-line method that warns
if an expression of Nullable type is dereferenced, as in:

myObject.hashCode(); // invalid dereference

The abstract class SourceVisitor is a wrapper around TreePathScanner for performing type-checking us-
ing the annotation processing API and the Annotated*Type classes. To extend SourceVisitor, override the
appropriate visit* method from TreeScanner (these methods have specific tree nodes for parameters, i.e.,
visitAssignment has an argument of type AssignmentTree). The protected member AnnotatedTypeFactory factory
can be used to create AnnotatedTypeMirrors for querying the annotations on/in a tree node.

8.3 Extending the type factory AnnotatedTypeFactory

The “Annotated Types” framework in checkers.types can be used to obtain annotations on tree nodes. The
AnnotatedTypeFactory class has getAnnotatedType methods that take either a tree node or an element and
return an AnnotatedTypeMirror.

The checker-specific type factory accounts for implicit annotations. For example, the Interned checker
(Section 4) has a type factory that treats every String literal, such as "JSR 308", as having type @Interned

String (because Java guarantees that property).

8.4 Extending the compiler interface SourceChecker

The base class for checkers is checkers.source.SourceChecker, which subclasses of Sun’s AbstractProcessor. The
abstract base compiler interface invokes the visitor class on each input source file.

The compiler interface defines the type hierarchy; for instance, the hierarchy of the NonNull checker
(Section 3) is defined as

this.relation = new SimpleSubtypeRelation(NONNULL, NULLABLE);

indicating that a type with a NonNull annotation is a subtype of the same type with a Nullable annotation.
A checker can customize the default error messages by overriding the getMessages method. It returns a

java.util.Properties instance where the keys are the strings passed to SourceChecker.report (like "invalid.assignment")
and the values are the strings to be printed ("cannot assign ...").

Otherwise, the compiler interface mainly contains boilerplate, such as the names of the visitor, type
factory, and annotation classes, and the prefix for checker-specific command-line options. Additionally, as
recommended by the annotation processing API, checker classes may be annotated with the SupportedAn-
notationTypes and SupportedSourceVersion annotations.

8.5 Using BaseTypeChecker and BaseTypeVisitor

BaseTypeChecker and BaseTypeVisitor in the checker.basetype package implement a generic type-checker
for type qualifiers for which the qualified type is the subtype of the unqualified type. Many type qualifiers,
including @NonNull and @Interned, fall into this category.

BaseTypeChecker extends SourceChecker, and it provides two primary services:

14

• an overridden getSourceVisitor method that returns an instance of SubtypeVisitor
• the isSubtype method that checks if one type is a subtype of another with respect to the type qualifier-

annotations on the type

BaseTypeVisitor extends SourceVisitor, providing a type-checking visitor implementation that currently
checks and reports six errors:

• invalid assignment (assignment.invalid) when an assignment from an unqualified type to a qualified
supertype is found

• invalid argument (argument.invalid) when an argument with the unqualified type is passed to a method
for a parameter with the qualified type

• invalid receiver (receiver.invalid) when a method whose receiver has the qualified type is called from
an object with the unqualified type

• invalid return (return.invalid) when the expression in a return statement has the unqualified type but
the method declaration has the qualified return type

• invalid overriding parameter type (override.parameter.invalid) when a parameter in a method declara-
tion is incompatible with that parameter in the overridden method’s declaration

• invalid overriding return type (override.return.invalid) when a parameter in a method declaration is
incompatible with that parameter in the overridden method’s declaration

Many type-checkers need to override only a few methods in BaseTypeVisitor.

8.6 Simple example checker: Lovely

Here is the source code for a complete checker. It checks the Lovely annotation (which we have made up for
the purposes of illustration). The checker overrides only the compiler interface; more sophisticated checkers
would involve more code.

To try the Lovely checker, execute the following commands (those preceded by a number sign are com-
ments):

First, compile the Lovely annotation and the checker.

javac Lovely.java LovelyChecker.java

The test program compiles correctly using ordinary javac.

javac LovelyTest.java

The checker warns of a type mismatch in the annotations.

javac -typeprocessor LovelyChecker LovelyTest.java

Here is a transcript of the commands, where the command line prompt is #:

% javac Lovely.java LovelyChecker.java

% javac LovelyTest.java

% javac -typeprocessor LovelyChecker LovelyTest.java

LovelyTest.java:4: (assignment.invalid)

@Lovely double vol = rate;

^

1 error

%

LovelyTest.java
class LovelyTest {

public static void main(String[] args) {

double rate = 1.0;

@Lovely double vol = rate;

}

}

Lovely.java
/** The \@Lovely annotation.

* It doesn’t mean anything: it is just for purposes of illustration.

* Every Lovely object is an object, but not every objecct is a Lovely object.

15

**/

public @interface Lovely {

}

LovelyChecker.java
import javax.annotation.processing.*;

import javax.lang.model.SourceVersion;

import javax.lang.model.element.AnnotationMirror;

import checkers.basetype.BaseTypeChecker;

import checkers.types.*;

import checkers.util.SimpleSubtypeRelation;

/**

* A simple checker that treats the {@code \@Lovely} annotation as a

* subtype-style qualifier with no special semantics.

*/

@SupportedSourceVersion(SourceVersion.RELEASE_7)

public class LovelyChecker extends BaseTypeChecker {

private SimpleSubtypeRelation relation;

private AnnotationFactory annoFactory;

/** Represents the {@code \@Lovely} annotation. */

private AnnotationMirror LOVELY;

@Override

public synchronized void init(ProcessingEnvironment processingEnv) {

super.init(processingEnv);

annoFactory = new AnnotationFactory(processingEnv);

LOVELY = this.annoFactory.fromName(Lovely.class.getCanonicalName());

relation = new SimpleSubtypeRelation(LOVELY, null);

}

@Override

public boolean isSubtype(AnnotatedTypeMirror lhs, AnnotatedTypeMirror rhs) {

return relation.isSubtype(lhs, rhs);

}

}

8.7 The Custom checker

The checkers distribution includes the Custom checker, which performs typechecking with no special seman-
tics beyond standard subtyping rules and operates over annotations specified by a user on the command
line.

The Custom checker is ideal for type systems that do not require implicit annotations (e.g., as string
literals are implicitly considered @NonNull) or special checks (e.g., warning about dereferences of possibly-null
values). For such type systems, the type system creator is encouraged to use the Custom checker and does
not need to write any code beyond declarations for the annotations used by the type system.

The Custom checker is also useful to type system creators that wish to experiment with a checker before
writing code; the Custom checker demonstrates the functionality that a checker inherits from the checkers
framework.

8.7.1 Using the Custom checker

The Custom checker is used in the same way as other checkers (using the -processor option; see Section 2),
except that uses two annotation processor arguments via the standard “-A” switch:

16

• -Aqual: required; this option specifies the fully-qualified class name of the annotation used as a subtype
qualifier in the custom type system. (For instance, the @NonNull annotation is used as the subtype
qualifier for the NonNull type system.)

• -Anqual: optional; this option specifies the fully-qualified class name of the annotation used as a su-
pertype qualifier in the custom type system. (For instance, the @Nullable annotation is used as the
supertype qualifier for the NonNull type system.)

Note that the annotation provided via the command-line must be accessible to the compiler during
compilation, either on the classpath or sourcepath or as one of the .java files passed to the compiler.

8.7.2 Custom checker example

Consider a hypothetical Encrypted type qualifier, which denotes that the representation of an object (such as
a String, CharSequence, or byte[]) is encrypted. To use the Custom checker for the Encrypted type system, first
define an annotation for the Encrypted qualifier:

package myquals;

/**

* Denotes that the representation of an object is encrypted.

* ...

*/

public @interface Encrypted {}

Then, write add @Encrypted annotations to your program:

public @Encrypted String encrypt(String text) {

// ...

}

// Only send encrypted data!

public void sendOverInternet(@Encrypted String msg) {

// ...

}

void sendText() {

// ...

@Encrypted String ciphertext = encrypt(plaintext);

sendOverInternet(ciphertext);

// ...

}

void sendPassword() {

String password = getUserPassword();

sendOverInternet(password);

}

Finally, invoke the compiler with the Custom checker, specifying the @Encrypted annotation using the
-Aqual option:

$ javac -processor checkers.util.CustomChecker \

-Aqual=myquals.Encrypted YourProgram.java

YourProgram.java:42: incompatible types.

found : java.lang.String

required: @myquals.Encrypted java.lang.String

sendOverInternet(password);

^

17

8.8 Debugging options

The checkers framework provides debugging options that can be helpful when writing checker. These are
provided via the standard javac “-A” switch, which is used to pass options to an annotation processor.

• -Anomsgtext: use message keys (such as “type.invalid”) rather than full message text when reporting
errors or warnings

• -Ashowchecks: print debugging information for each pseudo-assignment check (as performed by BaseTypeVisitor;
see Section 8.5 above)

• -Afilenames: prints the name of each file before type-checking it

The following example demonstrates how these options are used:

$ javac -processor checkers.interned.InternedChecker \

examples/InternedExampleWithWarnings.java -Ashowchecks -Anomsgtext -Afilenames

[InternedChecker] InternedExampleWithWarnings.java

success (line 18): STRING_LITERAL "foo"

actual: DECLARED @checkers.quals.Interned java.lang.String

expected: DECLARED @checkers.quals.Interned java.lang.String

success (line 19): NEW_CLASS new String("bar")

actual: DECLARED java.lang.String

expected: DECLARED java.lang.String

examples/InternedExampleWithWarnings.java:21: (not.interned)

if (foo == bar)

^

success (line 22): STRING_LITERAL "foo == bar"

actual: DECLARED @checkers.quals.Interned java.lang.String

expected: DECLARED java.lang.String

1 error

8.9 Putting your checker in the repository

This section is relevant only if you wish to add your checker to the source code repository for the checkers
framework — for example, to include your checker in the JSR 308 Checkers distribution.

The JSR 308 checkers appear in directory annotations/checkers/ of the annotations repository. It contains
the following relevant subdirectories:

• manual/: Documentation for your checker goes here.
• src/checkers/quals/: Definition of the annotation itself — that is, the @interface declaration.
• src/checkers/annotation name /: Code for the checker, in a directory that is a sibling of of quals/, nonnull/,

etc.
• jdk/annotation name /: Annotated “skeleton class” versions of the JDK and other libraries (see Section 7).
• tests/annotation name /: Inputs and outputs for the test suite for the checker. A single top-level test

suite class goes in tests/src/tests/.

References

[Dar06] Joe Darcy. JSR 269: Pluggable annotation processing API. http://jcp.org/en/jsr/detail?
id=269, May 17, 2006. Public review version.

[EC07] Michael D. Ernst and Danny Coward. JSR 308: Annotations on Java types. http://pag.csail.
mit.edu/jsr308/, November 9, 2007.

[FL03] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null types in an object-
oriented language. In Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA 2003), pages 302–312, Anaheim, CA, USA, November 6–8, 2003.

18

[PAJ+07] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D. Ernst.
Pluggable type-checking for custom type qualifiers in Java. Technical Report MIT-CSAIL-TR-
2007-047, MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, Septem-
ber 17, 2007.

[vdA06] Peter von der Ahe. JSR 199: Java compiler API. http://jcp.org/en/jsr/detail?id=199,
December 11, 2006.

[ZPA+07] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam Kieżun, and Michael D. Ernst.
Object and reference immutability using Java generics. In ESEC/FSE 2007: Proceedings of the
11th European Software Engineering Conference and the 15th ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Dubrovnik, Croatia, September 5–7, 2007.

19

